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Abstract—Monitoring and interpreting sequential user ac-
tivities contributes to enhanced, more fine-grained user models
in e-learning systems. We present in this paper different
behavioural patterns from the domain of problem-solving
that can be determined by targeted, ultimately automated
clustering. For the identification of these patterns, we apply
a new approach – based on the modeling of activity sequences
– to real-world learning activity sequence data, monitored
via an Intelligent Tutoring System. This paper describes the
identified behavioural patterns, explains the process used for
their detection, and compares the patterns to related ones in
earlier literature. It further discusses implications of the pat-
terns themselves, and of the employed approach, on adaptively
supporting individual and group-based collaborative learning.

Keywords-data mining; clustering; problem-solving styles;
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I. INTRODUCTION

During the past decades, the field of adaptive systems has
been steadily gaining attention within the research commu-
nity. In parallel, the number of potential application domains
has been increasing rapidly. One such application domain is
the field of e-learning where adaptivity can be used not only
for the personalization of learning content and navigation
through learning material, but also to actively support the
learning process itself for individual users and groups. In the
later perspective the learning process is treated as consisting
of interconnected learning activities (see, e.g. [1]), rather
than the passive or active consumption of knowledge.

A related trend in adaptive systems research has been the
increasing utilization of data mining and machine learning
techniques for the derivation of user-centered models (see,
e.g. [2], [3], [4] or [1]). These techniques can contribute
to the enhancement of adaptivity by allowing for a more
fine-grained analysis of user activity data, which can subse-
quently lead to more fine-grained information in the respec-
tive user models. This, in turn, can lead to better tailored,
personalized support throughout the learning process.

In this context, this paper addresses a specific area of
learning, namely problem-solving, and discusses specific
behavioral patterns, their significance and their relation to
ones reported in recent literature (e.g., [5]), and types of

adaptive interventions that can be potentially employed in
response to the detected patterns. The approach applied
here for the detection of patterns is based on targeted and
ultimately automated clustering of users’ problem-solving
sequences represented by Discrete Markov Models (DMMs).
Detection has addressed: (a) predefined concrete problem-
solving styles, (b) new styles along known, predefined
learning dimensions, and (c) new learning dimensions and
related concrete styles. The paper discusses how the findings
presented here are, although gained through analysis of indi-
vidual users’ behaviour, also applicable to the enhancement
of collaborative learning processes.

The rest of this paper is structured as follows: section
II briefly describes the approach used for different levels
of pattern detection. Section III explains different types of
patterns discovered during the pattern detection process and
compares them to related ones. Section IV explains how
the detected patterns can be used in adaptive systems, and
section V discusses implications for adaptive collaboration
support. Finally, section VI summarizes the paper and pro-
vides an overview of related work.

II. MULTI-LEVEL CLUSTERING

This section provides a brief overview of the activity data
used in the presented work, the preprocessing and analysis
processes, and the clustering mechanism used for pattern
detection. A detailed description of the applied approach
can be found in [6].

A. Data Preprocessing and Analysis

The data used in this study consists of problem-solving
activity sequences, carried out in (and monitored by) the In-
telligent Tutoring System (ITS) Andes [7] and published via
the PSLC DataShop [8]. Andes provides students with tasks
to be solved, and stores, for every student, the respective
activity sequence for a task. This results in a sequence pool,
each related to a student/task combination. Our experiments
operated with data from a Physics course of the US Naval
Academy (2007 - 2009). Our system preprocesses base data
and converts the sequences to DMMs that are later used
for analysis and clustering. The conversion process starts



with an empty DMM, containing default transition- and prior
probabilities. Next, the activity sequences are sent through
the model, which is updated with every incoming activity.
The states in the DMMs correspond to actions a student can
perform within the problem-solving process (see Figure 1).
The goal is to infer from the sequences different strategies
students employ to deal with the tasks. Thus, aggregating
the sequences to statistical summaries would bear the risk of
losing information about the process that could be indicative
of specific types of behavior.

Figure 1. This figure shows two DMMs used for the clustering approach.
Notation: C stands for the submission of a correct answer, I for an incorrect
answer, H∗ for a hint request, and E is an artificial end-state indicating that
a student finished a sequence. The numbers next to nodes denote their prior
probability, the numbers next to transitions denote the transition probability
(both showing exemplary values here). As there are different types of
hints, we introduced (and used in our experiments) a model distinguishing
between different H states (left), and one aggregating them (right).

B. The Clustering Process

Clustering was performed on data sets containing serial-
ized versions of the models created during preprocessing,
and additional basic statistical metrics. The goal has been
the detection of problem-solving styles, either based on pre-
existing descriptions, or with the aim to discover new ones.
We introduced different clustering levels that correspond to
the different kinds of patterns described in the next section:
Level I (pattern-driven) uses well-established, predefined
problem-solving styles and aims at discovering them in
students’ behavior. Level II (dimension-driven) operates at
the level of dimensions rather than concrete styles, i.e.,
the system tries to identify given dimensions and discover
concrete styles along these dimensions. Level III (open dis-
covery) does not receive definitions of styles or dimensions
as input but aims at the automatic discovery of both.

An inherent (and of fundamental importance) part of the
approach described here is the employment of a set of
optimization metrics that are applied to determine when an
“optimum” cluster setting has been reached (thus, further
clustering is not necessary). The “optimum” cluster is the
one with the best results according to specific metrics.
These metrics can vary and are usually adapted for every
different scenario and clustering purpose. Specifically, we
evaluate as metrics the distribution of students and problems
to clusters with the help of entropy measures, and determine

the variance of attribute values in the clusters, as well
as the clusters’ potential to serve for the prediction of
success within a problem-solving sequence. These indices
can then be weighted to emphasize specific factors and are,
in combination, capable of determining the quality of a
setting in the specific domain of problem-solving. A detailed
description of the approach used can be found in [6].

III. PATTERN DETECTION AT DIFFERENT LEVELS

This section describes different patterns that were identi-
fied by the different levels of clustering.

A. Level I (Pattern-Driven)

To demonstrate pattern detection at this level, the well-
known problem-solving style Trial and Error [9] (also
referred to as Trial and Success) was chosen, describing
behaviour that is based on chance at the beginning, and
on learning by making mistakes later. In this context, the
available attributes (i.e., the features represented by the
DMMs and the additional statistical information) were eval-
uated with regards to their potential to contribute to the
identification of Trial and Error behaviour. Specifically, we
expected a person with this behaviour to have high prior
probabilities for incorrect answer submissions and low-to-
medium prior probabilities for correct answers. Note, that
the probability of guessing a correct answer is lower than
the probability of getting it wrong by chance; usually there
is only one correct answer as opposed to several incorrect
possibilities. Additionally, such a person was expected to
have a low hint request rate, a relatively high rate of incorrect
submissions, and only a weak tendency to request hints after
an incorrect submission. The attributes best corresponding to
these characteristics were selected, stored in a new data set,
and clustering was performed on this set. The results of a
cluster configuration with 8 clusters showed two clusters
providing a clear identification of the Trial and Error
problem-solving style. The procedure as described above can
be applied for every other predefined problem-solving style.

B. Level II (Dimension-Driven)

At this level, we are concerned not with the “recognition”
of expected behaviour when it occurs, but rather with estab-
lishing whether it is possible to identify distinct behavioural
patterns in relation to specific semantic dimensions of the
activities being analyzed. This translates into performing
clustering along known learning dimensions, in order to
identify concrete problem-solving styles the learners may
exhibit.We have chosen Help-Seeking behaviour [10], [11]
as a well-known learning dimension and identified the
behaviour elements that we expected to be defining here.
These included the rate at which learners request help, the
probabilities for hint requests following an incorrect answer
submission, the prior probability for hint requests, and the
probabilities for hint requests that occur in sequences.



Again, clustering showed clear variations of the examined
behaviour, indicating that the attributes selected formed
a coherent whole, capable of exposing the elements of
variability in the learners’ behavior. Next, different concrete
styles within this learning dimension were analyzed, which
successfully led to the detection of the help-related problem-
solving styles described in Table I. The four Help-Seeking
styles identified here can be explained as follows: A problem
solver of type H1 shows Trial and Error behaviour and tends
to request hints in sequences, whereas type H2 makes sure
not to submit wrong answers but requests a lot of help, even
before having tried. This might lead to the assumption that
this problem solver uses the help functionality instead of
sufficient preparation. Type H3 does not request help right
at the beginning and does not request help too often; when
help is requested though, this is done in sequences. This may
be indicative, for instance, of a learner that is interested in
really understanding a problem before continuing. Type H4

is very similar to H2, and in settings with a lower number
of clusters these styles might have been combined.

We can compare the results at this level to the help-
seeking model discussed in [5]. The authors introduce a
taxonomy of “help-seeking bugs” in students’ behaviour and
list the following categories: Help Abuse, Help Avoidance,
Try-Step Abuse and Miscellaneous Bugs. The type Help
Abuse comprises behaviour like clicking through hints or
asking for hints even if it would not be necessary because
the student would be skilled enough to solve the task
without help. The H2 and H4 types identified by our system
partly correspond to this Help Abuse type in that a H2/H4

problem solver may also show such behaviour instead of
spending more time on understanding the content before.
Our model can, however, additionally identify if the student
uses help before or after trying to submit an answer first.
This undesired kind of behaviour can also be compared to
gaming the system as explained in [12]. Try-Step Abuse can
be compared to the Trial and Error behaviour as shown
by type H1 who also tends to solve a problem too early
even if not sufficiently skilled yet. Parallels can also be
drawn between the H3 type and the Help Avoidance style
described in [5] concerning the general tendency to keep
the amount of requested help low. Yet, the Help Avoidance
type mainly considers trying unfamiliar steps without help
and could thus also be described as a subcategory of the
Try-Step Abuse type. In our case, H3 and H1 are clearly
distinct as the behaviour of a problem solver of type H3

can also be attributed to the desire to avoid the submission
of incorrect answers. Thus, level II pattern detection has
not only confirmed the taxonomy of “help-seeking bugs”
described in [5] but also added some distinct aspects to it.

C. Level III (Open Discovery)

Pattern detection at this level goes one step further than
its predecessor and is intended to perform open-ended

Table I
THIS TABLE SHOWS FOUR PROBLEM-SOLVING STYLES IN THE

Help-Seeking DIMENSION DISCOVERED BY THE CLUSTERING PROCESS
(8 CLUSTERS). THE REMAINING CLUSTERS NOT SHOWN HERE CONTAIN

NON-Help-Seeking BEHAVIOUR. THE SYNTAX IS TO BE READ AS
FOLLOWS: THE PERCENTAGE RESULTS HAVE BEEN ABSTRACTED TO THE
FIVE CATEGORIES very low, low, medium, high, very high, REPRESENTED

BY THE MORE EASY TO READ IDENTIFIERS −−, −, o, +, ++.

Style Size P.P.
I.A.

P.P.
H.R.

P.H.
I.A.

S.H. P.I.A. P.H.R.

H1 - - o o o + o o
H2 + - - + - ++ - - +
H3 o - - - + - o
H4 o - - + - ++ - - +
Size Number of Instances in the Cluster
P.P.I.A. Prior Probability for Incorrect Answers
P.P.H.R. Prior Probability for Hint Requests
P.H.I.A. Probability for Hint Requests Following Incorrect

Answers
S.H. Subsequent Hints
P.I.A. Percentage of Incorrect Answers
P.H.R. Percentage of Hint Requests

analysis with the goal of identifying, firstly, potential new
dimensions of learning behaviour, and, secondly, concrete
patterns within each dimension. Here, this process has again
been targeted towards the identification of concrete types
of problem-solving behaviour. This level is controlled by
the system (excluding the assessment and interpretation of
results that need to be performed by a human operator)
whose task it is to automatically select feature combina-
tions with high discriminatory capacity, create new data
sets containing attributes of one feature combination each,
perform clustering on each of the new data sets, and ana-
lyze the resulting clusters for significant trends in order to
autonomously detect problem-solving styles.

The process of selecting subsets of the initial feature set,
clustering on them and determining the quality of the set
according to, e.g., its discriminatory capacity, is a relatively
simple one, but cannot be done by humans, because of
the high number of calculations involved. The problem of
finding combinations is of exponential complexity, hence
we do not compute all possible combinations but limit the
number of features in the resulting combination sets.

Using the computed feature combinations, the process
continues by creating a “copy” of the original data set
containing only the selected features and values. This results
in a high amount of data, all depicting different aspects of
the same activities. After the subsequent clustering process,
the results are compared in terms of their average cluster
quality for a specific feature set. The algorithm used here for
measuring cluster quality is based on Linear Discriminant
Analysis (LDA) as described in [13], maximizing the dis-
tance between cluster centroids and minimizing the average
distance between the elements within the clusters.

The top ranked feature sets, based on the results of cluster



quality evaluation, become the system’s recommendation
as potentially meaningful dimensions. These recommended
feature sets are then analyzed by a human investigator who
makes a decision about what sets to pass back to Level
II clustering in order to detect concrete problem-solving
types. The investigator’s decisions are based on semantic
reflections a machine would hardly be able to provide.

In the case study discussed here, the top ranked results
suggest variations of a Help-Seeking dimension similar to
the one we manually defined for Level II, based on descrip-
tions in the related literature. Table II shows experimental
clustering results using the top ranked feature set of each
group (a group contains all feature sets with the same
number of features in them). The results listed there are an
example of what a human observer would see when applying
level II clustering on the dimensions suggested by level III.
Of course, a human observer would be provided not only
one top ranked feature set but several. The results can be
analyzed as follows (treating each feature set as a potential
dimension of problem solving behavior, and identifying
different types of behavior for each such dimension).

Rank1, n = 1: This dimension, defined by one single
feature, models the users’ tendency to request help in
sequences. The clusters show a clear distinction between
different types of behaviour (e.g., cluster 2 vs. cluster 4).
The concrete types along this dimension are T1.1 showing
a strong tendency to request help in sequences (clusters 1,
3, 4), T1.2, not requesting help in sequences (cluster 2), and
T1.3, occasionally requesting help in sequences (cluster 0).

Rank1, n = 2: This dimension is defined by two features,
modeling the tendency to request help in sequences and to
end a problem-solving sequence with a hint request (i.e., in
most cases, without having submitted a final solution). Three
clusters (1, 2, 4) show similar results and can be summarized
as type T2.1, tending to request help in sequences and not
to conclude a problem with a hint request. The second
type identified here, T2.2, is described in clusters 0 and 3,
where users request help in sequences occasionally and also
occasionally end a problem-solving sequence with a hint.

Rank1, n = 3: This dimension is defined by three fea-
tures, adding the percentage of help requests to the attributes
already explained. Here, we could identify significant types
as follows. T3.1 learners do not request help in sequences, do
not end problem-solving sequences with help requests, and
in general request only little help (cluster 2). T3.2 learners
tend to request help in sequences but do not end problems
with help requests and in general request a lot of help
(clusters 1 and 3). In cluster 4 we can find the behaviour
of T3.3, not requesting much help and when so, not in
sequences, but showing a strong tendency to end problem-
solving sequences with hints. In cluster 0 we can see that
this dimension is more expressive than the previous ones.
Here, the percentage of requested help steps is low enough to
round down to 0.00. Thus, the values indicating tendencies

of requesting help in sequences and of ending a sequence
with a hint are not relevant. We conclude that the types
discovered before are useful, but only in combination with
a basic statistical indicator on the general use of help. We
define type T3.4 behaviour as tending to not use help at all.
Rank1, n = 4: This dimension adds to the feature pool

the probability of submitting a wrong answer directly after a
hint request. Cluster 0 behaves as before. Cluster 3 identifies
a type of behaviour T4.1 that has not been detected by
the previous dimensions; learners of this type stop their
problem-solving sequence with a hint request in 100% of the
cases while not showing a generally very low help request
rate. This kind of behaviour is rare and here only affects 1%
of the problem-solving sequences. In the clusters 1, 2, and 4
we identify the following types: T4.2 shows a very high help
request rate, a strong tendency to request help in sequences,
and a very low rate of incorrect submissions or quits after a
hint. T4.3 differs from T4.2 only in a slightly lower rate of
help requests and a medium rate of quits after a hint, and
T4.4 is defined by a medium rate of help requests, a medium
rate of incorrect attempts or further help requests after a help
request, and a low rate of quits after a help request.

Rank1, n = 5: This dimension comprises, further to
the general help rate and the tendency to request help in
sequences, the prior probability for help, i.e. when users
request help as a first step, and the rate of requested hints
directly following a correct attempt. Clusters 1 and 2 define
T5.1 by a high help rate, a high prior probability for the use
of help, and the tendency to request help in sequences. T5.2

is derived from cluster 3, defined by a high help sequence
rate, a medium overall help request rate and a relatively low
prior probability for help. T5.3 is similar to T5.2 in the prior
probability for help requests but differs in other aspects and
includes a lower rate of help sequences and, in general, a
lower help rate.

Rank1, n = 6: This dimension adds to the features in
RankG = 1, n = 5 the probability of a wrong answer after
a hint request. Clusters 0 and 2 identify type T6.1 and show
a relatively high prior probability for help requests, a high
general help rate and a tendency to help request sequences.
Clusters 3 and 4 both show a low help rate, a low prior
probability for help requests and a very low probability of
help requests after a correct submission. T6.2 is characterized
by a high help sequence rate, whereas T6.3 shows a very
low help sequence rate but a relatively high percentage of
incorrect attempts after a hint.

Rank1, n = 7: This dimension adds to the features in
Rank1, n = 6 the probability of a help request being the last
activity in a sequence. Cluster 3 shows a new type of learners
(T7.1) exhibiting a strong tendency to close a sequence with
help, which in most cases is indicative of “giving up” before
the problem was solved.

From the above, we can conclude that dimensions with
very few features can be indicative of problem-solving types



but results are prone to being distorted. Yet, a very high
number of features may not allow for the identification of
the most significant types but rather suggest a range of
“subtypes” many of which could be combined. In order not
to fall prey to either of these threats, we suggest a medium
number of features for the purpose of dimension detection
that lies between a fourth and a third of the overall count.

The results presented here show that the Help-Seeking
dimension dominates. Yet, if we consider the 5 top-ranked
results of every group, we can already discover a different
dimension comprising: the probability for a correct answer
as the first action; the probability for a hint request as
the first action; the probability for a hint request directly
following a correct answer; the probability for an incorrect
answer directly following a hint request; the probability for
subsequent hints directly following a hint request; and, the
percentage of hint requests. Clustering along this dimension,
we get, among others, student types characterized by: (a)
very high probability for correct answers at first attempt,
extremely low help request rate, low help sequence rate, and
(b) a medium rate of correct answers at first attempt, a low
rate of initial help requests, and a relatively low overall help
rate. Type (b) is very similar to the Trial and Error type
in section III-A where we did not operate at the level of
dimensions yet but considered a predefined concrete style.

IV. POTENTIAL ADAPTIVE BEHAVIOUR

This section outlines possible ways in which the styles
and dimensions discussed in section III can be used within
adaptive e-learning settings. In general, system interventions
can be grouped into means of individual user support (see,
e.g., [14]) and means of collaboration support (see, e.g., [15]
or [16]). In what follows we describe potential system inter-
ventions for individual user support, and their applicability
for the different problem solving types discussed before.

A. Hint Tailoring

The system may react to student behaviour by limiting
the available help. Example ways in which this can be
done include: (a) reducing or increasing the number of hints,
or (b) reducing or increasing the granularity of information
within the hints. The first approach would be applicable,
for instance, for the types H2, H4 (these seem to show a
natural aversion for submitting incorrect answers but use a
disproportionate amount of help) and the types in the open
dimensions T2.∗, T4.∗, T6.∗ and T7.∗ (e.g., students who tend
to quit after a hint request). The second approach might also
be applicable for the types H2 and H4 and the types in the
open dimensions T2.∗, T4.∗, and T7.∗.

B. Hint Withholding

The system may prevent users from accessing hints at
a specific time by actively withholding them. This can be
necessary when students use hints before having tried to

Table II
THIS TABLE SHOWS EXPERIMENTAL CLUSTERING RESULTS (5

CLUSTERS) BASED ON THE TOP RANKED FEATURE SETS (TRFS). THE
VALUES FOR THE CLUSTERS DENOTE THE MEAN FOR THE RESPECTIVE

FEATURE IN THIS CLUSTER.

TRFS Features C0 C1 C2 C3 C4

n = 1 P for sequential hints 0.25 0.69 0.03 0.52 0.77

n = 2
P for sequential hints 0.25 0.69 0.75 0.15 0.51
P for quitting after a hint 0.25 0.06 0.02 0.27 0.01

n = 3
P for sequential hints 0.25 0.74 0.01 0.60 0.05
P for quitting after a hint 0.25 0.03 0.00 0.06 0.88
% of hint requests 0.00 0.67 0.10 0.34 0.28

n = 4

P for an incorrect an-
swer following a hint

0.25 0.03 0.08 0.00 0.23

P for sequential hints 0.25 0.74 0.69 0.00 0.34
P for quitting after a hint 0.25 0.04 0.26 1.00 0.08
% of hint requests 0.00 0.71 0.48 0.24 0.23

n = 5

P for a hint request be-
ing the first action

0.00 0.76 0.45 0.11 0.09

P for a hint request fol-
lowing a correct answer

0.00 0.01 0.04 0.01 0.02

P for sequential hints 0.24 0.72 0.70 0.66 0.18
P for a hint request be-
ing the first action

0.30 0.12 0.14 0.09 0.18

% of hint requests 0.00 0.72 0.59 0.34 0.09

n = 6

P for a hint request be-
ing the first action

0.75 0.00 0.45 0.11 0.07

P for a hint request fol-
lowing a correct answer

0.00 0.00 0.05 0.01 0.01

P for an incorrect an-
swer following a hint

0.04 0.25 0.07 0.10 0.59

P for sequential hints 0.73 0.25 0.67 0.52 0.01
P for a hint request be-
ing the first action

0.71 0.03 0.42 0.10 0.09

% of hint requests 0.72 0.00 0.58 0.15 0.07

n = 7

P for a hint request be-
ing the first action

0.00 0.43 0.74 0.31 0.09

P for a hint request fol-
lowing a correct answer

0.00 0.04 0.04 0.05 0.01

P for an incorrect an-
swer following a hint

0.25 0.07 0.04 0.01 0.18

P for sequential hints 0.25 0.71 0.73 0.13 0.48
P for quitting after a hint 0.25 0.04 0.04 0.83 0.03
P for a hint request be-
ing the first action

0.03 0.41 0.71 0.32 0.08

% of hint requests 0.00 0.57 0.72 0.28 0.26

understand the learning content, or where a clearly dispro-
portionate amount of help is used. This kind of intervention
is applicable for the types in the open dimension T5.∗
(students not being well prepared, or trying to over-exploit
the help functionality to reduce own efforts) if the respective
users show a tendency to request help as a first activity.

C. Proactive Hint Delivery

The system may also try to encourage the use of help by
actively offering it, i.e., even without users having requested
it. This kind of intervention can be useful if students show
a low tendency to use help, or in cases where a user
would be able to solve a problem with a hint but does not
request one. Proactive hint delivery is applicable for students
showing the Trial and Error style (here the goal is to prevent
students from making uneducated guesses), for the type H3



in the Help-Seeking dimension (these students show a high
inhibition threshold regarding help request), and the types
in the open dimension T3.∗ (students that show a tendency
not to use help at all).

V. IMPLICATIONS FOR COLLABORATION

In addition to individual user support, adaptive systems
can actively support collaboration. Adaptive collaboration
support can be split into two phases: adaptive support for
collaboration establishment and adaptive support during the
collaboration process [17]. Our approach is applicable in
both cases; yet, the nature of the information analyzed here
is better suited for collaboration establishment, usually based
on learners’ learning characteristics [17], [18].

The actual way of adaptively supporting collaboration
establishment is strongly dependent on the respective learn-
ing scenario and underlying teaching concepts and learn-
ing theories. Adaptive collaboration establishment support
includes encouraging students to cooperate with others,
or recommendations of tools to use for collaboration, or
partners to collaborate with [19]. Group synthesis recom-
mendations are based on specific rules that may consider
users’ backgrounds, interaction behavior, etc. In general, it
may be desirable for the system to group students that could
potentially benefit from cooperation, considering criteria like
complementarity or competitiveness [20].

In [20] and [21], the authors analyze the student learn-
ing style based on the Felder and Silverman model [22],
[23] which categorizes learning styles along five dimen-
sions (active/reflective, sensing/intuitive, visual/verbal, se-
quential/global, inductive/deductive), and conclude that (a)
learning styles affect the performance of students when
working together, (b) for the dimensions active/reflective and
sensing/intuitive, the mixed pairs tend to work better, (c)
heterogeneous groups in general get better results, and (d)
students themselves tend to group randomly without respect
to their learning styles. Their findings show that it is a
worthy goal to use learners’ models as a basis for group
synthesis recommendations, and that learning styles are a
potentially relevant criterion to base grouping algorithms on.
We expect effects to be even more pronounced when indi-
viduals’ problem solving styles are taken into consideration
when deciding on the synthesis of groups that are to engage
in problem-based collaborative learning.

The second phase of adaptive collaboration support, adap-
tive support during the collaboration process [17] requires,
in addition to the analysis of individual users’ activities, the
same kind of analysis of activities in group settings. The base
data, monitored via an arbitrary collaborative environment,
may include activities within tools for multi-user communi-
cation and cooperation like, for instance, chat, forum, audio-
and videoconferencing, wiki, shared resources, etc. In such
settings, a statistical analysis can provide a basic model of
a user’s behaviour, including, for instance, this user’s level

of activity in the group, tendencies to correct other users’
contributions, or to initiate new ones. Of more relevance
to the approach discussed in this paper is the analysis of
group activity sequences. The related literature proposes
computational models for analyzing such sequences to de-
termine metrics such as the centrality of group members,
or the cohesion of a group (see, e.g., [24]). Nevertheless,
more “dialogical” forms of analysis have typically been
constrained to group discussions, and require annotation
of activities by experts, or content analysis of exchanged
messages (again, see [24] for an example).

The application of our approach for the analysis of activity
sequences in a group is expected to have impact on two
fronts: the detection of behavioural patterns of individual
learners, with regards to their contact within group learn-
ing settings; and, the detection of patterns that emerge in
the behaviour of the group as a whole (and may require
intervention). The first type of information can potentially
enhance the collaboration process, although based on the
analysis of individual users’ activities, because individual
user characteristics become part of the group model and
influence the collaboration behaviour. The second type of
information can not only be fed back into the user models
and become basis for further adaptive collaboration support,
but potentially form the basis for novel kinds of adaptation
for collaboration. Each of these cases would require a
different graph-based representation of activity sequences
(replacing the problem solving-oriented DMMs shown here).
Furthermore, it may be necessary to revisit the metrics used
to drive the clustering process, so as to better capture the
semantics of group-based behavior (for instance, defining
measurable indices that characterize a group’s “success”, in
analogy to a learner’s solving a given problem). A successful
application of our approach in this context would arguably
be of high value, as recent work has demonstrated that when
adverse group behaviour can be detected, there is ample
potential in adaptively supporting online communities [25].

VI. SUMMARY AND RELATED WORK

In this paper, we discussed how different kinds of patterns
in learners’ problem-solving behaviour can be automatically
discovered. The process is based on a clustering approach
applied at three different levels, each tailored to different
pattern detection purposes: recognizing predefined concrete
problem-solving styles; detecting new styles along known
learning dimensions; and, automatically identifying both
new learning dimensions and related concrete styles. We
described the patterns we detected during our experiments
with real-world problem-solving data. Further, we explored
possibilities of how the newly gained information in the
user model can be used within adaptive systems, aiming
at enhancing the (individual and group) learning process,
and adaptivity in e-learning systems in general. The inter-
ventions proposed here are not regarded as the best possible



approaches in the respective cases (something that would
depend on the didactic approach employed), but rather
demonstrate how the adaptation cycle can be “completed”.

Recent work on the discovery of, and reaction to, different
learning and problem-solving styles has put emphasis on
implications that specific types of behaviour have on the
learning process and on concepts of how intelligent systems
can tailor their interaction with the user to the respective
types. In [11], for instance, the authors analyze help-seeking
behaviour in general and describe how help can be designed
in intelligent environments in order to support its users
individually. The authors state, based on a series of studies,
that very often help is used inefficiently. Moreover, they
report that generally, students tend to prefer the hints closest
to the full answer, which often prohibits use of the best
suited type of help. In some cases, the provision of on-
demand help might even interfere with productive learning
processes. Thus, the provision of help must be very carefully
tailored to users’ help-seeking behaviour. Another interesting
finding is that students without high prior knowledge have
better learning gains when they seek help more often.
Additionally, students who show a balanced use of different
types of help learn more than those who have a tendency to
focus on a specific type. The authors also list learner-related
factors that have to be considered when deciding on how
to provide help: prior knowledge, self-regulation, age and
gender, goal-orientation, and epistemological beliefs.

In [5], the authors focus on guidance adapted to students’
meta-cognitive abilities and analyze whether and how their
approach can help students become better help-seekers and
subsequently better learners. The authors evaluate help-
seeking behaviour and identify positive and negative (“help-
seeking bugs”, see section III-B) factors. A pilot study with
a small number of students that included a Help Tutor led to
the conclusion that such a tutor is generally accepted by the
learners, but did not provide findings regarding its influence
on students’ help-seeking and learning performance. This
is discussed in, e.g., [26], [27], or [28]. [26] includes an
evaluation of the aforementioned Help Tutor, which showed
that the tutor was generally able to improve help-seeking
behaviour but was less successful in improving all help-
seeking related actions, and in improving learning (maybe a
result of suboptimal timing according to the authors).

In [27], the role of feedback in preparation for future
learning is discussed, and different types of feedback are
compared. Additionally, the authors evaluate guided meta-
cognitive feedback and conclude that although directed feed-
back may allow the student to quickly achieve immediate
goals set by the learning environment, guided metacogni-
tive feedback performs better in preparing the student for
learning. In [28], the authors discuss the effect of hints
and model answers when students experience difficulties in
solving applied problems. In this study, the systematic use of
hints led to a significant improvement of students’ problem-

solving skills. Although the concrete results may relate to
the field of application (the study was specifically tailored to
an application field in secondary physics education) or the
target group, they indicate that hints can be a highly relevant
factor in the process of problem-solving.

A different perspective on adaptive guidance and help
provision is a problem known as “gaming the system”
behaviour (see [12] and [29]). “Gaming the system” aims at
deceiving the system, regarding, for instance, learning speed,
knowledge level, or contents looked at. It is the intelligent
system’s task to detect this undesired kind of behaviour
and to counteract if necessary. As “gaming the system” can
potentially distort the learner model that becomes the basis
for adaptive system interventions, it is important for our
future work to consider the findings of, e.g., [12], where
the authors discuss ways to adapt to this kind of behaviour.

In relation to the projected future extensions of our work
towards the analysis of collaborative learning behaviour,
one can identify similarities between the use of DMMs
to represent activity sequences, and “behavioural transition
diagrams” (see, e.g., [30]), which also encapsulate the
concepts of activities as “nodes”, and the utilization of
transition probabilities to derive a “significance” metric that
is used as the weight of edges connecting the nodes. Yet,
such diagrams have been traditionally used for the visual
exploration of activity sequences rather than the computa-
tional derivation of patterns. Also of relevance is the work
reported in [25] where it is shown that patterns indicative
of dysfunctions in an online knowledge-sharing community
can be algorithmically detected, and potentially acted upon.
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