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1 Introduction

Research attention into the area of adaptive systems has been steadily increas-
ing in the past three decades, and this is also true for the application domains
in which adaptivity is used to actively support users. The field of e-learning is
one such domain, and has become a focal point of adaptive systems research,
as it rapidly evolves into a viable alternative to traditional learning contexts.
Despite the high attention that adaptive e-learning has received, only recently
has emphasis been placed on treating learning as a social process (see, e.g.,
[Brusilovsky et al., 2004]), or as a process consisting of interconnected activ-
ities (see, e.g., [Soller and Lesgold, 2007]), rather than a (passive or active)
consumption of learning content, either at the individual, or at the group level.

The premise of the line of work reported in this paper is that the monitoring
and interpretation of online learning activities can ultimately lead to enriched
user- and learner- models, that, in turn, will make possible new and expanded
forms of adaptive intervention in the context of e-learning. In this article we
propose a new approach intended to address the extraction of information
from sequential user activities, and the analysis and interpretation of such
information, with the ultimate goal of deriving adaptation-oriented knowledge
from naturally occurring learning behaviour.

The proposed approach covers, specifically, the modelling of sequences of
user activities (as Discrete Markov Models) and the employment of the re-
sulting models, in combination with other types of monitoring data, for the
discovery of semantically meaningful information about the learner (includ-
ing the discovery of new learner behaviour semantics) that can be embedded
into the adaptation cycle. Discovery is driven, in both cases, by the clustering
of learners’ activity sequence models. The clustering can be applied at three
levels, depending on the discovery goal:

– Level I (pattern-driven), aiming at the detection of predefined behaviour
patterns / styles on the part of learners that are considered to be indicative
of their skills, traits, knowledge, etc.

– Level II (dimension-driven), aiming at semi-automatically detecting con-
crete, but still unknown, patterns that can be related to behaviour associ-
ated with a specific learning dimension.

– Level III (open discovery), aiming at the open-ended automatic detec-
tion of potential learning dimensions and concrete behaviour patterns, with
human intervention in the process being reduced and focused on the as-
sessment of the validity and utility of system findings.

To demonstrate the feasibility of the approach we have applied it to the
area of problem solving, using real-world data. Problem solving is an essen-
tial part of the learning process in both traditional learning contexts and
e-learning. Learners’ problem solving styles can be described similarly to the
better-known and more often considered learning styles (see, e.g., [Lefrancois,
2006]), although at a different level. Problem solving is applied for problems of
different levels of granularity, from atomic to very complex. While the analysis
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of users’ learning styles based on activity data is mostly done using statisti-
cal knowledge, problem solving behaviour can hardly be accurately modelled
without more detailed sequential information, which renders it an appropriate
case study for the proposed approach.

For the purposes of the work described in this paper, we have developed
custom models that capture the activity sequences of learners involved with
problem solving in a particular Intelligent Tutoring System (ITS). We then use
these models, in accordance with the aforementioned three levels of clustering,
to: (a) detect predefined, well-established problem solving styles in students’
problem solving sequences; (b) discover new problem-solving styles along pre-
defined learning dimensions; and, (c) discover potentially interesting learning
dimensions and associated problem solving styles.

The rest of this article is structured as follows. Section 2 provides an
overview of related work. Section 3 presents the activity modelling part of
the proposed approach, and the data used. Section 4 presents the second part
of the approach, as applied to the models previously derived. Section 5 de-
scribes possible system interventions aiming at closing the adaptation cycle.
And, finally, section 6 summarizes findings, discusses issues related to the ap-
plication of the proposed approach to domains other than problem solving,
and gives an overview of planned work.

2 Related Work

The work described herein falls within the broad field of research of Ed-
ucational Data Mining (EDM) or data mining in e-learning [Romero and
Ventura, 2006], which combines aspects and issues of different areas (e.g.,
e-learning/distance education, machine learning, adaptive systems, etc.). In
[Romero and Ventura, 2010], the authors categorize work in educational data
mining into (a) statistics and visualization, and (b) web mining [Srivastava
et al., 2000] that can be further split into clustering, classification and outlier
detection, association rule mining and sequential pattern mining, and text min-
ing. Web (usage) mining can additionally be further categorized into offline
web mining aiming at the discovery of patterns or other information to help
educators to validate learning models, and online or integrated web mining
where the patterns that are discovered are fed into an “intelligent” system
that could assist learners in their online learning endeavours [Li and Zäıane,
2004].

A different viewpoint on educational data mining is provided in [Baker
and Yacef, 2009] and [Baker, 2010], where the following categories are iden-
tified: prediction, including classification, regression and density estimation,
clustering, relationship mining (including association rule mining, correlation
mining, sequential pattern mining and causal data mining), distillation of data
for human judgement, and discovery with models.

Besides the different ways of categorization, the process of data mining
in educational settings can be split into the following phases [Romero et al.,
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2007]: data collection, data preprocessing, application of data mining, and in-
terpretation, evaluation and deployment of the results.

The work presented here spans several of the aforementioned categories,
as its focus lies on web usage mining, especially emphasizing clustering and
sequential pattern mining in the context of student modelling, based on the
analysis of logged user activity data. The overarching goal of the presented
work is to facilitate the (semi-)automatic discovery of patterns that occur
within activity sequences in a learning context, so that they can be readily
“recognized” and acted upon. Furthermore, although the mining activities
described here are carried out offline, their results are intended to be used
for online analysis of learning behaviour, potentially combined with adaptive
interventions. Another important characteristic of the proposed approach is
that, ultimately, human intervention is only required for assessing the results
of the analysis process, but not for annotating or otherwise augmenting activity
data prior to analysis - often a prerequisite for alternative approaches in the
literature with comparable objectives.

The rest of this section starts with an overview of related work in the area
of activity mining and analysis in educational systems. It then focuses more
specifically on clustering-based student modelling, and sequence-based cluster-
ing approaches. A comparison of our approach to selected ones described in
this section, is provided later in section 6.

2.1 User Activity Data Mining and Analysis in Educational Systems

Data acquisition and preprocessing are fundamental steps in the process of
educational data mining and also constitute the first phases of the adaptation
cycle. The nature of the data monitored is a decisive factor for the later stages
in the cycle and further analysis. Most adaptive educational systems share a
strong reliance on this early phase of the process. They might differ, however,
in the way data is actually monitored, and the granularity of the data itself.
For instance, systems may treat user activities as individual items (either in an
aggregated or event-based way) [Amershi and Conati, 2009], [Romero et al.,
2008] or consider activity sequences [Soller, 2007], [Soller and Lesgold, 2007].
A further distinction can be made by the way data is analysed later; during
the past years a trend towards the combined use of data mining and machine
learning techniques for the analysis of activity data can be observed [Romero
and Ventura, 2010], [Romero et al., 2007], [Hämäläinen et al., 2004], [Amershi
and Conati, 2009]. Systems based on individually treated user activities often
aim at either the prediction of students’ success (or, even more concretely,
grades) [Romero et al., 2008], or future behaviour or interest [Köck, 2009],
or at the extraction of individual users’ and groups’ characteristics [Choi and
Kang, 2008].

In [Romero et al., 2007] and [Romero et al., 2008], the authors describe a
data mining process driven by an extension to the Moodle Course Management
System (CMS) [Moodle, 2010]. Their approach is based on aggregated log data.
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The original pool of logged data contains very fine-grained activities, e.g.,
every single click a user makes for navigational purposes. However, data is not
analysed in its original granularity but summarized and thus converted to a
more aggregated format (e.g., the number of assignments done by a student,
the number of quizzes failed, the number of quizzes passed, the total time spent
on assignments, etc.) The ultimate goal is the evaluation of the usefulness and
performance of different classification algorithms for the prediction of students’
final grades.

Another perspective can be found in [Choi and Kang, 2008] where learner
activity data is monitored and analysed in order to identify conflicting and
facilitating factors in online collaborative learning. Conflicting factors are de-
scribed as factors ultimately obstructing the achievement of learning objec-
tives. Facilitating factors are described as elements that learners recognize as
positive or supportive in attaining the learning objective. Here, the authors
introduce an approach that, compared to the previously described one, relies
more on semantic information behind user activities. In general, all activities
are monitored; analysis, however, extracts the relevant parts and predefines
common “learner behaviours” as, for instance, “summarize learning material”,
“outline tasks”, “modify material”, or “write meeting minutes”.

In [Vialardi et al., 2009], the authors describe another data mining ap-
proach in the context of educational systems that aims at predicting how
suitable a specific course is for a specific student (based on the system’s predic-
tion of success for the respective course) via classification, in order to provide
personalized recommendations. Unfortunately the authors don’t provide a de-
tailed description of the base data records they use. From the rules generated
by their classification system (including, for instance, the number of courses
a student is enrolled at), however, we can conclude that they operate with
accumulated data that is better comparable to what is described in [Romero
et al., 2008] than to what we utilize in the work described in this paper.

A conceptually related approach is presented in [Su et al., 2011], in this
issue, in which the authors describe a clustering- and decision tree- based
approach to eliciting appropriate learning content (objects) to provide learners
with specific requirements and learning/interaction contexts. This approach is
specifically intended to match so-called “user requests” for content (which
encapsulate additionally hardware capabilities, a learner’s preferences, and
network conditions), to content elements in a learning object repository.

In [Anaya and Boticario, 2009], the authors explore data mining in ed-
ucational systems with particular focus on collaborative learning processes.
The stated goals of their approach are to: reveal learners’ collaboration, be
domain-independent, and offer the information immediately after the process
has finished. The said approach was applied with students of the National
Distance Learning University in Spain (UNED), using the learning environ-
ment dotLRN [.LRN, 2010]. The participating students were provided access
to discussion forums, as well as other tools such as FAQs, news, calendar,
etc. Analysis was restricted to statistics of interactions in forums, thus not
considering semantic information. The statistical indicators were used as a
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basis for clustering through which information about learners’ collaborative
behaviour was extracted. The paper by the same authors in this issue [Anaya
and Boticario, 2011] presents an updated and more comprehensive view of
their approach, introducing metrics based on the statistical indicators, which
are shown to have superior performance to clustering in characterising the
collaboration behaviour of learners.

In [Beal et al., 2006] we find an approach to classification of learner engage-
ment based on multiple data sources. It explores an integrated way of infor-
mation acquisition, comprising also students’ self-reported motivation profile
and teachers’ ratings.

2.2 Student Modelling Based on Clustering

This section explores a more concrete part of related work that describes clus-
tering in the context of student modelling (see an even more specialized se-
lection in section 2.3). In [Amershi and Conati, 2009] we can find a detailed
description of the authors’ classification and clustering approach to user mod-
elling. Their base data originates in a learning environment more exploratory
than traditional tutoring systems, with students being required to have a
deeper, more structured understanding of concepts in the domain [Piaget,
1954], [Ben-Ari, 1998]. The data they use is converted to feature vectors that
are later fed into the clustering phase; a feature vector represents an aggre-
gated version of a student’s activities. Thus, there is only one feature vector
for each student, which results in a low overall number of vectors. The authors
describe another similar approach in [Amershi and Conati, 2006] where clus-
tering is used to automatically recognize learner groups in exploratory learning
environments.

A clustering approach based on collaboration behaviour can be found in
[Anaya and Boticario, 2009] where the authors describe how statistical indica-
tors in learner activity data are used to determine cluster membership. Data
was monitored for UNED students via the platform dotLRN [.LRN, 2010].
The described monitoring process started with an initial questionnaire and a
mandatory individual task that had to be completed by every learner. The
respective results were then used to manually group the learners into teams
of 3 members each. In a later phase the teams were given additional tasks,
where, for instance, every member had to solve one part of a specific problem,
or, the team had to merge individual solutions. An expert observed these pro-
cesses and used the findings on learner collaboration to label statistical data
(i.e., an aggregated version of logged learner activities) that was then fed into
a clustering algorithm with the objective of revealing relations between the
statistical indicators and collaboration behaviour.
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2.3 Sequence-Based Clustering Approaches

This section summarizes clustering approaches in the context of e-learning
that consider sequential information in activity log data and are therefore
best comparable to our work. In machine learning, the use of Markov models
is prominent if the domain requires sequences to be represented or analysed
as they provide a convenient way of modelling interrelated data. In the area of
EDM, this advantage has recently been exploited in different pieces of research.

For example, we can find collaboration analysis based on Hidden Markov
Models (HMMs) in [Soller and Lesgold, 2007] and [Soller, 2007]. In
[Soller and Lesgold, 2007], the modelling process is described for the example
case of knowledge sharing, defining a knowledge sharing episode as “a series
of conversational contributions and actions that begins when a group mem-
ber introduces new knowledge into the group conversation, and ends when
discussion of the new knowledge ceases”. The subsequent analysis aims at de-
termining role distribution (knowledge sharer vs. receiver), analysing how well
the knowledge sharer explained the new knowledge and evaluating how the re-
ceiver assimilated new knowledge. The communication interface via which the
activity sequences are logged, includes tagging functionality that helps catego-
rize individual activities. The tagging process is a manual one, i.e., it requires
human effort. In the experiments the authors describe, trained HMMs provide
very good accuracy at identifying the role of the knowledge sharer. It is, how-
ever, not entirely clear why hidden models were used, as the number of states
is known in advance. In our research, as will be explained later, we use Discrete
Markov Models (DMMs) with a predefined number of states (indicated by the
learner actions possible on the platform).

Another pattern detection approach can be found in [Beal et al., 2007],
where HMMs are used to model students’ performance on problem solving.
The models are fit to students’ activity sequences with three hypothesized
hidden states that correspond to students’ “engagement levels”. The resulting
HMMs are later used to cluster students into groups showing specific kinds
of behaviour. Furthermore, the models become a basis for prediction at a
later stage of the process. In this case, HMMs are obviously a well-fitting
analytic approach because they are used for explicitly modelling unobservable
influences, as also indicated by the better prediction accuracy, compared to
simple Markov chains.

A different sequential pattern mining approach is described in [Perera et al.,
2009] where the authors exploit activity data monitored by the system to
support mirroring, i.e., to extract and present patterns that characterize the
behaviour of successful groups. They do not restrict the available tools or pro-
vide specific rules about how to use them, but aim at monitoring collaboration
processes that are as authentic as possible, including the selection of tools and
frequency of use. The main goal of this work is to “extract patterns and other
information from the group logs and present it together with desired pat-
terns to the people involved, so that they can interpret it, making use of their
own knowledge of the group tasks and activities”. The underlying concepts
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are based on the “Big Five” theory of group work [Salas et al., 2005] that
defines five key factors: leadership, mutual performance monitoring, backup
behaviour (e.g., reallocating work between members), adaptability, and team
orientation. After the monitoring process, the final data pool contained both
the traces of user actions and the groups’ progressive and final marks. Based
on their performance (i.e., grades), the groups were ranked. The ranking was
then used to determine what kind of behaviour distinguished the stronger from
the weaker groups. This was done by a simple statistical analysis in the first
phase, and by application of data mining techniques (clustering on groups and
on students) in subsequent ones. Group-level clustering base data contained
aggregated group activities like, for instance, the average number of events in
a specific tool, student-level clustering base data contained similar information
for individual students. The clusters detected during the student-level cluster-
ing phase define different types of users, e.g., “managers” or “loafers”. The
analysis of the activities by a pattern extraction process revealed the most
important activities that were indicative of “strong” and “weak” groups. The
authors point out, however, that their approach is not fully matured yet and
still bears some limitations based on the data (due to limited types of events)
and on the way in which output was interpreted.

In [Jeong and Biswas, 2008], another approach to behaviour modelling is
presented. The authors describe a study with middle school students operating
with a Teachable Agent. They again use HMMs to represent sequences of
activities in order to reveal patterns that lead to learning success. The concrete
goal in this case was to find out if “Learning by Teaching” provides better
opportunities for learning, compared to other settings (a self-regulated- and a
coaching system). Thus, the sequence models were used mainly as an aid to
evaluate learning concepts in this approach.

In [Li and Yoo, 2006], the authors describe the modelling of student learn-
ing behaviour with Bayesian Markov Chains that was used in the adaptive
tutoring system AtoL [Yoo et al., 2005]. Their approach presumes a specific
format of tasks including specific levels of difficulty and only considers two
base observations, i.e., correct and incorrect answers. Additionally, the au-
thors assume that there are exactly three basic student models based on the
three learning types they define (i.e., reinforcement type, challenge type and
regular type). Their goal is to use clustering for modelling student behaviour
and to use the resulting models to predict the learning styles of new users. The
results are interesting in the context of this paper, because they show that ba-
sic sequential information can be successfully used in clustering processes and
improve static models derived, for instance, through an initial survey. What
is being proposed in our work, however, goes one step further and does not
presume a specific number of models but rather aims to allow these to be
dynamically determined, as described in more details later.

Another interesting use of Markov models for activity analysis can be found
in [Mart́ın et al., 2011], in this issue. In this case, instead of looking for sim-
ilarities in the learners’ behaviour directly, the authors first cluster learners
on the basis of user- and context- characteristics; they then construct Markov
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models of the learners’ activity transitions in each cluster to derive activity se-
quence recommendations for future users. As such, this approach does not seek
to directly analyse behaviour on the basis of the models, but rather promote
activity sequences that have been shown to be of benefit to similar learners
(and contexts) in the past.

3 Data Analysis and Activity Sequence Modelling

To facilitate discussion of the proposed approach, we describe here its practical
employment in the modelling and analysis of real-world problem solving data
monitored within the Andes ITS [VanLehn et al., 2005], and made available
via the PSLC DataShop [Koedinger et al., 2008], [Koedinger et al., 2010].
Specifically, experiments were run on data from a Physics course of the US
Naval Academy (USNA) and repeated with data of different academic terms
(Spring 2007, 2008, and 2009).

The software we used in this study, which embodies the approach being
put forward, consists of three main components: a pre-processor extracting
activity sequences from raw data, a modelling unit converting the sequences
to Discrete Markov Models (DMMs) (further described in section 3.2) and
a clustering unit based on the clustering algorithms integrated in the Weka
machine learning library [Hall et al., 2009] (further described in section 4).

3.1 Raw Data Description

In general, the Andes tutoring environment provides learners with problems
to be solved, and different types of help (e.g., “explain further”, “what’s
wrong”). The tasks themselves consist of several so-called Knowledge Com-
ponents (KCs), which again consist of several so-called Unique Steps. We will
later show how we model all the interactions within one KC as one problem
solving sequence. A raw data set can be described as a set of activity instances,
with an instance storing information about a student’s attempt at a specific
step, or the ITS’s response. In total, the raw data contains ∼ 280000 activity
instances produced by 73 users for 2007, ∼ 265000 activity instances and 97
users for 2008, and ∼ 115000 activity instances and 45 users for 2009. An
instance is a plain line of text with comma-separated values (CSV) and holds,
for instance, the student-id, session-id, time stamp and time zone, step dura-
tion, student response type (e.g., ATTEMPT, HINT REQUEST) and subtype
(e.g., Explain-Further, Whats-Wrong), tutor response type (e.g., RESULT,
HINT MSG) and subtype (e.g., Explain-Further, Whats-Wrong), problem-id,
step-id, count of attempts at this step, outcome (the tutor’s evaluation, e.g.,
CORRECT, INCORRECT, HINT), number of hints at this step, etc.

The problem solving sequences extracted from this raw data by the pre-
processor are then passed on to the modelling unit which analyses and further
converts them into DMMs.
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3.2 Sequence Modeling

The first part of the proposed approach is concerned with modelling activity
sequences in a way that allows for analysing and reasoning over sets of ac-
tivities performed by different users. We have considered several alternatives
to representing sequences, and concentrated on the interwoven questions of
comparability and generalizability. Specifically, we sought a formalism that
would enable us to compare activity sequences that may differ only little (e.g.,
situations where one sequence may contain more repetitions of one activity
than those found in another), but also allow for comparing sequences with
only small amounts of overlap. In general, the modelling of sequential data
faces the challenge of not losing information about relations and dependencies
between the individual items, in this case, activities.

An overview about different machine learning approaches for modelling
sequences, is provided in [Dietterich, 2009]. The author lists the most impor-
tant research issues in sequential supervised learning as follows: loss functions,
feature selection and long-distance interactions, and computational efficiency.
Although our approach described here aims at information extraction via clus-
tering, i.e., unsupervised learning, most of these issues are relevant for us.
Feature selection, for example, plays a crucial role in the process, as discussed
in section 4. Too many features can inhibit the identification of the most
significant properties and thus distort the picture, whereas too few features
may easily cause total loss of relevant information. Computation efficiency
is also a very important factor for our scenario – a sequence modelling ap-
proach suitable for our requirements should be applicable at run-time and
avoid loss of information. Dietterich [Dietterich, 2009] lists several machine
learning techniques suitable for modelling sequential data: the sliding window
method, recurrent sliding windows, Hidden Markov Models (HMMs) and re-
lated methods, Conditional Random Fields (CRFs), and Graph Transformer
Networks (GTNs).

The sliding window method (see different applications in, e.g. [Sejnowski
and Rosenberg, 1987], [Qian and Sejnowski, 1988], or [Fawcett and Provost,
1997]), converts a sequential learning problem into a classical learning prob-
lem. The method uses a window classifier that is trained with input data
that has been converted into windows (each representing and treated as a se-
quence). The sliding window method is not bound to specific algorithms but
can use any machine learning technique. However, it is inflexible and does only
consider specific kinds of dependencies which is why loss of information about
dependencies and relations is relatively likely.

The recurrent sliding windows technique feeds the predicted value for a
specific data instance into the system to help make the prediction for the next
instance, i.e., the most recent predictions are used as inputs (the size of this
“window” depends on the respective application scenario). In [Lichtenwalter
et al., 2009], for example, the authors describe an approach using recurrent
sliding windows for musical classification. In [Bakiri and Dietterich, 2001], the
authors applied recurrent sliding windows in combination with a decision tree
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algorithm to the English pronunciation problem. In their evaluation, the recur-
rent sliding window technique drastically improved the results of the original
sliding window method. However, both the original sliding window method
and the recurrent sliding window technique are mainly suitable for supervised
learning not for clustering-based unsupervised approaches as in our scenario.

Markov Models (MMs) are probabilistic models similar to finite state ma-
chines consisting of a set of states S = {S1, S2, ..., Sn}, an NxN matrix con-
taining state transition probabilities A = {aij}, and a vector of initial state
probabilities π = {πi = P (q1 = Si)}. This model is then used to compute the
probabilities for specific output sequences.

HMMs (see, for instance, [Rabiner, 1990]) are special cases of MMs because
the states are hidden, i.e., not observable. The hidden states form a traditional
MM and can produce a set of different outputs, i.e. observable effects. HMMs
are a popular way of modelling sequential data in order to be able to provide
predictions for specific activity sequences, see, for example, [Beal et al., 2007],
[Seymore et al., 1999], [Soller et al., 2005], [Soller, 2007], or [Soller and Les-
gold, 2007]. However, [Dietterich, 2009] identifies a principle drawback of this
methodology and states that the ”‘structure of the HMM is often a poor model
of the true process producing the data”’, a problem which originates in the
Markov property (i.e., the probability of a system being in a particular state
Sj at time t does not depend on the entire history, but only on the previous
state at time t1); a relationship between two different y values, for example,
y1 and y3, must be communicated via the intervening ys. An MM where the
probability P (yt) only depends on yt−1 cannot generally capture these rela-
tionships. This problem is generally addressed by sliding window techniques.
Using sliding windows for HMMs is however difficult, because a HMM gener-
ates each xt from the corresponding yt only. [Dietterich, 2009] argues that this
problem could theoretically be overcome by replacing the output distribution
P (xt|yt) by a more complex distribution P (xt|yt−1, yt, yt+1), which would al-
low an observed value xt to influence all three y values but is difficult to put
into practice because it is not clear how to represent this complex distribution
compactly.

[Dietterich, 2009] lists the following approaches to overcome these limita-
tions: Maximum Entropy Markov Models (MEMMs) (see, for example, [McCal-
lum et al., 2000]), Input-Output HMMs (IOHMMs) (see, for example, [Bengio
and Frasconi, 1996]), and CRFs (see, for example, [Lafferty et al., 2001] or
[Vail et al., 2007]). All of these approaches are conditional models that, unlike
standard HMMs which try to explain how observed sequences are generated,
represent conditional distributions of output sequences given input sequences,
i.e. they try to predict output values given input values. IOHMMs and MEMMs
are quite similar in the way they are trained and both suffer from the same
issue called label bias problem, i.e., there is a bias toward states with fewer
outgoing transitions (states with a single outgoing transition ignore their ob-
servations), see a more detailed description in [Lafferty et al., 2001].

CRFs, which are mostly used for labelling sequences, are an approach to
overcome the label bias problem (see [Lafferty et al., 2001] or [Vail et al.,
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2007]). In the CRF, the way in which adjacent y values influence each other is
determined by the input features [Dietterich, 2009]. CRFs In the experiments
presented by [Lafferty et al., 2001], the CRF outperforms HMMs and MEMMs
regarding modelling accuracy, but it is fairly slow in comparison to the other
approaches.

GTNs (see, for example, [Bottou et al., 1997] or [Bottou and LeCun, 2005])
are neural network based models that transform input graphs into output
graphs [Dietterich, 2009]. For example, an input graph consisting of a sequence
of inputs xt is transformed into a graph of ut outputs, where every xt is a
feature vector attached to an edge of the graph, and every ut is a pair of a
class label and a score. The graph of the ut scores is then analysed with the aim
of finding the path with the lowest total score. Also this methodology aims at
solving complex supervised learning problems rather than unsupervised ones.

In general, most techniques for modelling sequential data as presented here,
are tailored to the use in classification tasks, i.e. supervised learning. In our
case, however, we want to model sequences for clustering, i.e. unsupervised
learning. Thus we have to find a way to represent sequences that allows for
transformation into a format processable by clustering algorithms. The reasons
for the decision to use DMMs can be summarized as follows:

1. Markov models have been successfully used in the past for similar purposes
in the context of modelling activities [Soller and Lesgold, 2007] [Soller,
2007] (discussed in more detail in section 2).

2. The states themselves are observable (see the description below), therefore
there is no need to use hidden models.

3. Traditional statistical representations are likely to lose information bound
to not the activities themselves but the relations and dependencies between
them (see the example below).

4. The approach must be suitable for unsupervised learning and models must
be convertible to other formats that can be fed into a clusterer, or serial-
izable without information loss.

5. The modelling process itself should not be too expensive concerning its
run-time behaviour.

To better motivate our choice of sequential representation, let us consider
the concrete example of modeling problem solving sequences. In the Andes
system, a problem solving sequence contains all of a user’s (identified by a
user id) activities related to any Unique Step associated with the problem
(identified by a problem id). Thus, a solving sequence for a specific problem
looks different for each user. Consider the following scenario: two hypothetical
users U1 and U2 are working on the same problem P1 which consists of three
steps S1, S2 and S3. User U1 solves step S1 correctly at first attempt, but fails
first at S2. Next, the user requests a hint of type H1 that is followed by two
hints of type H2, and then solves the step correctly at the second attempt.
This results in the activity sequence I → H1 → H2 → H2 → C. A similar
pattern is observed for S3: I → H1 → H1 → C. For user U2 we observe: S1:
I → H1 → I → H2 → C, S2: H3 → C, S3: H1 → I → H2 → C.
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Fig. 1 This figure shows two DMMs as used for the clustering approach described later.
Probabilities with 0- and default values (with which the transitions and prior probabilities
are initialized) are omitted here. The numbers next to nodes denote their prior probability,
the numbers next to transitions denote the transition probability.

Describing these sequences with basic statistical means one may obtain
results such as these: both users have successfully completed the problem;
user U1 submitted two incorrect answers in total and requested five hints, user
U2 submitted three incorrect answers and requested five hints. A comparison
of these results might lead to the conclusion that the performance of U1 and
U2 at P1 was similar. Even if the comparison considered the level of steps, the
result for the two users at S3 would be equal although the actual sequences
were different, i.e., one dimension of the information is lost.

As already discussed, the premise of the presented work is that retaining
this kind of sequential activity information in the modelling process can en-
hance several stages of the adaptation cycle by offering fine-grained user model
input on a behavioural level.

As mentioned earlier, in our case study, the data clearly suggests a certain
configuration of states, therefore there is no need to use hidden models here.
Referring back to the example above, a student has basically two important
possibilities of interacting with the system: submitting an answer, or request-
ing a hint. The system offers four different categories of hints, thus we can
differentiate between four different help states in the corresponding DMM.

To be able to examine at a later point whether the distinction between
hint types influences behaviour analysis, we created two DMM settings for all
experiments, the first with one aggregated hint state and the second with the
initial four. Figure 1 shows sample DMMs for the two settings, modelling the
behaviour of user U1 solving problem P1 from the example above. In addition
to the obvious states “correct” (C), “incorrect” (I) and “hint” (H), an artificial
end state (E) is added by the modelling unit. The end state is needed in order
to distinguish between the transitions within a single step and the transition
to a new one. If the user starts a new step, the system inserts a transition from
the current state to the end state, thus completing the step.

These DMM-based problem solving sequence models were subsequently se-
rialized and converted to the common Attribute-Relation File Format (ARFF
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Table 1 This table lists and describes the features of different data sets that are used in
both text and tabular results later.

Feature name Feature description

PRIOR PROB C prior probability of a correct attempt
PRIOR PROB I prior probability of an incorrect attempt
PRIOR PROB H1 prior probability of a help request of type H1
PRIOR PROB H2 prior probability of a help request of type H2
PRIOR PROB H3 prior probability of a help request of type H3
PRIOR PROB H4 prior probability of a help request of type H4
PRIOR PROB H* prior probability of a help request of arbitrary type
PRIOR PROB H prior probability of a help request (aggregated setting)
TRANS PROB C C transition from a correct attempt to a correct one
TRANS PROB C I transition from a correct attempt to an incorrect one
TRANS PROB C H[*] transition from a correct attempt to a help request
TRANS PROB C E transition from a correct attempt to end (i.e., step finish)
TRANS PROB I C transition from an incorrect attempt a correct one
TRANS PROB I I transition from an incorrect attempt to an incorrect one
TRANS PROB I H[*] transition from an incorrect attempt to a help request
TRANS PROB I E transition from an incorrect attempt to end
TRANS PROB H[*] C transition from a help request to a correct attempt
TRANS PROB H[*] I transition from a help request to an incorrect attempt
TRANS PROB H[*] H[*] transition from a help request to a help request
TRANS PROB H[*] E transition from a help request to end
TRANS PROB E C transition from end to a correct attempt
TRANS PROB E I transition from end to an incorrect attempt
TRANS PROB E H[*] transition from end to a help request
PERC HELP STEP percentage of help requests in a user’s activities
PERC INCORRECT percentage of incorrect attempts in a user’s activities

1) which is handled by an export mechanism in the modelling unit. In ad-
dition to the aforementioned activity sequence information, we made use of
basic statistical data, in order to later compare the clustering performance
not only for different settings and different years but also according to dif-
ferent clustering aims and with different aspects of the same raw data. Using
these data sources in isolation and in combination gave rise to a total of three
data sets that were used in the clustering stage: SET MARKOV , includ-
ing only the information provided by the learned Markov models (i.e., prior
probabilities for the states and transition probabilities between the states),
SET STATISTICAL, including very basic statistical information (i.e., the
percentage of incorrect attempts, the percentage of help requests and the per-
centage of unfinished steps), and SET BOTH combining the previous two.
Table 1 lists and explains all features that are later used in the context of the
description of the experiments and results.

Note that the modelling choices made here (especially the use of DMMs), as
well as the the selection of features with which to populate the data sets used
in the clustering stage, have been tailored to the specific needs of modelling

1 See more information about ARFF at http://weka.wikispaces.com/ARFF
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problem solving activity sequences. Section 6 discusses factors researchers may
want to consider when applying the proposed approach to other domains of
learning.

4 A Multi-targeted Clustering Approach

This section describes the clustering phase and its different directions, follow-
ing the definition of the activity sequence representation and conversion of
base data to the corresponding models. Figure 2 provides a concise overview
about the approach as a whole.

The process starts with the pre-processing phase, including the definition
of the model that will be used, based on the structure of base data and the
possible user activities (here DMMs), data conversion (i.e., conversion of users’
activity sequences to concrete models), and the definition of expressive metrics
to evaluate the quality of clusters later. Next, in the experimental clustering
phase, the number of features considered in subsequent steps is limited by
identifying and evaluating their characteristics (e.g., their discriminatory ca-
pacities), and the optimal number of clusters for the respective scenario is
determined. In the clustering phase, first the concrete clustering goals must
be defined, i.e., it must be decided whether a predefined concrete problem-
solving style should be identified in a user’s activities, if a predefined problem-
solving dimension should be recognized, or if the clustering process should
autonomously detect potential dimensions and styles in users’ behaviour. In
the first case, the respective style must be defined, the most relevant features
chosen and the expected values for them must be identified. Based on this
information, a suitable data set is created that proceeds into the clustering
process. In the second case, the respective dimension must be defined, and
again the most significant features must be chosen before a data set can be
created that is fed into the clustering process. In the third case, no concrete
features are preselected, but constraints like the maximum number of features
that can be used in a data set, are identified. Different data sets meeting these
requirements are automatically created and proceed to the clustering process.
The last phase, following clustering, includes cluster analysis.

4.1 The General Process

Having established a way of modelling learning activity sequences, we now turn
our attention to the analysis of such sequences to discover behaviour patterns
that may be characteristic of traits of the persons exhibiting the behaviour
(e.g., learning- or problem solving- styles), or of the process or context within
which the activities take place (e.g., progress of a collaborative learning class
project). The first step in that direction is the clustering of the activity models
previously derived, possibly in combination with other monitored data, usually
relating to the activities themselves.
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Fig. 2 Overall process of the proposed approach to sequence modelling and subsequent
dynamic clustering.

A salient feature of the proposed approach is that clustering be dynamically
controlled to accommodate different discovery goals in the analysis of activi-
ties. “Dynamic”, in this context, is intended to convey the fact that aspects
of the clustering process, such as the determination of the quality of clusters,
the establishment of termination conditions for the clustering process, etc., are
not constrained to the data set being clustered (as is the case with clustering
algorithms that decide themselves when to “stop”), but are expanded to take
into account semantic characteristics of the activities (or their results) that are
not explicitly represented in the data being clustered over (e.g., how well clus-
ters encapsulate the different strategies students exhibit when encountering a
specific type of problem to solve).

The overall objective then of this part of the proposed approach is the
identification of the discovery goals that guide the clustering process, as well
as the establishment of metrics and criteria that can be used for its dynamic
control. Whereas some of these indices may be general in nature (and, there-
fore, applicable to several types of activities being analysed), the requirement
that they be based on activity semantics has the consequence that such indices
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will often be application domain specific. The rest of this section is devoted
to the application of the process in the domain of problem solving; section 6
addresses issues related to applying the approach to other domains.

4.2 Metrics and Indices for the Domain of Problem-Solving

The main goal of the clustering process in our case study is the detection
of problem solving styles, either based on a description of pre-defined styles
or with the aim to discover new ones (as further explained in section 4.4).
Additionally, we use the clusters to predict success, i.e., whether a student
will successfully complete a problem. The main task of the clustering unit is
to not only pass on sets of data instances (an instance here being, e.g., the
serialized, CSV-based version of a DMM for SET MARKOV ) to the k-means
clustering algorithm [Jain et al., 1999], but also perform several subsequent
analyses depending on what purpose we cluster for. Towards this goal, the
experiments that will be subsequently described are repeated several times for
n clusters, where 2 ≤ n ≤ 20, assessing in each case the changes in clustering
behaviour and performance and aiming at the detection of the optimal value
for n, which can then be used to dynamically control the clustering process. We
introduce the following metrics to evaluate a clustering result with n clusters:

1. Average Student Entropies (SE(Cn)), providing an index for the distribu-
tion of students in clusters,

2. Average Problem Entropies (PE(Cn)), providing an index for the distri-
bution of problems in clusters,

3. Average Variance (V (Cn)) in the clusters, measured by the average stan-
dard deviations for the attributes, and

4. Average Expected Prediction Error (EPE(Cn)), measuring the capability
of the clusters to correctly predict success.

In an optimal cluster setting, the sequences of the same student should ap-
pear in one cluster only, presuming that the student showed consistent problem
solving behaviour (which is an assumption that cannot hold in all cases in prac-
tice). Therefore, SE(Cn) should remain low, which also applies for PE(Cn).
Both entropy indices, however, will naturally increase as the number of clusters
increases, and are, therefore, not sufficient in themselves for characterizing the
results of the clustering process. Furthermore, in an optimal cluster setting,
V (Cn) would tend to 0, meaning similar values for attributes can be found in
the same clusters, and EPE(Cn) would also be minimized.

Equation 1 shows how SE(Sx) is computed for a student Sx. This index is
an instance of the standard entropy measure H = −K

∑n
i=1 pi ∗ log(pi), where

K is a positive constant [Shannon, 1974]. The same applies for Equation 2.
Sci is the number of a specific student’s problem solving sequences that can be
found in cluster i. With |S| being the overall number of this student’s problem

solving sequences,
Sci

|S| denotes the probability of a student’s problem solving

sequence being assigned to cluster i. SE(Cn) is the respective average over all
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students.

SE(Sx) = −
n∑

i=1

Sci

|S|
∗ log10(

Sci

|S|
) (1)

Equation 2 shows how PE(Px) is computed for a problem Px. Pci is the number
of solving sequences for a specific problem that can be found in cluster i. With

|P | being the overall number of solving sequences for this problem,
Pci

|P | denotes

the probability of a problem’s solving sequence (independent of the student it
was produced by) being assigned to cluster i. PE(Cn) is the average over all
problems.

PE(Px) = −
n∑

i=1

Pci

|P |
∗ log10(

Pci

|P |
) (2)

Equation 3 shows how V (Cn) is computed for a cluster setting with n clusters
where σ2(Ci) is the mean standard deviation over all attributes in cluster Ci.

V (Cn) =

∑n
i=1 σ

2(Ci)

n− 1
(3)

Equation 4 shows how EPE(Cn) is computed for a cluster setting with n
clusters.

EPE(Cn) =

∑n
i=1 err(Ci)

n− 1
(4)

where

err(Ci) =

{
co(Ci)
tot(Ci)

if co(Ci)
tot(Ci)

≤ 0.5

1− co(Ci)
tot(Ci)

otherwise
(5)

with co(Ci) being the number of completed steps in cluster Ci and tot(Ci)
being the number of total steps in cluster Ci.

For these metrics we can observe the following trends for an increasing
number of clusters. SE(Cn) and PE(Cn) ascend logarithmically with the
actual values being dependent on the base used for the logarithms. V (Cn)
and EPE(Cn) slowly descend with V (Cn) showing more fluctuations than
EPE(Cn) and EPE(Cn) showing a slightly more significant descent. In order
to use these indices to decide on an optimal number of clusters we also per-
form the following steps: firstly, we normalize the values to a range between
0 and 1 including the boundaries (for example, to avoid being dependent on
the logarithm base), and secondly, we include weighting so that the clustering
can be optimized according to a specific aim (e.g., the minimization of error).
Figure 3 shows the normalized graphs for an example data configuration.

Optimization aims at finding the configuration in which the margin be-
tween the ascending and descending graphs is within a certain threshold. We
define this threshold as the point of graph convergence in the normalized ver-
sion and compute the optimization value for a cluster setting with n clusters
as shown in equation 6.

Opt(n) = |
no(SE(Cn))∗ws+no(PE(Cn))∗wp

2 − no(V (Cn))∗wv+no(EPE(Cn))∗we

2

ws + wp + wv + we
| (6)
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Fig. 3 This figure shows the normalized graphs for the data set SET MARKOV in the
extended hint processing on data of the year 2008.

where no(N) normalizes the values in N to a range between 0 and 1 including
boundaries. The optimum is then the value closest to 0. For the example
used in figures 3, the unweighted optimization graph would find 5 as the best
number of clusters, as shown later in table 4.

4.3 Comparison of Different Data Sets and Settings

The clustering process described in section 4.2 was repeated with multiple
different data sets, different settings and academic terms. The primary goal
in doing so has been to determine the extent to which the proposed metrics
are influenced by the specific data set(s) employed. A secondary goal was to
make informed decisions with respect to the levels of aggregation that base
data would be used in.

To start with, we compared for each of the four metrics SE(Cn), PE(Cn),
V (Cn) and EPE(Cn) individually the clustering results in different years,
settings and data sets, resulting, for instance, in a comparison of results for
the data set SET MARKOV in the aggregated help processing setting for
the three academic terms of Spring 2007, 2008 and 2009. This process aims
at verifying the overall mechanism that is expected to lead to similar results
if a sufficiently high amount of base activity data is provided. The number of
activities in the courses of 2007 and 2008 was about equal and relatively high,
which leads to the assumption that at least for these two years the results will
be similar. As in 2009, the number of students and activities was significantly
lower, the results of this term may not be as reliable as those of the previous
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two. The comparison supports this assumption, as shown in the examples in
Figures 4, 5, 6, and 7. As can be seen in these figures, the results for 2007 and
2008 show very similar trends for all metrics; the results for 2009, although
comparable to those of the other years, do show some small deviations.
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Fig. 4 This figure shows the SE(Cn) results for the data set SET MARKOV in aggregated
(a) and extended (b) help processing settings for all three academic terms.
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Fig. 5 This figure shows the SE(Cn) results for the data set SET STATISICAL in ag-
gregated (a) and extended (b) help processing settings for all three academic terms.
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Fig. 6 This figure shows the EPE(Cn) results for the data set SET MARKOV in aggre-
gated (a) and extended (b) help processing settings for all three academic terms.
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Fig. 7 This figure shows the EPE(Cn) results for the data set SET STATISICAL in
aggregated (a) and extended (b) help processing settings for all three academic terms.

The decision whether to use aggregated or extended help states depends
on the clustering purpose and can best be determined by running initial clus-
tering experiments on both settings, using data sets specifically tailored to
the respective purpose. For instance, we may be interested in analysing the
use of help and create data sets that specifically contain help-related features
(see also section 4.4). Figure 8 shows the trends of PE(Cn) and V (Cn) as
examples; each trend line represents the results for a specific year and setting
(aggregated or extended). Figure 8(a) demonstrates that the results for the
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aggregated and extended help processing settings are very similar in the cases
of the 2007 and 2008 data sets; for 2009, the extended help processing setting
shows the better results. Figure 8(b) shows better results for the aggregated
help processing setting for all years.
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Fig. 8 This figure shows the PE(Cn) (a) and V (Cn) (b) clustering results for a data set
containing help-related features in aggregated and extended help processing settings for all
three academic terms.

As the more reliable data from 2007 and 2008 all showed either about equal
results for the two settings or better results for aggregated help processing,
we decided to use this setting in situations where either of the two would
be potentially applicable. We conclude that for tasks not especially aimed at
analysing styles based on different types of help, it is better to decrease the
number of attributes. Thus, the results presented later use aggregated help
processing. However, the models with extended help processing can be of use
for specialized tasks.

Comparing the different data sets, SET STATISTICAL provides the
best models for predicting the value for “completed” attribute (i.e., EPE(Cn)
is low). For the detection of patterns in learner activities however, the models
based on SET MARKOV perform best. We therefore use a combined ver-
sion as a basis for specifically tailored, dynamically created new data sets for
further purposes, as described in the following sections.

4.4 Three-Level Clustering and Cluster Analysis

This section describes a multi-level approach for clustering and cluster anal-
ysis, based on the metrics and processes explained in section 4.2. The results
presented here are based on the Andes Physics course data for the Spring 2008



Clustering of Problem-Solving Activity Sequences for Personalization 23

term. The data of the other terms were used for rerunning the same experi-
ments in identical settings, which confirmed the results presented later in this
section.

4.4.1 Level I (Pattern-Driven)

Clustering at this level aims at the detection of predefined behaviour patterns
on the part of learners that are considered to be indicative of their skills, traits,
knowledge, etc. For the purposes of our case study this means that clustering
is performed in order to detect predefined, well-established problem solving
styles in students’ problem solving sequences. To demonstrate the process
at this level, we chose the well-known problem solving style Trial and Error
[Jarvis, 2005], [Thorndike, 1903] (also referred to as Trial and Success), de-
scribing behaviour that is based on chance at the beginning and on learning by
making mistakes until the problem is solved later. Although it is hard to find a
recent psychological description of the Trial and Error style, there seems to be
common agreement on its definition and use (see mentioned in, for instance,
[Kanninen, 2008], [Brown et al., 2007], [Butler and Pinto-Zipp, 2006], [Cassidy,
2004], [Kolb, 1984], [Schaller et al., 2007], [Liu and Dean, 1999], [Dewar and
Whittington, 2000], [Terrell, 2005], [Ballone and Czerniak, 2001], [Felder and
Silverman, 1988], [Simon, 2000], or [Richmond and Cummings, 2005]).

We evaluated the available attributes from the data set SET BOTH with
regards to their potential to contribute to the identification of Trial and Error
problem solving behaviour. Specifically, we expected a person with this be-
haviour, based on how the style is described in the relevant literature, to have
high prior probabilities for incorrect attempts and low-to-medium prior prob-
abilities for correct attempts. Note, that the probability of guessing a correct
answer is much lower than the probability of getting it wrong by chance. This is
due to the fact that, usually, problems only have one correct answer as opposed
to several incorrect possibilities. Furthermore, we expected such a person to
generally have a low hint request rate, low transition probabilities from incor-
rect to hints, and a relatively high rate of incorrect attempts. The correspond-
ing attributes were selected, stored in a new data set SET TRIAL ERROR,
and clustering was performed on this set. The results of a cluster configuration
with 8 clusters (as listed in table 2) show that two clusters (1 and 6) provide a
clear identification of the Trial and Error problem solving style. Note in both
cases the high prior probabilities for incorrect attempts, the low help state
rate, the high percentage of incorrect attempts and the fact that the prior
probabilities for correct and incorrect attempts sum up to ∼ 1, indicating that
the prior probabilities for the help states are ∼ 0. The procedure described
above can be applied for every other pre-defined problem solving style, thus
opening up the possibility of clustering activity sequences with the explicit
goal of detecting expected behaviour, so that predetermined interventions can
be applied in response to it.

It is important to note at this point that, with a preselected set of patterns
to identify, and a set of hypotheses of what features might be relevant to
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Table 2 This table shows the clustering results on SET TRIAL ERROR with an 8 cluster
configuration. The numbers in parentheses after the cluster id show the number of problem
solving instances in the respective cluster.

Attribute C0(1506) C1(456) C2(2503) C3(489) C4(1770) C5(1606) C6(464) C7(671)

PRIOR PROB C 0.9923 0.1219 0.239 0.4187 0.7405 0.6201 0.2347 0.3079

PRIOR PROB I 0 0.7896 0.1408 0.2045 0.2324 0.304 0.7422 0.0045

TRANS PROB I I 0.1429 0.5568 0.2377 0.0772 0.0348 0.5452 0.0991 0.1429

TRANS PROB I H1 0.1429 0 0 0 0 0 0 0.1429

TRANS PROB I H2 0.1429 0.0082 0.0951 0.0336 0.0251 0.0301 0.0087 0.1429

TRANS PROB I H3 0.1429 0.032 0.0767 0.6779 0.0262 0.052 0.0231 0.1429

TRANS PROB I H4 0.1429 0.0044 0.0399 0.0124 0.0163 0.011 0.0056 0.1429

PERC HELP STEP 0.0146 0.0918 0.658 0.5533 0.0652 0.1432 0.0465 0.728

PERC INCORRECT 0 0.6345 0.1081 0.1257 0.1989 0.3877 0.4659 0

these patterns, one could also follow a supervised learning approach to derive
the results attained at this level. This would involve, for example, labelling a
number of training examples, and using decision trees or similar “transparent”
models to confirm or reject the hypotheses on relevancy of the various features.
However, this approach would require human intervention (for the labelling)
and would not be readily transferable to other patterns. More importantly, this
approach cannot scale to the subsequent levels of discovery described below -
where the patterns are a derivative rather than a given of the analysis process.

4.4.2 Level II (Dimension-driven)

At this level we are concerned not with the “recognition” of expected behaviour
when it occurs, but rather with establishing whether it is possible to identify
distinct behavioural patterns in relation to specific semantic dimensions of the
activities being analysed. For our case study this translates into performing
clustering along known learning dimensions, in order to identify concrete prob-
lem solving styles the learners may exhibit. In more detail, in this case we do
not want to cluster for a specific problem-solving style directly, but rather for
a kind of general learning behaviour, which may involve several different styles
itself. We have chosen Help-Seeking behaviour [Nelson-Le Gall, 1985], [Aleven
et al., 2003] as a well-known learning dimension, and identified the behaviour
elements that we expected to be defining in this case.

Help-Seeking can generally be defined as ”[...] the ability to utilize adults
and peers appropriately as resources to cope with difficulties encountered in
learning situations [...]” [Nelson-Le Gall, 1985], based on, among others, [An-
derson and Messick, 1974] or [Nelson-Le Gall, 1981]. In [Aleven et al., 2003],
the authors discuss a framework to understand help-seeking that was origi-
nally presented by [Nelson-Le Gall, 1981] and later elaborated by [Newman,
1994] and [Ryan et al., 2001]. The framework contains a task analysis of the
help-seeking process and includes the following steps:

1. Become aware of need of help.
2. Decide to seek help.
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3. Identify potential helper(s).
4. Use strategies to elicit help.

This process is to a great extent transferable to the scenario described here.
Students need to be aware of the need of help first, before they actually decide
to utilize the help functionality. They need to decide for a type of help, i.e.,
identify the kind of help potentially best suitable.

Taking the above into considerations, we identified the following elements
as the ones we expected to be defining for this kind of behaviour: the rate
at which learners request help, the transition probabilities from an incorrect
attempt to a hint request, the prior probability for hint requests, and the
help-internal transition probabilities (e.g., transitions caused by the learners’
asking for more detailed help hints).

The selected help-related attributes were stored in a new data set SET
HELP SEEKING, and clustering was performed on this set. Again, the re-
sults show clear variations of the examined behaviour. This indicates that the
attributes selected formed a coherent whole, capable of exposing the elements
of variability in the learners’ behaviour along the, thus, successfully “recog-
nized” learning dimension. The next step was to analyse different concrete
styles within this learning dimension, which successfully leads to the detec-
tion of the help-related problem solving styles as described in Table 3. The
four Help-Seeking styles identified here can be explained as follows. A problem
solver of type H1 shows Trial and Error behaviour and tends to request hints
in sequences, whereas a problem solver of type H2 makes sure not to submit
wrong answers but requests a lot of help, even before having tried. This might
lead to the assumption that this problem solver uses the help functionality
instead of sufficient preparation. A problem solver of type H3 does not request
help right at the beginning and does not request help too often; when help is
requested though, this is done in sequences. This may be indicative, for in-
stance, of a learner that is interested in really understanding a problem before
continuing. The problem solver of type H4 is very similar to H2, and in settings
with a lower number of clusters these styles might have been combined. The
number of clusters selected depends on the aspired level of granularity. If it is
the aim in the actual setting to find rough types the students can be assigned
to, one would chose a lower number of clusters and would get a combined type
for H2/H4. If it is the aim in a setting to distinguish between subtypes of
the same category, one would choose the result with a higher number cluster
setting and get separate H2 and H4 types.

We can compare the results at this level to the help-seeking model discussed
in [Aleven et al., 2006]. The authors introduce a taxonomy of “help-seeking
bugs” in students’ behaviour and list the following categories: Help Abuse,
Help Avoidance, Try-Step Abuse and Miscellaneous Bugs. The type Help Abuse
comprises behaviour like clicking through hints or asking for hints even if it
would not be necessary because the student would be skilled enough to solve
the task without help. The H2 and H4 types identified by our system partly
correspond to this Help Abuse type in that a H2/H4 problem solver may also
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show the behaviour of clicking through hints instead of spending more time
on understanding the content before. Our model can, however, additionally
identify if the student uses help before or after trying to submit an answer
first. This undesired kind of behaviour can also be compared to gaming the
system as explained in [Baker et al., 2006]; in fact, in another paper in this
issue [Muldner et al., 2011], the authors explicitly define such behaviour as
indicative of gaming, and use it to detect occurrences of abuse in the same
ITS as used here. The Try-Step Abuse can be compared to the Trial and Error
behaviour as shown by type H1 who also tends to solve a problem too early
even if not sufficiently skilled yet. Furthermore, some parallels can be drawn
between the H3 type and the Help Avoidance style described in [Aleven et al.,
2006] concerning the general tendency to keep the amount of requested help
low. However, the Help Avoidance type mainly considers trying unfamiliar
steps without help and could thus also be described as a subcategory of the
Try-Step Abuse type. In our case, the H3 and H1 are clearly distinct as the
behaviour of a problem solver of type H3 can also be described by the desire to
avoid the submission of incorrect answers. The level II clustering experiments
have thus not only confirmed the taxonomy of “help-seeking bugs” described
in [Aleven et al., 2006] but also added some distinct aspects to it.

Table 3 This table shows four problem solving styles in the Help-Seeking dimension dis-
covered by the clustering process (again with the example configuration of 8 clusters). The
remaining clusters not shown here contain non-Help-Seeking behaviour. The syntax is to be
read as follows: the percentage results have been abstracted to the five categories very low,
low, medium, high, very high, which are represented by the more easy to read identifiers
−−, −, o, +, ++.

Size PRIOR I PRIOR H∗ TRANS I H∗ TRANS H∗ H∗ PERC I PERC H∗

H1 - - o o o + o o
H2 + - - + - ++ - - +
H3 o - - - + - o
H4 o - - + - ++ - - +

Table 4 shows the comparison of optimization results with different weight
configurations for the data sets discussed so far, for the year 2008. It can
clearly be observed how the optimum number of clusters changes with chang-
ing weights, i.e., a changing clustering purpose. In row 1, the default results
without optimization towards a specific focus is shown. The results for the
optimum number of clusters lie between 5 and 7 for the different data sets.
Rows 2 to 5 show the optimum number of clusters, emphasizing one specific
criterion and equally considering the others with low priority. Here, we can
observe that the criteria SE(Cn) and PE(Cn) both suggest a lower number
of clusters if weighed high, whereas the criteria V (Cn) and EPE(Cn) suggest
a higher number of clusters, compared to the default results. Thus, we can
conclude, for instance, that if we want to minimize the prediction error, we
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should use a number of clusters n > default. Rows 6 to 11 show the results
for a process that optimizes for combinations of two criteria.

Table 4 This table compares the optimization results for different data sets Markov, Sta-
tistical, Both, Trial&Error (TE) and Help-Seeking (HS) with different weight configurations
for the year 2008. The numbers in the data sets’ rows show the optimum number of clusters
found for the respective data set and weight configuration.

Weights (ws, wp, wv, we) Markov Statistical Both TE HS

1 — 1 — 1 — 1 5 6 7 6 5
3 — 1 — 1 — 1 4 4 4 4 3
1 — 3 — 1 — 1 4 3 4 4 3
1 — 1 — 3 — 1 7 7 11 9 7
1 — 1 — 1 — 3 8 6 9 10 9
1 — 1 — 2 — 2 8 9 10 10 8
1 — 2 — 1 — 2 5 5 6 6 5
1 — 2 — 2 — 1 5 5 7 6 5
2 — 2 — 1 — 1 4 4 4 4 3
2 — 1 — 1 — 2 5 6 6 6 5
2 — 1 — 2 — 1 5 5 7 6 5

4.4.3 Level III (Open discovery)

This level, as its name suggests, goes one step further than its predecessor
and is intended to perform open-ended analysis with the goal of identifying,
firstly, potential new dimensions of learning behaviour, and, secondly, concrete
patterns within each dimension. For our case study, this process has been
apparently targeted towards the identification of concrete types of problem
solving behaviour.

This level is controlled by the system (excluding, of course, the assessment
and interpretation of results that need to be performed by a human operator)
whose task it is to: (a) automatically select feature combinations with high
discriminatory capacity, (b) create new data sets containing attributes of one
feature combination each, (c) perform clustering on each of the new data
sets, and (d) analyse the resulting clusters for significant trends in order to
autonomously detect problem solving styles. For level III, we implemented an
additional feature selection unit performing the necessary steps as described
in detail below.

Automatic Feature Selection and Combination: the feature selec-
tion unit receives a basic data set, extracts the attributes and starts the fea-
ture combination process. The results presented here are based on the data of
SET BOTH from spring 2008 with aggregated help states. The initial data
set contains 20 features. Both learning dimensions and concrete styles can be
described and defined by a much smaller number of attributes. The process of
selecting subsets of the initial feature set, clustering on them and determin-
ing the quality of the set according to, e.g., its discriminatory capacity, is a
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relatively simple one. However, it cannot be done by humans because of the
high number of calculations required. The problem of finding combinations is
of exponential complexity, hence we do not compute all possible combinations
(i.e., the power set) but limit the number of features in the resulting combi-
nation sets. As the number of highly relevant features describing a dimension
or concrete type in the aggregated help setting turned out to be relatively low
(indicated by manual analysis of previously defined dimensions and styles) for
the data and settings used here, we decided to set a limit of 7 for the automated
feature combination process. The system then computes all combinations with
n elements, where 1 ≤ n ≤ 7. This limit is not a universal suggestion for sim-
ilar approaches but must be individually determined for different scenarios.
A possible direction of future work includes the automatic detection of the
potentially best-fitting limit for the number of features (see Section 6 for a
more in-depth discussion of this limit).

Creation of New Data Sets: using the feature combinations computed
before, the process is continued by creating a “copy” of the original data set
containing only the selected features and values for these features. This results
in a high amount of data, all depicting different aspects of the same activities
produced by the users.

Clustering on the New Data Sets and Cluster Analysis: all data
sets are passed through to the clustering process. The clustering results are
then stored and compared according to a specific algorithm measuring average
cluster quality Q(FSi) for a feature set i (see Equation 7). The algorithm we
used is based on Linear Discriminant Analysis (LDA) as described in [Mart́ınez
and Kak, 2001], maximizing the distance between cluster centroids and mini-
mizing the average distance between the elements within the clusters (we used
the Euclidean Distance [Black, 2004] in all cases). A different approach would
be to use an algorithm that does not keep the original features in order to se-
lect subsets, but creates new ones based on combinations of the original ones.
In [Mart́ınez and Kak, 2001], one such approach, Principal Component Anal-
ysis (PCA), is described and compared to LDA. In our case, we chose LDA in
order to preserve information about the significance of the original features.

Q(FSi) =
Db ∗ wb

Dw ∗ ww
(7)

where Db is the average distance between the cluster centroids, Dw is the
average distance between the elements within a cluster, averaged again over
the clusters, wb and ww are weights (with 0 < w∗ ≤ 1). Here we used the
default equal weight configuration with w∗ = 1. The results for Q(FSi) for
all feature sets are the basis for a feature set ranking. The top ranked feature
sets become then the system’s recommendation as potentially meaningful di-
mensions. These recommended feature sets are finally analysed by a human
investigator who makes a final decision about what set to pass back to Level II
clustering in order to detect concrete learning/problem solving types. Tables
5 and 6 show the top ranked feature sets for the base data set SET BOTH
from spring 2008 with aggregated help states.
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Table 5 This table shows the fea-
ture combinations ranked 1 to 10 and
their respective Q(FSi) results.

Rank Q(FSi) Features

1 5.8086 TRANS PROB H H

2 4.0364 TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

3 3.9017 TRANS PROB H H
TRANS PROB H E

4 3.7714 TRANS PROB C H
TRANS PROB H E
PERC HELP STEP

5 3.7149 TRANS PROB H I
TRANS PROB H H

6 3.5501 TRANS PROB H E
PERC HELP STEP

7 3.5124 TRANS PROB H I
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

8 3.4429 PRIOR PROB H
TRANS PROB C H
TRANS PROB H H
PERC HELP STEP

9 3.4331 TRANS PROB C H
PERC HELP STEP

10 3.4076 PRIOR PROB H
TRANS PROB C H
PERC HELP STEP

11 3.3662 TRANS PROB H H
TRANS PROB H E
TRANS PROB E H
PERC HELP STEP

Table 6 This table shows the fea-
ture combinations ranked 11 to 20
and their respective Q(FSi) results.

Rank Q(FSi) Features

12 3.3302 TRANS PROB H H
TRANS PROB E H

13 3.2656 PRIOR PROB H
TRANS PROB H H
TRANS PROB H E

14 3.2652 PRIOR PROB H
TRANS PROB C H
TRANS PROB E H
PERC HELP STEP

15 3.2270 PRIOR PROB C

16 3.2250 TRANS PROB C H
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

17 3.2092 TRANS PROB C H
TRANS PROB H H
TRANS PROB E H
PERC HELP STEP

18 3.2090 TRANS PROB C I
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

19 3.2026 TRANS PROB C H
TRANS PROB H I
TRANS PROB H H
PERC HELP STEP

20 3.1810 PRIOR PROB H
TRANS PROB C H
TRANS PROB H H
TRANS PROB E H
PERC HELP STEP

The first 20 feature combinations shown in Table 5 and 6 do not include
sets with 6 or 7 features. The first 6-feature combination is ranked 39th and
contains PRIOR PROB H, TRANS PROB C H, TRANS PROB H I,
TRANS PROB H H, TRANS PROB E H and PERC HELP STEP . The
first 7-feature combination is ranked 79th and contains PRIOR PROB H,
TRANS PROB C H, TRANS PROB H I, TRANS PROB H H,
TRANS PROB H E, TRANS PROB E H, and PERC HELP STEP .
Given the total number of ∼ 140000 ranks, these sets can still be expected
to be potentially interesting. Already at a first glance, the top ranked results
suggest variations of a Help-Seeking dimension similar to the one we manually
defined for Level II, based on descriptions in related literature.

For a more detailed analysis, the system provides a partitioned ranking
that assigns the feature sets to groups based on their number of contained
features and compares the sets within each group as shown in Table 7. The
table’s rows show groups of feature sets with the same number of features in
them. The individual feature sets in a row appear in descending order of their
rank within the group. Each feature set is described in terms of the actual
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features it contains, its overall ranking (not group-related), and the Q(FSi)
results.

The top ranked feature sets listed in Table 7 were used to carry out exper-
imental clustering, the results of which are shown in Table 8. The number of
clusters used in this case (5) was selected to ensure the preservation of similar
types of behaviour. The results listed in this table are an example of what a
human observer would see when applying level II clustering on the dimensions
suggested by level III (note that several feature sets other than the top ranked
ones would normally also be included).

The rest of this section provides a detailed analysis of the results depicted in
the aforementioned two tables for the top-ranked feature sets in each group.
Each feature set is treated as a potential dimension of problem solving be-
haviour and different types of behaviour are identified for each such dimension.
Table 9 provides a collective overview and additional explanations about the
types identified. These different types along each dimension can be directly
used for determining appropriate adaptive system interventions, in a manner
similar to the one exemplified in Section 5 for the previously identified types
of Help-Seeking behaviour.

On the basis of the above, the results obtained can be analysed as follows.

RankG = 1, n = 1 This dimension, defined by one single feature, models
the users’ tendency to request help in sequences. The clusters show a clear
distinction between different types of behaviour (e.g., cluster 2 vs. cluster 4).
The concrete types we could identify along this dimension are T1.1 showing a
strong tendency to request help in sequences (see clusters 1, 3, 4), T1.2, not
requesting help in sequences (see cluster 2), and T1.3, occasionally requesting
help in sequences (see cluster 0).

RankG = 1, n = 2 This dimension is defined by two features, modelling again
the tendency to request help in sequences, and, additionally, to end a problem
solving sequence with a hint request (i.e., in most cases, without having sub-
mitted a final solution). Three clusters (1, 2, 4) show similar results and can
thus be summarized as type T2.1, tending to request help in sequences and not
to conclude a problem with a hint request. The second type identified here,
T2.2 is described in clusters 0 and 3, where users request help in sequences
occasionally and also occasionally end a problem solving sequence with a hint.

RankG = 1, n = 3 This dimension is defined by three features, adding the per-
centage of help requests to the two attributes already explained for RankG =
1, n = 2. Here, we could identify significant types as follows. Learners of T3.1 do
not request help in sequences, do not end a problem solving sequence with help
requests, and in general request only little help (as seen in cluster 2). Learners
of type T3.2 tend to request help in sequences but do not end problems with
help requests and in general tend to request a lot of help (see clusters 1 and 3).
In cluster 4 we can find the behaviour of type T3.3, not requesting too much
help and when so, not in sequences, but showing a strong tendency to end
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Table 7 This table shows the feature combinations ranking split into groups containing
sets with equal number of elements n. The Gr.-column shows the number of features in
the respective group, RankG is the rank within a group. For every RANKG in a specific
group, the following information is provided: the features in the set, the overall ranking (not
group-related), and the Q(FSi) results.

Gr. RankG = 1 RankG = 2 RankG = 3 RankG = 4

n = 1
TRANS PROB H H PRIOR PROB C TRANS PROB E C TRANS PROB I C
5.0806 3.2270 2.9853 2.6309
1 15 37 134

n = 2
TRANS PROB H H
TRANS PROB H E

TRANS PROB H I
TRANS PROB H H

TRANS PROB E H
PERC HELP STEP

TRANS PROB C H
PERC HELP STEP

3.9017 3.7149 3.5501 3.4331
3 5 6 9

n = 3
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

TRANS PROB C H
TRANS PROB H H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
PERC HELP STEP

PRIOR PROB H
TRANS PROB H H
TRANS PROB H E

4.0364 3.7714 3.4076 3.2656
2 4 10 13

n = 4
TRANS PROB H I
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB H H
PERC HELP STEP

TRANS PROB H H
TRANS PROB H E
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB E H
PERC HELP STEP

3.5124 3.4429 3.3662 3.2651
7 8 11 14

n = 5
PRIOR PROB H
TRANS PROB C H
TRANS PROB H H
TRANS PROB E H
PERC HELP STEP

TRANS PROB H I
TRANS PROB H H
TRANS PROB H E
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB H I
TRANS PROB H H
PERC HELP STEP

3.1810 3.1348 3.1138 3.0901
20 23 25 26

n = 6
PRIOR PROB H
TRANS PROB C H
TRANS PROB H I
TRANS PROB H H
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB H H
TRANS PROB H E
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C I
TRANS PROB H I
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB H I
TRANS PROB H H
TRANS PROB H E
PERC HELP STEP

2.9672 2.9378 2.8925 2.8755
39 44 52 59

n = 7
PRIOR PROB H
TRANS PROB C H
TRANS PROB H I
TRANS PROB H H
TRANS PROB H E
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C I
TRANS PROB C H
TRANS PROB H I
TRANS PROB H H
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C I
TRANS PROB C H
TRANS PROB H H
TRANS PROB H E
TRANS PROB E H
PERC HELP STEP

PRIOR PROB H
TRANS PROB C H
TRANS PROB H C
TRANS PROB H I
TRANS PROB H H
TRANS PROB E H
PERC HELP STEP

2.7744 2.6684 2.6400 2.6299
79 116 128 136
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Table 8 This table shows experimental clustering results based on the top ranked feature
sets listed in Table 7. In order not to neglect variations of similar types of behaviour, we used
the relatively high number of 5 clusters here. The results listed here are an example of what
a human observer would see when applying level II clustering on the dimensions suggested
by level III. Of course, a human observer would be provided not only one top ranked feature
sets but several. The values for the clusters denote the mean for the respective feature in
this cluster.

Feature Set Features C0 C1 C2 C3 C4

RankG = 1, n = 1 TRANS PROB H H 0.25 0.69 0.03 0.52 0.77

RankG = 1, n = 2
TRANS PROB H H 0.25 0.69 0.75 0.15 0.51
TRANS PROB H E 0.25 0.06 0.02 0.27 0.01

RankG = 1, n = 3
TRANS PROB H H 0.25 0.74 0.01 0.60 0.05
TRANS PROB H E 0.25 0.03 0.00 0.06 0.88
PERC HELP STEP 0.00 0.67 0.10 0.34 0.28

RankG = 1, n = 4

TRANS PROB H I 0.25 0.03 0.08 0.00 0.23
TRANS PROB H H 0.25 0.74 0.69 0.00 0.34
TRANS PROB H E 0.25 0.04 0.26 1.00 0.08
PERC HELP STEP 0.00 0.71 0.48 0.24 0.23

RankG = 1, n = 5

PRIOR PROB H 0.00 0.76 0.45 0.11 0.09
TRANS PROB C H 0.00 0.01 0.04 0.01 0.02
TRANS PROB H H 0.24 0.72 0.70 0.66 0.18
TRANS PROB E H 0.30 0.12 0.14 0.09 0.18
PERC HELP STEP 0.00 0.72 0.59 0.34 0.09

RankG = 1, n = 6

PRIOR PROB H 0.75 0.00 0.45 0.11 0.07
TRANS PROB C H 0.00 0.00 0.05 0.01 0.01
TRANS PROB H I 0.04 0.25 0.07 0.10 0.59
TRANS PROB H H 0.73 0.25 0.67 0.52 0.01
TRANS PROB E H 0.71 0.03 0.42 0.10 0.09
PERC HELP STEP 0.72 0.00 0.58 0.15 0.07

RankG = 1, n = 7

PRIOR PROB H 0.00 0.43 0.74 0.31 0.09
TRANS PROB C H 0.00 0.04 0.04 0.05 0.01
TRANS PROB H I 0.25 0.07 0.04 0.01 0.18
TRANS PROB H H 0.25 0.71 0.73 0.13 0.48
TRANS PROB H E 0.25 0.04 0.04 0.83 0.03
TRANS PROB E H 0.03 0.41 0.71 0.32 0.08
PERC HELP STEP 0.00 0.57 0.72 0.28 0.26
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Table 9 This table provides a concise overview about the types discovered in level III
clustering, including a detailed description.

Type Description

T1.1 Requests help in sequences.
T1.2 Does not request help in sequences.
T1.3 Occasionally requests help in sequences.

T2.1 Tends to request help in sequences and does not conclude problem solving
sequences with help requests.

T2.2 Occasionally requests help in sequences and occasionally concludes problems
with help requests.

T3.1 Does not request help in sequences, does not end a problem solving sequence
with help requests, requests only little help.

T3.2 Tends to request help in sequences, does not end problems with help requests,
tends to request a lot of help.

T3.3 Does not request much help and when so, not in sequences, shows a strong
tendency to end problem solving sequences with hints.

T3.4 Does not use help at all.

T4.1 Stops problem solving sequences with help requests in 100% of the cases.
T4.2 Shows a very high help request rate, a strong tendency to request help in

sequences and a very low rate of incorrect submissions or quits after a hint.
T4.3 Behaves in a similar way as T4.2, shows a slightly lower rate of help requests

and a medium rate of quits after a hint.
T4.4 Shows a medium rate of help requests, a medium rate of incorrect attempts

or further help requests after a help request, and a low rate of quits after a
help request.

T5.1 Shows a high help rate, a high prior probability for the use of help and a
tendency to request help in sequences.

T5.2 Shows a high help sequence rate, a medium overall help request rate and a
relatively low prior probability for help.

T5.3 Is similar to T5.2 but shows a lower rate of help sequences and a lower overall
help rate.

T6.1 Shows a relatively high prior probability for help requests, a high general help
rate and a tendency to help request sequences.

T6.2 Like T6.1, and shows a high help sequence rate.
T6.3 Like T6.1, and shows a very low help sequence rate and a relatively high

percentage of incorrect attempts after a hint.

T7.1 shows a strong tendency to close a problem solving sequence with a help
request.
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problem solving sequences with hints (i.e., not completing them). In cluster
0 we can see that this dimension is more expressive than the previous ones.
Here, the percentage of requested help steps is low enough to round down to
0.00. Thus, the values indicating tendencies of requesting help in sequences
and of ending a problem solving sequence with a hint are not relevant, as they
are based on a very small set of samples. At this point, we may conclude that
the types discovered before are useful, but only in combination with a basic
statistical indicator on the general use of help. We define type T3.4 behaviour
as tending to not use help at all.

RankG = 1, n = 4 This dimension adds to the previously described features
the probability of submitting a wrong answer directly after a hint request.
Cluster 0 behaves in the same way as for RankG = 1, n = 3, therefore, we
can not define a new type. Cluster 3 identifies a type of behaviour T4.1 that
has not been detected by the previously analysed dimensions; learners of this
type stop their problem solving sequence with a hint request in 100% of the
cases while not showing a generally very low help request rate. This type
of behaviour is rare and in this case only affects 1% of the problem solving
sequences monitored. In the clusters 1, 2, and 4 we identify the types T4.2,
T4.3, and T4.4. T4.2 shows a very high help request rate, a strong tendency to
request help in sequences and a very low rate of incorrect submissions or quits
after a hint. T4.3 differs from T4.2 only in a slightly lower rate of help requests
and a medium rate of quits after a hint, and T4.4 is defined by a medium rate
of help requests in general, a medium rate of incorrect attempts or further
help requests after a help request, and a low rate of quits after a help request.

RankG = 1, n = 5 This dimension comprises, in addition to the already dis-
cussed general help rate and the tendency to request help in sequences, the
prior probability for help, i.e. when users request help as a first step, before
having tried to submit a solution, and the rate of requested hints directly fol-
lowing a correct attempt. The latter is not sufficiently discriminatory however
and is therefore not a decisive factor for the identification of types. Again,
cluster 0 does not suggest a new type but can be described by T3.4. Clusters 1
and 2 define T5.1 by a high help rate and a high prior probability for the use of
help. Furthermore, this type includes a tendency to request help in sequences.
T5.2 is derived from cluster 3, defined by a high help sequence rate, a medium
overall help request rate and a relatively low prior probability for help. Type
T5.3 is similar to T5.2 regarding the prior probability for help requests but
differs in the other aspects and includes a lower rate of help sequences and in
general a lower help rate.

RankG = 1, n = 6 This dimension adds to the features in RankG = 1, n = 5
the probability of a wrong answer submission after a hint request. Cluster 1
again corresponds to and can be sufficiently well described by T3.4. Clusters 0
and 2 identify type T6.1 and show a relatively high prior probability for help
requests, a high general help rate and a tendency to help request sequences.
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Clusters 3 and 4 both show a low help rate, a low prior probability for help
requests and a very low probability of help requests after a correct submis-
sion. Nevertheless we identify two different types T6.2 and T6.3. The first is
additionally characterized by a high help sequence rate, whereas the second
does, on the contrary, show a very low help sequence rate but a relatively high
percentage of incorrect attempts after a hint.

RankG = 1, n = 7 This dimension again adds to the features in RankG =
1, n = 6 the probability of a help request being the last activity in a problem
solving sequence. We can again identify T3.4 in this dimension. In addition to
the types already described earlier, cluster 3 shows a new style strongly depen-
dent on the new feature. Learners of this type T7.1 show a strong tendency to
close a problem solving sequence with help, which in most cases is indicative
for ”giving up” before the problem was solved.

We conclude that dimensions with only one or very few features can be
indicative of problem solving types but results are prone to being distorted.
A very high number of features may however not allow for the identifica-
tion of the most significant types but rather suggest a range of “subtypes”
many of which could be combined. In order not to fall prey to either of these
potential threats, we suggest a medium number of features for the purpose
of dimension detection that lies between a fourth and a third of the overall
count. The results presented here, show that the Help-Seeking dimension domi-
nates. However, already if we consider the 5 top-ranked results of every group,
we discover a different dimension including the features PRIOR PROB 0,
PRIOR PROB H, TRANS PROB C H, TRANS PROB H I,
TRANS PROB H H, TRANS PROB E H, and PERC HELP STEP , in-
cluding the rate of initial correct attempts (i.e., without having requested help
or submitted an incorrect answer) and the rate of incorrect attempts directly
following a help request. Clustering along this dimension, we get, among oth-
ers, the following resulting types: (a) including very high probability for correct
answers at first attempt, extremely low help request rate, low help sequence
rate, and (b) including a medium rate of correct answers at first attempt, a
low rate of initial help requests and a relatively low overall help rate. Type
(b) is very similar to the Trial and Error type discussed in section 4.4.1 where
we did not operate at the level of dimensions yet but considered a predefined
concrete style.

5 Closing the Circle – Potential System Interventions

This section discusses ways in which the results and findings of the clustering
approach described here can be fed back into the adaptation cycle. In general
terms, this can be done by integrating the novel information into the user
models and by providing additional adaptive system interventions based on
them.
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The way in which the derived information can be integrated into a user-
or learner- model very much depends on the modelling approach used in the
adaptive e-learning system. For systems utilizing simple, vector-based models,
one could, for instance, introduce the identified dimensions as behavioural at-
tributes of the learner, and use the associated patterns and types as the value
space of the said attributes. A more elaborate modelling scheme could main-
tain different behaviour models for different types of problems, to account for
the fact that learners may employ different strategies in each case (a subject
we return to in Section 6). Another improvement over the basic scheme de-
scribed before would be to maintain a set of possible behavioural patterns per
attribute, indicating the likelihood that they be exhibited through probabil-
ities. The addition of semantic / causal relationships to the later could also
give rise to (or be used as the basis for) a Bayesian learner model. These are,
of course, only very few of the feasible approaches one might employ for mod-
elling dimensions and patterns in an adaptive system, and a full enumeration
of possibilities is beyond the scope of this paper. Nevertheless, some of the ex-
amples presented in the following subsections do also incorporate a discussion
of the concrete models that could underlie specific intervention approaches.

In the rest of this section we suggest possible system interventions based
on selected problem solving types discussed in section 4, namely the Trial
and Error type and the different Help-Seeking types H1, H2/H4 and H3.
System interventions can be grouped into means of individual user support
(see, for instance, [Koedinger and Aleven, 2007]) and means of collaboration
support (see, for instance, [Soller et al., 2005] or [Walker et al., 2009]), yet
based on individual users’ model information. It should be noted that the
example interventions proposed in this section are not being suggested as
the best possible approaches in the respective cases (something that would
definitely also depend on the didactic approach employed). They are rather
meant to demonstrate how the adaptation cycle can be completed, with the
participation of the adaptation / interaction designer, on the basis of user
information discovered through the proposed approach.

5.1 Supporting Individual Users

Focusing on the provision of help, we have to deal with the trade-offs be-
tween giving and withholding information or assistance, a problem defined as
assistance dilemma in [Koedinger and Aleven, 2007]. The interactive learn-
ing environment has to decide when and to what degree a student should
be given information or provided with assistance (e.g., discussed in [Rummel
and Krämer, 2010], [Koedinger and Aleven, 2007], or [Borek et al., 2009]). In
some cases, the system might even decide not to provide help at all or, to the
contrary, provide a full solution to a problem [Razzaq and Heffernan, 2009].
Furthermore, the system should be able to offer assistance in a way that sup-
presses undesired student behaviour like gaming the system [Baker et al., 2006],
[Baker et al., 2008]. Usually, intelligent tutors have a production rule model
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that represents the target competence that the tutor is meant to help students
acquire [Koedinger and Aleven, 2007]. This model thus enables the tutor to
solve the same class of problems the students have to solve. In [Koedinger and
Aleven, 2007], the authors describe two basic algorithms, model tracing, using
the model to interpret each student action, and knowledge tracing, estimating
how well a student has mastered each key production rule. The results of the
model tracing steps are then used to provide students with feedback and to
individualize instructional advice. Therefore, the model tracing process is a
potentially very important point of contact for our approach in that the new
model information can be used to determine the kind and amount of feedback
and individualized support to be offered. As the Andes tutoring system [Van-
Lehn et al., 2005] (which generated the data used in this case study) uses a
variant of the model tracing algorithm, the results presented here could later
be fed back into the tutoring system, thus enhancing and refining the help pro-
vision strategies. Different types of system decisions regarding interactivity are
listed in [Koedinger and Aleven, 2007], including feedback content, hint con-
tent and timing. These principles are of high relevance to the results reported
herein, as the process of help provision is essential for the idea of supporting
individual users based on their help-seeking styles.

In our concrete case, starting with learners in the Trial and Error style,
a possible intervention might have the goal of preventing the student from
making uneducated guesses and encouraging the use of help. Therefore, the
system might decide to offer initial hints directly after the description of the
problem. This kind of hints would probably not exhaust the level of detail
available, but bring the student on the right track and engage interest.

In the case of Help-Seeking, the kind of interventions possible would strongly
depend on the actual concrete type of behaviour. For example, an H1 type stu-
dent might invoke similar system actions as a Trial and Error type student,
whereas H2/H4 and H3 would probably receive different treatment. H2/H4

types seem to show a natural aversion for submitting incorrect answers but use
a disproportionate amount of help. In order to encourage a more independent
problem solving approach, the system might limit the available hints for these
students.

In the case of H3 type students, the system might try to assist them in
finding a more balanced use of help. These students might generally have a
high inhibition threshold regarding the request of help. This is affirmed by
the fact that they do not request help often, but if they do, they request it
in long sequences, which could mean that they only ask for help if they are
extremely insecure about a problem. The system could, in this case, actively
offer additional help during the problem solving process, based for example on
the time already spent on the problem.
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5.2 Supporting User Groups and Collaboration

As explained in [Dillenbourg et al., 1996], collaborative learning can be viewed
as either comprising independent cognitive systems which exchange messages,
or as a single cognitive system with its own properties. For the first understand-
ing, the unit of analysis is the individual, whereas for the second understand-
ing, it is the group. The proposed approach can, in general, be applied from
both perspectives. Since, in our case study, the phase of analysis treated users
as individuals, we aim at using the information in individual users’ models that
might be suggestive of traits that influence collaboration behaviour. Adaptive
collaboration support can be split into the two phases adaptive support for
the establishment of collaboration and adaptive support during the collabora-
tion process [Paramythis, 2008]. Again, the general approach is applicable in
both cases; yet, the nature of the information analysed here is better suited
for collaboration establishment support. This kind of support is usually based
on learners’ personal- and learning characteristics and preferences, either ex-
plicitly stated by the users, or observed or inferred by the system during the
interaction process [Paramythis, 2008], [Carro et al., 2003a], [Quignard and
Baker, 1999].

[Paramythis, 2008] identifies a set of high level requirements as prerequi-
sites for adaptive collaboration support: (a) capability to automatically col-
lect/infer user- and learner profile data of individual learners, (b) capability
to collect/infer and model collaboration activity data for individual learners,
(c) capability to represent and employ algorithms/strategies that govern how
learner information is used to identify appropriate collaboration partners, and
(d) the opportunity to allow for alternative policies for, and approaches to,
group initiation, with the latter being listed as optional supplement. We have
already shown that the approach is clearly capable of (a) and (b). It is our
ultimate goal to utilize the new model information to provide adaptive col-
laboration establishment support, including (c), keeping the implementation
sufficiently generic to allow for (d) (also see section 6).

As already mentioned, the actual way of adaptively supporting collabo-
ration establishment will be strongly dependent on the respective learning
scenario and underlying teaching concepts and learning theories. The model is
not restricted to supporting a specific theory or setting, but instead provides
information that can be queried by arbitrary algorithms used for the identifi-
cation of suitable collaboration settings. Adaptive collaboration establishment
support includes encouraging students to cooperate with others, or recom-
mendations of tools to use for collaboration, or partners to collaborate with
[Carro et al., 2003b]. Group synthesis recommendations are based on specific
rules may consider, for instance, users’ preferences, backgrounds, interaction
behaviour, etc.

In general, it may be desirable for the system to group students that could
potentially benefit from cooperation in a joint session, taking into account
criteria like complementarity or competitiveness [Alfonseca et al., 2006]. In
[Alfonseca et al., 2006] and [Liu et al., 2008], for instance, the authors anal-
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yse and model the student learning style based on the Felder and Silverman
model [Felder and Silverman, 1988], [Felder and Brent, 2005] which categorizes
learning styles along five dimensions (active/reflective, sensing/intuitive, vi-
sual/verbal, sequential/global, inductive/deductive), and conclude, among oth-
ers, that (a) learning styles affect the performance of students when working
together, (b) for the dimensions active/reflective and sensing/intuitive, the
mixed pairs tend to work better, (c) heterogeneous groups in general get better
results, and (d) students themselves tend to group randomly without respect
to their learning styles. Their findings show that it is a worthy goal to utilize
the models as a basis for group synthesis recommendations, and that learning
styles are a potentially relevant criterion to base the later applied grouping
algorithm on.

6 Discussion

In this article, we described a novel approach involving modeling of, and multi-
level clustering based on, sequential learning activity data. We demonstrated
its feasibility by applying it on real-world problem-solving data and running a
variety of experiments to be able to compare and verify the results for different
settings, data sets, students and academic terms. We demonstrated how the
different clustering levels can detect

1. predefined problem-solving styles (level I),
2. problem-solving styles along predefined learning dimensions (level II), and
3. learning dimensions (level III) that again can comprise multiple problem

solving styles.

For level I, we showed how our approach identifies the well-known prob-
lem solving style Trial and Error based on students’ activity sequences. For
level II, we chose to demonstrate the detection of problem-solving styles within
predefined dimensions at the example of Help-Seeking behaviour. The process
did not only successfully cluster for the required dimension but also identified
concrete styles within that dimension. The results at this level also confirmed
different models on help-seeking behaviour described in the recent literature
[Aleven et al., 2006], [Baker et al., 2006]. For level III, we described a system-
driven clustering approach aiming at the automatic detection of learning di-
mensions. The results did not only show that the process was in general able to
autonomously identify dimensions, but also confirmed the styles and dimension
we used in a pre-defined way for levels I and II.

A comparison of our approach to the most relevant efforts described in
detail in Section 2 can be summarized as follows. Although the base data used
here is comparable to what is described in [Romero and Ventura, 2010] and
[Romero et al., 2008], the further processing and the ultimate goals are quite
different. In these publications, the authors report the use of classification
algorithms in order to predict students’ final grades (i.e., supervised learning).
In our case we concentrate on clustering (i.e., unsupervised learning). This
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difference is also reflected in the selected way of data processing. Their system
does not operate on the activity sequences directly, but first aggregates them,
which leads to an abstracted representation of the data. This is what is avoided
in our case, in order to not lose a dimension of information (relations and
dependencies within the sequences) that is essential for pattern detection.

Compared to [Beal et al., 2006], which uses not only activity data but also
students’ self-reported motivation profile and teachers’ ratings, our approach
(using learner activity data only), does not rely on human effort during the
monitoring process. The nature of the learners’ activity data is similar to to
what was described in this paper - correct and incorrect attempts and help
requests were monitored by the ITS they used (Wayang Outpost [Wayang
Outpost, 2010]). The main objective and further process, however, differ from
ours: the aim in that case was to classify students in terms of the constellation
of beliefs that they bring to the learning scenario, and, to show that multiple
data sources can be used in order to reach this aim in an integrated way.

The approach described in [Amershi and Conati, 2009] is similar to ours in
that it delays the necessity for human intervention until the end of the process,
i.e., until after behavioural patterns have been automatically detected. It is
different in that their system does not provide a clear notion of “correct” or
“incorrect” behaviour, i.e., students don’t receive feedback and help based on
the correctness of their answers. In contrast to their approach, which uses
only one feature vector per student (representing an aggregated version of
this student’s activities), in our approach, each of a student’s problem solving
sequences is converted to a feature vector, thus resulting in a much higher
number of vectors and more fine-grained information represented. Yet, the
long-term goals (individual adaptations and guidance based on the knowledge
retrieved from the models) of the two approaches are similar, but are applied
at different levels in different environments (exploratory systems vs. intelligent
tutoring systems).

Comparing our approach to what is described in [Anaya and Boticario,
2009], we can observe that, although both approaches are based on clustering,
the overall process discussed in [Anaya and Boticario, 2009] significantly differs
from our ideas in several ways. Firstly, their approach requires a considerable
amount of human intervention and effort, which is, arguably, not realistic to
expect in real-world settings. Secondly, activity data is aggregated, thus losing
sequential information. And, thirdly, the ultimate goals are again different.
In our approach we use statistical information as an optional supplement to
sequential data in order to detect specific types of behaviour, whereas in their
approach, it is a main goal to reveal relations between statistical indicators
and collaboration behaviour.

The HMM-based pattern detection approach of [Beal et al., 2007] is also
different to ours in the modelling aims. Moreover, in our work, DMMs were
chosen over HMMs as the sequences relevant for us exclusively consist of ob-
servable actions, thus predefining a certain state configuration. The clustering
and prediction results of [Beal et al., 2007] are however highly relevant for us,
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as they indicate Markov-based models to be an ideal way of modelling and
analysing interrelated student activity data.

Finally, an interesting link can be established between our approach and
the work of [Li and Yoo, 2006]. The authors, working with Bayesian Markov
Chains in order to ultimately support adaptive tutoring, use models that are
structurally comparable to ours. However, as in [Li and Yoo, 2006], the num-
ber of possible models is limited to exactly three (based on three predefined
learning types), and the granularity of the outcome is also limited (and re-
stricted to a very specific kind of information). In our approach, the models
get dynamically created for the students’ problem-solving sequences individ-
ually, which allows for a more fine-grained analysis and therefore also bears
potential for much higher information gain.

The preceding sections, and discussion thus far, have concentrated on the
argued benefits of the proposed approach. In the rest of this section we will
turn our attention to challenges, implications and potential limitations of the
approach itself, and of the case study described in this paper. Particular em-
phasis is placed on what would be required to transfer the approach to different
(and potentially more challenging) settings and application domains.

To start with, due to the nature of the base data that was employed in
this study, there exists a dimension of student behaviour that we did not
need to explicitly address. Specifically, the problems that were presented to
students were relatively uniform, which led to comparatively homogeneous /
consistent problem-solving strategies being employed by individuals across the
entire series of problems. However, if the problems to be solved showed greater
variability (or, even, originated from different knowledge domains), students
might employ a variety of strategies in addressing each kind / category of
problems. This, in turn, might result in a high distribution of student be-
haviours among the identified clusters, making it difficult to identify “overall”
behaviour models for individuals. Adjusting the proposed approach to cater for
this dimension would involve: (a) segmenting the analysis to mirror the catego-
rization of problems categories / domains, and (b) analyzing student entropies
in comparison to problem entropies to determine whether any observed high
distribution is attributable solely to students’ intentionally employing alterna-
tive strategies on the same type of problems, or it is also (or predominantly)
due to problem variability. One remedy that one could employ when multiple
problem categories are evidently present would be to segment the user model
explicitly distinguishing between behavioural patterns employed in the differ-
ent settings. An alternative remedy would be to apply low weights for student
entropies in a second clustering phase, so that clusters are formed based on
aspects other than student entropies (thus accounting for the “instability” in
students behaviour). The employed solution would also impact the adaptive
interventions possible. Ideally, a system that is cognizant of the different types
of problems that is presents students with, would be able to employ differ-
ent “sub-models” of the student, each encapsulating the behaviour patterns
/ strategies that the student employs for each type of problem. These sub-
models could be created through the grouping of patterns that typically occur
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for a student when encountering problems of a specific type, and could thus
be created and tested (for example in terms of their predictive capacity in an-
ticipating exhibited behaviour) dynamically. Interventions, in this case, could
still be associated with (families of) patterns, albeit on a per-problem-type
basis.

Applying the proposed approach to learning domains other than problem
solving would involve adjustments at different levels. Firstly, when applying
this approach one has to decide how activities will actually be modelled in
the Markov models. Our work has shown that DMMs are sufficient when all
related activities and resulting states are observable. Nevertheless, the liter-
ature provides evidence that HMMs may also be applicable in such settings.
Further comparative work would be required to establish the relative merits
of each type of model when applied for the modelling of activities. Until such
results are available, it may be advisable that researchers base their selection
on the intrinsic characteristics of the modelled activities and states.

Once a specific type of Markov model has been selected, the next step is to
decide the states that will be represented in the model. Even when modelling
the activities of individuals, the findings in the reported work indicate that
alternative aggregation levels may offer different advantages. An arguably even
less straightforward task is deciding how to model the activities of groups.
Two alternative approaches that may be considered include: modelling the
activities of all members of the group as if the group were a single entity
(the model states would then represent the collective “status” of the group
after each activity has taken place); modelling the group activities from the
perspective of the participating individuals, but introducing into the model
also the activities to which the learner’s own activities may be a “response”
(including joint activities, such as online conferencing sessions). Naturally,
there exist numerous variations that can be used based on the above themes,
and the selection of a specific one should be based on the clustering goals.

Another decision that needs to be made in terms of the modelling of ac-
tivities concerns the delineation of “episodes”, i.e., of sets of activities that
are semantically related and distinct from other such sets. One criterion that
naturally lends itself for this type of delineation is the temporal dimension of
activities; this, however, highly depends on the nature of activities, and the
communication and collaboration tools that learners employ. Another possi-
bility would be to use any structure that is intrinsic in the modalities and
tools used for joint work (e.g., discussions that took place under a single topic
within a discussion forum). It is anticipated that, often, it may be necessary
to apply multiple criteria to establish episode boundaries.

A valid concern that may be voiced in relation to the proposed approach
is the number of user activity categories that are possible (and monitored)
in the context of the data used in the case study, and the relatively limited
complexity of the resulting models (as expressed in the respective DMMs). As
far as the first aspect of this observation is concerned, one could counter that
the activities learners performed may have been limited, but their semantics
were heavily dependent on the sequences in which they were performed (e.g.,
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the number of times a student requested a specific type of help hint, and what
else the student may have tried -or not- in the meantime). As the emphasis
of our work lies precisely on the development of techniques that allow the
analysis and subsequent detection of behavioural patterns in e-learning activ-
ities, we would argue that the presented case study goes a long way towards
demonstrating that substantial, non-obvious results can be derived for such
activity sequences, although the variability of activities is constrained. In fact,
we expect that the proposed approach would be able to offer an even more
diverse set of insights should more types of activities be available for analysis.
From a different perspective, even if this approach were limited to only small
sets of possible activity types, one could argue that richer sets of activities
might also be possible to aggregate (e.g., by putting together all synchronous
communication actions of learners within a group), thus arriving at a set of
types and a level of granularity at which the proposed process would yield the
best results. Despite the preceding argumentation, we would readily agree that
the validation of the proposed approach in situations where more diverse ac-
tivities are monitorable is a step that would further ascertain its more general
applicability, and, indeed, an important component of future work.

The second stage of the proposed approach would also require adjustments
when applied in different domains. The first step would involve the establish-
ment of the metrics to be used as the basis on which to dynamically guide
the clustering process. It is argued that the indices presented in section 4.2
are of a sufficiently general nature to be used as a starting point towards this
end. Specifically, of the four indices, the Average Expected Prediction Error is
domain-specific. However, this is a metric related to the “success” of an activity
sequence, and can be replaced by any measure (or, depending on the circum-
stances, combination of measures) that sufficiently captures the semantics of
desirable and undesirable effects of activity sequences in the target domain.
From the rest of the indices, Average Problem Entropies is also largely domain
specific, as it captures the context within which activities are carried. Further-
more, it represents the context within activities occur, and is therefore directly
related to the “episodes” discussed above. Also important to note is that the
two metrics thus far discussed influence each other as one is an indicator of
success that is bounded by the activities contained in the other one’s instances.
A last decision that needs to be made in this context is the empirical estab-
lishment of the weights in equation 6, to match the researcher’s objectives in
deriving the appropriate number of clusters for different clustering goals.

Once the metrics have been established, one has to apply them in the
different levels of the clustering process itself. This entails the determination
of the data sets that will be actually fed into the process. Behavioural pattern-
oriented clustering (level I) is probably the most straightforward, and involves
the selection of those features in the models that convey states that result
from activities that are included in the pattern being examined. Dimension-
driven clustering (level II) is potentially more challenging, as it requires that all
behaviour that may be related to a given dimension be included. This would
be possible for learning dimensions that are well defined in the literature,
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but possibly more difficult if a dimension is ill-defined, or defined in non-
behavioural terms.

For “open discovery” clustering (level III), the main challenge facing re-
searchers is the establishment of an upper limit for the feature combinations
that will be used in the clustering process. In our case, the upper limit was es-
tablished empirically on the basis of results from the previous levels. This may
not be a feasible approach in all circumstances though (e.g., if this is the only
level of the approach one applies). In these cases it may be feasible to establish
an initial upper limit as a reasonable percentage of the features in the com-
plete data set, or as an approximation based on the largest set of semantically
coupled features in the data set. Another possibility -which, however, would
require additional ground work to fully explore- would be the incorporation in
the system of meta-information about the features and their relations, which
could then be used to decide autonomously what attributes to use in what
combinations (e.g., ensuring that semantically related attributes are not used
disjointly). An alternative approach one might consider applying towards the
same goal would involve the application of a “dimension reduction” method
(such as Principal Component Analysis), with the aim of identifying a small
number of “primary” features that would provide a sufficient characterization
of the complete data set. Such approaches may bear promise at first sight,
but have an intrinsic characteristic that renders them largely inappropriate
for the the purposes discussed here: reduction in dimensionality for a data set
is typically achieved through the combination of features. Due to this fact,
the resulting features, however fewer in number and more “descriptive” they
might be, they may have lost their original behavioural semantics, making the
interpretation of the results of clustering based on these features an even more
challenging endeavour than normal.

This brings us to a related limitation of our approach, as presented in
this paper, which is that the qualitative analysis of the results of the third
level of clustering may be challenging to carry out for complex behavioural
models; put simply, especially when exploring novel domains of online learn-
ing activity, dimensions and related patterns may be difficult to recognise for
the human observer. A potentially promising approach in partially facilitat-
ing this task might reside with the aforementioned introduction of semantic
meta-information in the data, so that when candidate dimensions and pat-
terns are decided upon by the system, their “interpretability” could also be
systematically established. If this proved to be a too demanding extension
to substantiate and implement, one could also consider providing appropriate
visualizations of the semantic relations underlying the system’s propositions
for the human observers to more readily judge their connotations and signif-
icance. Implied in these suggestions is the requirement for tools capable of
constructing visual representations of the dimensions and patterns harnessed
from the clustering process; such tools could be, apparently, of great assistance
even when having to deal with less complex behavioural models, as in our case
study.
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In closing, ongoing and future work concentrates on the implementation
of what is described in section 5. We plan to apply the proposed approach on
both short-term and long-term collaboration activity data monitored during a
game-based team-work scenario and during Computer Science courses of the
winter term 2010 in order to demonstrate that it is independent from specific
activity types. At a higher level, we additionally want to show that the ap-
proach is applicable to domains other than learning. Our ultimate goal is to
integrate our approach into a learning management system and run the dy-
namic clustering, analysis and intervention process during another Computer
Science course. This would demonstrate our approach as a holistic concept
including all stages of the adaptation cycle, from data acquisition to adaptive
system interventions.
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Antonio R. Anaya and Jesús G. Boticario. Clustering Learners according to
their Collaboration. In Proceedings of the 2009 13th International Confer-
ence on Computer Supported Cooperative Work in Design, pages 540–545,
2009.
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Antonio R. Anaya and Jesús G. Boticario. Content-Free Collaborative Learn-
ing Modeling Using Data Mining. International Journal on User Modeling
and User-Adapted Interaction. Special Issue on Data Mining for Personal-
ized Educational Systems (this issue), 2011.

S. Anderson and S. Messick. Social Competency in Young Children. Develop-
ment Psychology, 10(2):282–293, 1974.

Ryan S. Baker, Albert T. Corbett, Ido Roll, and Kenneth R. Koedinger. Devel-
oping a Generalizable Detector of When Students Game the System. User
Modeling and User-Adapted Interaction, 18(3):287–314, 2008.

Ryan S.J.D. Baker. Data Mining for Education. In Barry McGaw, Eva Baker,
and Penelope Peterson, editors, International Encyclopedia of Education,
volume 7, pages 112–118. Elsevier, Oxford, UK, 3 edition, 2010.

Ryan S.J.D. Baker and Kalina Yacef. The State of Educational Data Mining
in 2009: A Review and Future Visions. Journal of Educational Data Mining,
1(1):3–17, 2009.

Ryan S.J.D. Baker, Albert T. Corbett, Kenneth R. Koedinger, Shelley Even-
son, Ido Roll, Angela Z. Wagner, Meghan Naim, Jay Raspat, Daniel J.
Baker, and Joseph E. Beck. Adapting to When Students Game an Intelli-
gent Tutoring System. In Intelligent Tutoring Systems, volume 4953/2006
of Lecture Notes in Computer Science, pages 392–401. 2006.

Ghulum Bakiri and Thomas G. Dietterich. Constructing high-accuracy letter-
to-phoneme rules with machine learning. In R.I. Damper, editor, Data-
Driven Techniques in Speech Synthesis, pages 27–44. Kluwer, Boston, MA,
2001.

Lena M. Ballone and Charlene M. Czerniak. Teachers’ Beliefs About Accom-
modating Students’ Learning Styles In Science Classes. Electronic Journal
of Science Education, 6(2):1–40, 2001.

Carole Beal, Lei Qu, and Hyokyeong Lee. Classifying learner engagement
through integration of multiple data sources. In Proceedings of the 21st
International Conference on Artificial Intelligence, pages 151–156, 2006.

Carole Beal, Sinjini Mitra, and Paul Cohen. Modeling Learning Patterns
of Students With a Tutoring System Using Hidden Markov Models. In
Proceedings of the 13th International Conference on Artificial Intelligence
in Education (AIED), pages 238–245, 2007.

Mordechai Ben-Ari. Constructivism in Computer Science Education. ACM
SIGCSE Bulletin, 30(1):257–261, 1998.

Yoshua Bengio and Paolo Frasconi. Input-Output HMMs for Sequence Pro-
cessing. IEEE Transactions on Neural Networks, 7(5):1231–1249, 1996.



Clustering of Problem-Solving Activity Sequences for Personalization 47

Paul E. Black. “Euclidean Distance” in Dictionary of
Algorithms and Data Structures, U.S. National Insti-
tute of Standards and Technology, 2004. Available from
http://www.itl.nist.gov/div897/sqg/dads/HTML/euclidndstnc.html.
Accessed February 2010.

Alexander Borek, Bruce M. McLaren, Michael Karabinos, and David Yaron.
How Much Assistance Is Helpful to Students in Discovery Learning? In
Learning in the Synergy of Multiple Disciplines, volume 5794/2009 of Lecture
Notes in Computer Science, pages 391–404. 2009.
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dations in Higher Education Using Data Mining Techniques. In Proceedings
of the 2nd International Conference on Educational Data Mining (EDM09),
pages 190–199, 2009.

Erin Walker, Nikol Rummel, and Kenneth R. Koedinger. CTRL: A Research
Framework for Providing Adaptive Collaborative Learning Support. User
Modeling and User-Adapted Interaction, 19(5):387–431, 2009.

Wayang Outpost. Wayang Outpost, 2010. www.wayangoutpost.com.
Jungsoon Yoo, Cen Li, and Chrisila Pettey. Adaptive Teaching Strategy for

Online Learning. In Proceedings of the 10th International Conference on
Intelligent User Interfaces (IUI ’05), pages 266–268. ACM, 2005.

Author Biographies
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