
Formative Evaluation Methods for
Adaptive Systems

Stephan Weibelzahl
Alexandros Paramythis

Judith Masthoff

User Modeling 2007 – Tutorial 4

Programmiersprache C++ Winter 2005 Operator overloading (2)(2)

Presenters
Dr. Stephan Weibelzahl
National College of Ireland Dublin
Mayor Street IFSC
Dublin 1, Ireland
+353 1 4498 579
sweibelzahl@ncirl.ie
http://www.weibelzahl.de/

Alexandros Paramythis
Institute for Information Processing and Microprocessor Technology (FIM)
Johannes Kepler University Linz
Altenbergerstr. 69
A-4040 Linz, AUSTRIA
+43 732 2468 8442
alpar at fim.uni-linz.ac.at
http://www.fim.uni-linz.ac.at/staff/paramythis/

Dr. Judith Masthoff
Department of Computing Science
University of Aberdeen
Aberdeen AB24 3UE
Scotland, UK
+44 1224 272299
jmasthoff at csd.abdn.ac.uk
http://www.csd.abdn.ac.uk/~jmasthof/

http://www.weibelzahl.de/
http://www.fim.uni-linz.ac.at/staff/paramythis/
http://www.csd.abdn.ac.uk/%7Ejmasthof/

Programmiersprache C++ Winter 2005 Operator overloading (3)(3)

Time plan

13:30 - 14:15
Introduction
Layered Evaluation

14:15 - 14:45 1st Hands-on Session

14:45 - 15:00 Evaluation Methods (Part A)

15:00 - 15:30 Coffee break

15:30 - 16:15 Evaluation Methods (Part B)

16:15 - 16:45 2nd Hands-on Session

16:45 - 17:00
Common Pitfalls
Where to next?

Introduction

Programmiersprache C++ Winter 2005 Operator overloading (5)(5)

Evaluation in general
Evaluation is the systematic determination of merit,
worth, and significance of something or someone

In this context: all types of user studies that
» inform the development or improvement of a system
» demonstrate the impact of a technology

Examples include
» Experiments, Case-studies, Surveys, Usability studies,

Expert ratings, etc.

Programmiersprache C++ Winter 2005 Operator overloading (6)(6)

Why is evaluation important?
Find out whether it really works
» Effectiveness
» Efficiency
» Usability, user satisfaction

Detect inaccuracies and invalid assumptions

Convince users, customers, investors, PhD
examiners

Scientific advancement

Programmiersprache C++ Winter 2005 Operator overloading (7)(7)

Why is the evaluation of adaptation different?
Basic premise of “traditional” HCI evaluation:
» All users experience the same system

Basic premise of interactive adaptive systems:
» Each user experiences a personalised version of the

system

Approaches that have been tried and have only been
partially successful:
» “With and without” adaptivity
» Adaptivity as a single system feature

Programmiersprache C++ Winter 2005 Operator overloading (8)(8)

An (elusively) simple example
Evaluate the employment of adaptive menus in a
word processing application

» Adapt how?

» Adapt when?

» Based on what?

» Level of user control?

» Why do some users
love it and others hate it?

Im
ag

es
 fr

om
: K

at
h

St
ra

ub
 (2

00
4)

 A
da

pt
iv

e
M

en
u

D
es

ig
n.

 U
I D

es
ig

n
N

ew
sl

et
te

r –
Ju

ly
, 2

00
4

Programmiersprache C++ Winter 2005 Operator overloading (9)(9)

Tutorial goals
Upon successful completion of the tutorial,
participants will
» Be aware of the specific problems involved in the evaluation

of adaptive systems that differentiate them from their non-
adaptive counterparts, and able to solve or circumvent
these problems

» Understand and be able to apply the principles of layered
evaluation of adaptive systems

» Be able to design a targeted formative evaluation study for
an adaptive system (e.g., addressing a given layer and set
of criteria) by selecting appropriate methods and criteria

Introduction of Layers

Identifying evaluation layers and
criteria

Programmiersprache C++ Winter 2005 Operator overloading (11)(11)

Example Study
HTML-Tutor: An Adaptive
Learning System
Introduction to HTML and
Publishing on the Web

Programmiersprache C++ Winter 2005 Operator overloading (12)(12)

Pre-Tests

optional pretest

Programmiersprache C++ Winter 2005 Operator overloading (13)(13)

Exercises

Programmiersprache C++ Winter 2005 Operator overloading (14)(14)

Exercise Feedback

Programmiersprache C++ Winter 2005 Operator overloading (15)(15)

adaptive link annotation

Adaptation Strategy

Programmiersprache C++ Winter 2005 Operator overloading (16)(16)

Adaptation Strategy

adaptive curriculum sequencing

Programmiersprache C++ Winter 2005 Operator overloading (17)(17)

How can I evaluate my system?

Compare adaptive version to non-adaptive version of
the course?
» What could we learn from that?
» What can we not learn from that?

How to evaluate HTML-Tutor?
How can we find out what’s wrong?
How to improve it?

Programmiersprache C++ Winter 2005 Operator overloading (18)(18)

Layered evaluation
Basic premises of layered evaluation
» Don’t treat adaptation as a “monolithic” / singular process

(at least not only as such)
» Rather, “break it down” into its constituents (“layers”), and
» Evaluate each of them separately where necessary and

feasible

Basis for this tutorial:
» Paramythis and Weibelzahl, 2005 (“the merger”)
» Origins

• Paramythis, Totter, and Stephanidis, 2001
• Weibelzahl and Weber, 2001

Programmiersprache C++ Winter 2005 Operator overloading (19)(19)

How can I evaluate my system?
Important decisions
» Evaluation layer(s): What to evaluate?
» Criteria: What are measures of success?
» Method: How to collect data? (see “Methods” part)

Programmiersprache C++ Winter 2005 Operator overloading (20)(20)

Layered Evaluation

collect collect
input data input data

interpret datainterpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

nonnon--
interactiveinteractive
“sensors”“sensors”

interactive “frontinteractive “front--end”end”

“static” models“static” models
application

model
task

model
system
model

...

“dynamic” models“dynamic” models
user
model

context
modelinteraction

history

......

adaptive adaptive
theorytheory

Paramythis & Weibelzahl, 2005

Programmiersprache C++ Winter 2005 Operator overloading (21)(21)

Collection of Input Data
Adaptive system observes user behaviour and
context, e.g., click stream, input, sensor data, etc.
Questions
» Does the data collection work?
» Is the user behaviour registered accurately?

Criteria
» Reliability (consistency of data)
» Accuracy
» Latency

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (22)(22)

Collection of Input Data
Examples of questions to
be answered
» Eye-tracking for task

detection: Does the user
actually look at the part of
the screen that the eye-
tracker indicates?

» HTML-Tutor: Are test items
reliable?

» Movie recommender: Are
ratings of movies consistent
per user? Would a user rate
the movie in the same way
again after one week?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (23)(23)

Interpretation of the Collected Data
Adaptive system interprets the recorded behaviour
Giving meaning to raw data
» Sometimes trivial (click on “next” button means, user

wants to proceed to next page)
» However, interpretation is possibly based on assumptions

and might require inference
Question
» Are the users doing what the

system thinks they are doing?
Criterion
» Validity

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (24)(24)

Interpretation of the Collected Data
Examples of questions to be answered
» HTML-Tutor: Is the content of a page actually “known”

when
• Learner visited the page
• Learner answered test- items correctly

» Movie recommender: Does a user actually like a movie
when giving a positive rating?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (25)(25)

Example Study with HTML-Tutor
Learners use system
Learners complete post-test
Comparison of model (“visited”, “known”) and real
data

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (26)(26)

Modelling of the Current State of the World
Based on observations the system infers the current
state of the world, e.g., user model, context model
Usually this is the AI component of the system
(Bayesian network, rules, etc)
Questions
» Does the model reflect the real world?
» Is the world modelled in an appropriate way?

Criteria
» Primarily: Validity
» Secondary: Comprehensiveness,

Redundancy, Precision, Sensitivity,
Scrutability

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (27)(27)

Modelling of the Current State of the World
Examples of questions to be answered
» HTML-Tutor: Are pages that are inferred to be “known”

(e.g., prerequisites of more advanced concepts) actually
known?

» Movie Recommender: Do users like a movie that got high
ratings from somebody with similar preferences?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (28)(28)

Example Study with HTML-Tutor
Learners learn concepts in class
Learners use system
Learners complete post-test
Comparison of model (“inferred”) and real data

0

5

10

15

20

25

1.5 1.6 2.2 2.3 2.5 2.8 2.1
2

3.2
.4 3.4 4.3 5.3
.5

chapter

fre
qu

en
cy

congruent
incongruent

Programmiersprache C++ Winter 2005 Operator overloading (29)(29)

Decide upon Adaptation
Adaptive System decides which adaptation
theory/strategy to apply given the current user model
Questions
» Is it necessary to intervene?
» Did the system select a good and appropriate adaptation

strategy?
Criteria
» Necessity
» Appropriateness
» Subjective acceptance

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptation adaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (30)(30)

Decide upon Adaptation
Examples of questions to be answered
» HTML-Tutor: The learner model seems to indicate that the

learner acquired sufficient knowledge about the current
chapter.

• Shall we recommend to proceed to the next chapter?
• Shall we annotate the current chapter as “known”?

» Movie recommender: Shall we recommend a certain
movie (push) or wait till the user asks for a
recommendation (pull)?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptation adaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (31)(31)

Example Study
Learners use system under different conditions
» With and without annotation
» With and without sequencing

Results
» No effect on number of pages visited, overall impression or

perceived successful adaptation
» Annotation increases number of pages visited per minute

How could this study be improved to better fit the
layer?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptation adaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (32)(32)

Applying Adaptation Decisions
The adaptation decision can be applied in different
ways (e.g., different colours, layouts, formulations)
Questions
» Is the concrete instantiation of the adaptation decision

working?
» Do users understand what it means?
» Do they like it?

Criteria
» Usability
» Obtrusiveness
» Acceptance
» Timeliness
» User control collect collect

input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptation adaptation

Programmiersprache C++ Winter 2005 Operator overloading (33)(33)

Applying Adaptation Decisions
Examples of questions to be answered
» HTML-Tutor:

• Is a red bullet a good way to indicate a “not recommended” page?
• “Continue with the next suggested page”?

» Movie Recommender:
• Shall we provide the full list of recommended movies?
• Only one movie plus “more” button?
• “Based on your ratings we believe that you might like the following

movies…”?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptation adaptation

Programmiersprache C++ Winter 2005 Operator overloading (34)(34)

Evaluating Adaptation as a Whole

The big picture
Looking at the system as a whole: Does it work?
Questions
» Does the system achieve its goals?
» Does it improve interaction?
» Do users like the system?

Criteria
» Effectiveness
» Efficiency
» Usability
» System specific criteria

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (35)(35)

Evaluating Adaptation as a Whole

Examples of questions to be answered
» HTML-Tutor: Does adaptation to prior-knowledge save

time?
» Movie Recommender: Do users find movies they like and

would they have found these movies otherwise?

collect collect
input data input data

interpret data interpret data

model the currentmodel the current
state of the world state of the world

decide upon decide upon
adaptationadaptation

apply apply
adaptationadaptation

Programmiersprache C++ Winter 2005 Operator overloading (36)(36)

Field Study
What’s the impact of offering
an adaptive prior-knowledge
test in an on-line course?
(Weibelzahl & Weber, 2002)
140 users learned with the
HTML-Tutor
» optional pre-test for 3 chapters
» final knowledge test at the end

of the course
» criteria: duration, knowledge
» statistical analysis: MANOVA

and ANOVA

Photo © BrowserBob, 2007

http://www.browserbob.com/images/computer_people7.gif

Programmiersprache C++ Winter 2005 Operator overloading (37)(37)

Results

1 2 3
0

5000

10000

15000

chapter
du

ra
tio

n
of

 in
te

ra
ct

io
n

(s
)

no pre-test presented
pre-test presented

1 2 3
.0

.2

.4

.6

.8

1.0

chapter

co
rre

ct
 re

sp
on

se
s

No differences in knowledge
Completed course much quicker

Programmiersprache C++ Winter 2005 Operator overloading (38)(38)

Layered Evaluation – Recap

Where is the user Where is the user
looking on the screen looking on the screen

What concept is the What concept is the
user reading about user reading about

What concepts has What concepts has
the user learned the user learned

eyeeye--trackertracker

Educational AHSEducational AHS

“static” models“static” models
model of concepts and

relation to pages

“dynamic” models“dynamic” models
learner (overlay)

model

adaptive adaptive
theorytheory

Guide user to Guide user to
exercises for theexercises for the
learned conceptslearned concepts

Add icons in front of Add icons in front of
links to the exerciseslinks to the exercises

Programmiersprache C++ Winter 2005 Operator overloading (39)(39)

Layered Evaluation Summary
Break adaptation process down into its constituents
(“layers”)
Evaluate each of them separately where necessary
and feasible
It’s meant to provide guidance rather than prescribing
a certain way of evaluation
Benefits
» Offers guidance for possible studies (“separation of

concerns”)
» Helps to identify problems and wrong assumptions
» Guides development process (formative evaluation)

“Hands-on” Session

1st Part
Identifying evaluation layers and criteria

Programmiersprache C++ Winter 2005 Operator overloading (41)(41)

“Hands-on” session overview – 1st Part
Goal
» Apply what you have learned in typical adaptive systems

Two parts
» 1st part – Identify layers and establish evaluation criteria
» 2nd part – Select evaluation methods and data collection

instruments
» The output of the first session will be used as input for the

second

Organisation of first part
» Brief presentation of the systems

• Adaptive super market
• Adaptive music player suite
• Adaptive email classification system

Programmiersprache C++ Winter 2005 Operator overloading (42)(42)

“Hands-on” session overview – 1st Part
Organisation of 1st part (cont)

» System “leaflets”
» Selection of a system to work with
» Separation into groups
» Group discussion / work
» Sampling / presentation of results

Expected output
» Description of how layers apply to your system
» A list of evaluation criteria for each layer to be addressed
» A list of domain-specific evaluation topics and criteria for the

system as a whole

Time available: 30 minutes

Programmiersprache C++ Winter 2005 Operator overloading (43)(43)

Target evaluation systems
The Centaur adaptive
super market

» Main adaptive functions
Personalised product
recommendation

» Monitored data
User’s browsing, searching,
purchasing behaviour

» Behind the scenes
Classification learning,
collaborative filtering

Photo © Spyros Vagelakis, 2004

http://www.trekearth.com/members/spyros60/

Programmiersprache C++ Winter 2005 Operator overloading (44)(44)

Target evaluation systems (cont)
The Ananas adaptive
music player suite

» Main adaptive functions
Recommend music that fits the
user’s musical tastes, affective
state, and context

» Monitored data
Music metadata, listening
patterns, playlists,
physiological indicators

» Behind the scenes
Decision theoretic approach,
collaborative filtering, and rules

Programmiersprache C++ Winter 2005 Operator overloading (45)(45)

Target evaluation systems (cont)
The Trippy adaptive email
classification system

» Main adaptive functions
Automatically determine the
folder in which a user would
place a given email, and
facilitate the process of
actually placing it there

» Monitored data
Emails already in folders, and
the user’s response to the
system’s recommendations

» Behind the scenes
Classification learning,
possibly in combination with
utility functions

Programmiersprache C++ Winter 2005 Operator overloading (46)(46)

Questions to focus on
Overall
» What needs to be evaluated in the system, as far as

adaptivity is concerned?
» We are not concerned yet with the how

Layer-specific
» Which layers are implicated in each of the above cases?
» What are the relevant criteria for each of the layers?

Domain-specific
» What criteria can be used to judge whether adaptivity meats

it’s goals in the context of the specific system (or in the
system’s domain more generally)?

Evaluation Methods

Programmiersprache C++ Winter 2005 Operator overloading (48)(48)

Different methods
When the evaluation is done

How the evaluation is done

By whom the evaluation is done

Programmiersprache C++ Winter 2005 Operator overloading (49)(49)

Context
analysis

Design & design
representation

Rapid
prototyping

User
analysis

Evaluation

Requirements
specification

Task
analysis

Deployment Software
development

When the evaluation is done

Evaluation throughout!

Programmiersprache C++ Winter 2005 Operator overloading (50)(50)

When the evaluation is done (cont)
Different methods applicable depending on the
stage of development

We will distinguish two main points for evaluation
» Design (GUI and/or algorithms) has been done
» Prototype has been implemented

However, two of the methods (Focus Group and
User as Wizard) can be applied even earlier, to
inspire algorithm

Programmiersprache C++ Winter 2005 Operator overloading (51)(51)

How the evaluation is done
To evaluate a layer, you need to know:

What input it receives
» Show the evaluator what the input is, OR
» Let the evaluator decide the input
Could be input over long period of time

What output it produces
» May require effort, as most layers will not have a GUI
» Outputs may be hard to distinguish: difficult to look at

Apply Adaptation separate from Decide Adaptation

Programmiersprache C++ Winter 2005 Operator overloading (52)(52)

How the evaluation is done (cont)
Different ways of evaluating:

Analyse strengths and weaknesses
Compare against criteria
Perform tasks

Programmiersprache C++ Winter 2005 Operator overloading (53)(53)

By whom the evaluation is done
Users
» Most realistic, as they will end up using the system

Experts
» May be needed, because too difficult for user

(e.g. if input/output is a Bayesian net)
» May understand criteria better

Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (54)(54)

Evaluation Methods Overview

Layers’
Input

Layers’
Output

Type of
Evaluator

Measuring
Method

Evaluation
Method

Shown Shown Users or
Experts

Discussion

Shown Shown Experts Criteria Cognitive Walk.
Heuristic Eval.

Decided
/ Shown

Shown Users or
Simulated
users

Task
performance

Task-based
experiment
Simulated users

Decided Shown User or
Experts

Interview or
Criteria

Play with
layer

Comparison
with system
or Criteria

Focus
Group

Shown Decided Users or
Experts

User/Expert
as Wizard

Programmiersprache C++ Winter 2005 Operator overloading (55)(55)

Evaluation Methods

Focus Group
Cognitive Walkthrough
Heuristic Evaluation
Task-based Experiment
Play with Layer
User/Expert as Wizard
Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (56)(56)

Focus Group – Traditional

Show a group of users a prototype and ask their
opinion

Programmiersprache C++ Winter 2005 Operator overloading (57)(57)

Focus Group on layer’s performance
Discussion of a layer's performance in the
informal setting of a focus group

Show the input to the layer, and the output of the
layer, in a way understandable to participants

As adaptation is dynamic (and taking time), the input
may have been received over a prolonged period
(e.g. sequence of events)

Depending on the implementation, participants may
have to be experts (e.g. if UM is a Bayesian net)

Programmiersprache C++ Winter 2005 Operator overloading (58)(58)

Example: UM Layer of ITS
Input: Interpreted User actions
» The user got 18 out of 20 items right on a test of

IF-THEN statements.
» Next, the user got 3 out of 20 right on a test of

WHILE statements.
» Finally, the user got 2 out of 20 right on a test of assignment

statements

Output: User Model
» Mastery of IF-THEN statements 9, confidence 9
» Mastery of WHILE statements 2, confidence 9
» Mastery of assignment statements 1, confidence 9
» Emotional state: demotivated, confidence 6

Programmiersprache C++ Winter 2005 Operator overloading (59)(59)

Example: DA Layer of Recommender
Input:
User Model, say in format (score, confidence)
football (10,90%), cricket (1,92%),
rugby (2,42%), tennis (6,72%)

Output:
System decides to emphasize football news,
deemphasize cricket and rugby.

Programmiersprache C++ Winter 2005 Operator overloading (60)(60)

Example: AA Layer of Recommender
Showing screen shots of how
recommendations are explained

Discussion on which way is preferable and how
to improve

0
5

10
15
20
25
30
35
40

1's and 2's 3s 4's and 5's

How users like you rated this movie

Programmiersprache C++ Winter 2005 Operator overloading (61)(61)

Focus Group – Summary
Advantages

Can be done very early in the design process
Can discuss events happening over long time span

Limitations
Subjective opinions only:
what people say they like might not be best for them
Depends on good moderator
Can only cover a few topics (or it will take too long)

Programmiersprache C++ Winter 2005 Operator overloading (62)(62)

Evaluation Methods
Focus Group

Cognitive Walkthrough
Heuristic Evaluation
Task-based Experiment
Play with Layer
User/Expert as Wizard
Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (63)(63)

Cognitive Walkthrough – Traditional
Uses usability experts, can be done early in design
Focuses on learnability: ease of use for novice user

Work through typical tasks,
and decide for each task step
whether a naïve novice user would have difficulty
» Will the user expect to do this
» Will the user see the control
» Will the user recognize the control is appropriate for the

action step
» Will progress be apparent once the control

has been used

Programmiersprache C++ Winter 2005 Operator overloading (64)(64)

Cognitive Walkthrough of an Adaptive System
Best suitable for layers with GUI

Apply Cognitive Walkthrough in the usual way
» But you typically need to look at multiple instances or action

sequences

Programmiersprache C++ Winter 2005 Operator overloading (65)(65)

Example: Scrutability of UM
Suppose there is a GUI for modifying UM
» Can apply Cognitive Walkthrough:

will user be able to change the UM to a desired state

Suppose there is no GUI for modifying UM directly
» Can apply Cognitive Walkthrough only if:
» There is a GUI to lower levels (e.g. GUI available for

reading and rating news stories)
» The algorithm for the UM layer and the lower layers has

been designed to the extent that a correct action sequence
can be made (difficult when Machine Learning used)

Programmiersprache C++ Winter 2005 Operator overloading (66)(66)

Cognitive Walkthrough – Summary
Advantages

Can be done early in the design process
Task focus

Limitations
Strongly GUI related
Only considers learnability
Certain adaptation aspects not covered
» Typically looking at the first time a user does a task, if done

in the traditional way

Programmiersprache C++ Winter 2005 Operator overloading (67)(67)

Evaluation Methods
Focus Group
Cognitive Walkthrough

Heuristic Evaluation
Task-based Experiment
Play with Layer
User/Expert as Wizard
Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (68)(68)

Heuristic Evaluation – Traditional
Uses experts, can be done early in design

Compare a system to a set of guidelines
Often used in usability evaluation to compare a GUI
to a set of guidelines
Nielsen's 10 heuristics are frequently used
Experts (3-5) work individually, results combined

Programmiersprache C++ Winter 2005 Operator overloading (69)(69)

Heuristic Evaluation of an Adaptive System
Experts are given input like the layer would have, and
shown what the layer does with it. They judge the
layer's performance on a set of heuristics.

Criteria discussed for layer can act as heuristics,
but may need making more specific

Could also use an adapted version of Nielsen's
heuristics

Programmiersprache C++ Winter 2005 Operator overloading (70)(70)

Heuristic Evaluation of an Adaptive System
Visibility of System Status (~Transparency)
» Does the user know what the system has interpreted and

modelled?
(ID: You spend 5 min reading this item; UM: You like cricket)

» Are adaptation decisions made visible to the user?
(I will no longer show you football news)

Consistency
» Is the adaptation not making the user experience too

inconsistent?
» Can the user anticipate the system’s adaptive behaviour?

Programmiersprache C++ Winter 2005 Operator overloading (71)(71)

Heuristic Evaluation of an Adaptive System
User Control and Freedom (~Scrutability)
» Can the user undo a system interpretation?

(I did not spend 5 min reading this news item, I went to the toilet)

» Can the user undo a modelling action?
(I am not interested in cricket)

» Can the user undo an adaptation decision?
(You will show me the football news!)

» Can the user decide e.g. when and how adaptations are
applied?

Programmiersprache C++ Winter 2005 Operator overloading (72)(72)

Heuristic Evaluation of an Adaptive System
Efficiency
» Normally, intended at expert users being efficient. Can look

at this for some GUI related layers
» For many layers, it is not possible to judge this without

looking at the algorithm (Could look at algorithm complexity)

“Speaking the user’s language”
» Are adaptations done in a way that fits with user’s

expectations from the real world?

Programmiersprache C++ Winter 2005 Operator overloading (73)(73)

Example: AA Layer of an ITS
Are the symbols used for link annotation
clear to the user (“speaking the users’
language”) ?

Does the link annotation make the interface
inconsistent?

Is the system status visible?

Can the user get rid of the link annotation?

Can the user change the way link
annotations are done?

Programmiersprache C++ Winter 2005 Operator overloading (74)(74)

Heuristic Evaluation – Summary
Advantages

Can be done early in the design process
Applicable more widely than GUI

Limitations
Need to decide on appropriate heuristics
Experts are not real users

Programmiersprache C++ Winter 2005 Operator overloading (75)(75)

Evaluation Methods
Focus Group
Cognitive Walkthrough
Heuristic Evaluation

Task-based Experiment
Play with Layer
User/Expert as Wizard
Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (76)(76)

Give user well-defined tasks to do
Can measure time, errors, satisfaction, etc
Observational Methods
» Thinking-aloud

"Tell me what your are thinking"

» Co-discovery
Two users do task together, and naturally talk

» Retrospective Testing
Show video and ask what thinking at the time

» Coaching method
Ask any questions to coach, learn what confuses

Task-based Experiment – Traditional

Programmiersprache C++ Winter 2005 Operator overloading (77)(77)

Particularly good for evaluating a set of layers
(like the system as a whole)
Can test how fast users find a book they like,
how fast they learn, which adaptations they liked,
which confused them

Problem:
Adaptation takes time, can take too long for one
session

Solutions:
Longitudinal study: follow users over long time
Focus on higher layers, with UM given (by or to user)

Task-based Experiment of an Adaptive System

Programmiersprache C++ Winter 2005 Operator overloading (78)(78)

Example: Transparency of recommender UM
System works at least up to the UM layer
Transparency: do they understand how the
modelling works

For instance, can they get the system to believe they
hate cricket and love football

If direct interaction with UM is possible, can test
scrutability

Programmiersprache C++ Winter 2005 Operator overloading (79)(79)

Example: DA and AA layers of ITS
User is told to select a lesson to suit a learner,
with characteristics of that learner (i.e. UM),
and that the system knows these.
(Allows focus on DA + AA layers.)
Can measure e.g.
» Efficiency: how fast can the user decide?
» Effectiveness: is the user's decision the right one? (as

judged by independent experts, having seen the lessons)
» Satisfaction: is the user pleased with their experience?
» Trust: does the user trust the system?
Explain-your-decision question or
Co-discovery

Programmiersprache C++ Winter 2005 Operator overloading (80)(80)

Task-based Experiment – Summary
Advantages

Can be quite natural for users
Can provide objective performance measures

Limitations
Requires the layer to have been implemented
(or Wizard-of-Oz setup)
Requires tasks that humans understand; easier for
system as a whole, may be difficult for lower layers
Input has to be easy to do:
requires implementation of lower layers or special GUI
OR: can tell them input, but then indirect experiment

Programmiersprache C++ Winter 2005 Operator overloading (81)(81)

Comment on indirect experiments
In an indirect experiment, the user performs
the task for somebody else, rather than for
themselves
We can control what kind of person they do the task
for (give them UM)
Helps to avoid time delay needed otherwise for
adaptation…
However, less natural for users and might make
results less reliable

Programmiersprache C++ Winter 2005 Operator overloading (82)(82)

Comment on observational methods
Normal lesson for experiments:
» Do not help the user! Let them struggle.

(Unless coaching method used)
» Do not ask direct questions during the task, like what do

you think of this label, as it may guide them

However…. the user may not notice adaptation…
» it may be needed to interrupt them, and ask them about it

explicitly
» e.g., if interested in scrutability, and they do not notice the

scrutability tool, then might be good to lead them to it
(but making a note to improve its visibility)

» or incorporate adaptivity-related activities in the tasks

Programmiersprache C++ Winter 2005 Operator overloading (83)(83)

Comment on observational methods (cont)
Normal limitations of observational methods:

Thinking-aloud and Co-discovery interfere with
users’ cognitive processes, so can slow them down
Thinking-aloud and Retrospective testing may lead to
users justifying their errors, being insincere
Users may not remember why they did things /
what they thought afterwards (Retrospective testing)

In addition:
Co-discovery may be less natural / suitable when a
system is supposed to adapt to an individual user
(unless user model provided)

Programmiersprache C++ Winter 2005 Operator overloading (84)(84)

Evaluation Methods
Focus Group
Cognitive Walkthrough
Heuristic Evaluation
Task-based Experiment

Play with Layer
User/Expert as Wizard
Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (85)(85)

Play with Layer
Users or Experts test the layer by

Freely inputting data as if coming from the layer
below

Ways of evaluating layer:
Judging whether the layer's behaviour is right on a set
of criteria
Questionnaire or interview to get user’s opinions
May also be able to get objective measures
e.g., frequency of occurrences of certain events,
like adaptation

Programmiersprache C++ Winter 2005 Operator overloading (86)(86)

Example: CID and ID layers of Recommender
Users can test out a CID layer which uses an eye
tracker, by seeing how accurately and fast it picks up
which movie they are looking at
Requires an extra GUI element, showing the output of
the CID layer

Can also test ID layer, by telling users afterwards
how interested the system thinks they are in each
movie, based on what they were looking at
May not require extra GUI, could replay
interaction

Programmiersprache C++ Winter 2005 Operator overloading (87)(87)

Example: DA Layer of Group Recommender
Simulator allows setting user profiles (ratings for
music items), and simulating entry and exit of users
from room

Jane

Peter

Programmiersprache C++ Winter 2005 Operator overloading (88)(88)

Example: DA/AA Layer of Recommender
Users can set their own user model, via specially
made GUI
Explanations of recommendations are produced
based on the UM
Users rate the explanations on various criteria

Programmiersprache C++ Winter 2005 Operator overloading (89)(89)

Play with Layer
Advantages

Can be done before the underlying layers have been
implemented

Limitations
Requires the layer itself to be implemented
(though a Wizard-of-Oz could be used)
Requires layer input to be understandable to
and producible by the participant
(difficult for a Bayesian UM)
Likely to require a GUI for input
(extra work)

Programmiersprache C++ Winter 2005 Operator overloading (90)(90)

Evaluation Methods
Focus Group
Cognitive Walkthrough
Heuristic Evaluation
Task-based Experiment
Play with Layer

User/Expert as Wizard
Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (91)(91)

Wizard-of-Oz – Traditional
Testing a non-existing system

Dear
Henry

What the user sees

Speech
Computer

Fr
om

 G
ou

ld
, C

on
ti

&
H

ov
an

ve
cz

,
C

om
m

AC
M

 2
6(

4)
 1

98
3.

Programmiersprache C++ Winter 2005 Operator overloading (92)(92)

Traditional Wizard-of-OzWizard-of-Oz – Traditional
Testing a non-existing system

What the user sees The wizard

Dear
HenryDear

Henry

Speech
Computer

Fr
om

 G
ou

ld
, C

on
ti

&
H

ov
an

ve
cz

,
C

om
m

AC
M

 2
6(

4)
 1

98
3.

Programmiersprache C++ Winter 2005 Operator overloading (93)(93)

Participants are given input like the layer would have
They perform the layer's task
» The same observational methods can be used as in a task-

based experiment
System performance is compared to their
performance

User/Expert as Wizard (1)

Programmiersprache C++ Winter 2005 Operator overloading (94)(94)

Compare what people do with what layer does

Why?

Example: User Model Layer of a Persuasive System

I know Adam is neutral on
Nuclear power. What will

his position be after
hearing this argument?

Nuclear power has had 30 years
of subsidies, billions of pounds
poured into it and it still only
produces 7% of the world’s energy.

Position and strength
verified in another
experiment

Programmiersprache C++ Winter 2005 Operator overloading (95)(95)

Compare what people do with what layer does

I know individual ratings of
Peter, Mary, and Jane.

What to recommend to the
group? If time to watch

1-2-3-4-5-6-7 clips…

Why?

Example: AD Layer of a Group Recommender

A B C D E F

Peter 10 4 3 6 10 9

Jane 1 9 8 9 7 9

Mary 10 5 2 7 9 8

Programmiersprache C++ Winter 2005 Operator overloading (96)(96)

Example: DA/AA layer of a hierarchy generator
Users given items, and asked to produce hierarchy
Input: 37 items
» Discussion of the invention of antiseptics by Hungarian Ignaz

Semmelweis in 1847.
» Biography of Richard III who was king of England between 1483 and

1485.
» Discussion of the play Henry VIII, published by Englishman William

Shakespeare in 1623.
» Biography of American Thomas Edison who invented the phonograph in

1877.
» Discussion of the invention of the propeller by Englishman Francis Pettit

Smith in 1835.
» …

Co-discovery
Compare what people do with what layer does

Programmiersprache C++ Winter 2005 Operator overloading (97)(97)

User/Expert as Wizard (2)
Alternative to final step:

An expert review is conducted using the output of
both participants and system without the experts
knowing who produced which output

Some similarity with Turing test

Programmiersprache C++ Winter 2005 Operator overloading (98)(98)

Experts judged user and system generated
hierarchies on a set of criteria
(like understandability of titles, whether titles
covered section content, etc)
1. Biographies

1.1 French royalty (3)
1.2 English royalty (9)
1.3 Painters and Inventors (4)

2. Creations
2.1 Important inventions (12)
2.2 Paintings (6)
2.3 Writings of Shakespeare (3)

Why did you judge it this way?

Example: DA/AA Layer of a Hierarchy Generator

Programmiersprache C++ Winter 2005 Operator overloading (99)(99)

You know the individual ratings of
you and your two friends. I have

decided to show you the following
sequence. How satisfied would

you be? And your friends?

Why?

Example: AD Layer of a Group Recommender
A B C D E F

You 10 4 3 6 10 9

Friend 1 1 9 8 9 7 9

Friend 2 10 5 2 7 9 8

Programmiersprache C++ Winter 2005 Operator overloading (100)(100)

User/Expert as Wizard – Summary
Advantages

Can be done before the underlying layers have been
implemented
Can even be done before the layer itself has been
implemented
May inspire design of the layer

Limitations
Requires layer input to be understandable to the
participant
Requires task that humans are good at

Programmiersprache C++ Winter 2005 Operator overloading (101)(101)

Evaluation Methods
Focus Group
Cognitive Walkthrough
Heuristic Evaluation
Task-based Experiment
Play with Layer
User/Expert as Wizard

Simulated Users

Programmiersprache C++ Winter 2005 Operator overloading (102)(102)

Simulated Users – Traditional
Using real users in experiment costs time and money
Difficult to control real users
(e.g. if I want to test out many different types of users,
how to make sure I get all these types)

Use simulations of users instead of real users
» Theoretical approaches like GOMS (e.g. theory on how long

it takes normal user to move mouse, press button, etc)
» Implementations, e.g. neural networks or probabilistic

models

Programmiersprache C++ Winter 2005 Operator overloading (103)(103)

Simulated Users for Adaptive System
Adaptive system requires many different types of user
(point of adaptation!)
Additionally, difficult to get input for layer, e.g. want to
test DA layer, but how to get exact UM from users

Test the layer using simulated users

Programmiersprache C++ Winter 2005 Operator overloading (104)(104)

Example: Simulated Users for ITS
ITS for teaching paired associates
(Japanese translations of Dutch words)
Considered several models
e.g., All-or-None
(Bower, 1961)

Models predicted how well variants of DA layer do
(how many correct responses simulated users get
on average for three strategies that select items to learn)

Mastered
1

1-α

α
Guessing

P (Correct response | in Mastered)=1
P (Correct response | in Guessing)=g

Programmiersprache C++ Winter 2005 Operator overloading (105)(105)

Example: DA layer of Group Recommender
Simulated users in terms of affective state
Affective state models contained two parameters
(between 0 and 1), users likely to vary, and not clear
what good values in general
Ran simulations with all kinds of values
Looked at how (un)happy simulated users would be
with output from different variants of DA layer
Learned what variants did not work, independent of
value parameters

Programmiersprache C++ Winter 2005 Operator overloading (106)(106)

Simulated Users – Summary
Advantage

Can test many things quickly

Limitations
The models used for the simulated users are likely to
be based on the same assumptions that underlie the
adaptive system's design. What if those assumptions
are wrong?
Modelling static user behaviour differs from modelling
adaptive user behaviour

Programmiersprache C++ Winter 2005 Operator overloading (107)(107)

Evaluation Methods Overview
Evaluation
Method

Where in
Design Process

For which layers in
particular

Focus Group Requirements,
Design

Cognitive
Walkthrough

Design (of GUI) DA+AA,
Complete System

User / Expert
as Wizard

Requirements,
Design (of Alg.)

UM, DA, AA

Heuristic Evaluation Design Any Layer

Task-based
experiment

Implementation DA, AA,
Complete System

Play with layer Implementation Any Layer

Design

UM, DA, AA

Simulated users DA, AA

Programmiersprache C++ Winter 2005 Operator overloading (108)(108)

Evaluation Methods Summary
Task-based experiments are just ONE method for
evaluating adaptive systems, many others exist
Good to evaluate early on in the design,
not just at the end
Formative aspect of evaluation is important:
not just how good it is, but what causes problems
Skill required to evaluate a layer separately, shown
you examples of how to do this
Best method depends on the type of system and
when the evaluation is happening
Traditional methods may need to be adapted to suit
the requirements of adaptive systems

“Hands-on” Session

2nd Part
Creating a concrete evaluation plan –

Selecting evaluation methods and data
collection instruments

Programmiersprache C++ Winter 2005 Operator overloading (110)(110)

“Hands-on” session overview – 2nd Part
Goals for this part
» Select evaluation methods and data collection instruments
» Relate these to the output of the first session (e.g., what

methods for what criteria)
» Understand how to lay out an evaluation plan based on the

above

Organisation of second part
» Re-establish the first session’s groups
» Group discussion / work
» Sampling / presentation of results

Programmiersprache C++ Winter 2005 Operator overloading (111)(111)

“Hands-on” session overview – 2nd Part
Expected output
» A list of evaluation methods that you would use for the

system at hand
• Including what data collection techniques you would employ

» A “cross-reference” between the layer- and domain- specific
evaluation topics and criteria from the first session, and the
evaluation methods / instruments

» Optionally an outline of a time- / sequence- plan for the
evaluation

Time available: 30 minutes

Programmiersprache C++ Winter 2005 Operator overloading (112)(112)

Questions to focus on
First step
» What evaluation methods would be a “best fit”?
» Same for data collection methods

Second step
» How can everything be put together to create a coherent

evaluation plan?
» How can an adaptivity-oriented evaluation plan be

reconciled with more “traditional” HCI oriented ones?

Pitfalls

Common mistakes to avoid

Programmiersprache C++ Winter 2005 Operator overloading (114)(114)

Which pitfalls should I try to avoid?
1. Big evaluation study

planned for the end of a
project

2. Not enough resources left
3. Wrong control condition

selected
4. Too much variance in data
5. Confusion which criterion

to choose
6. Users are unable to tell

about adaptivity effects
7. Evaluation results are

reported incomplete or
anecdotally Graphic © Video Game Critic, 2007

http://www.videogamecritic.net/2600pq.htm

Programmiersprache C++ Winter 2005 Operator overloading (115)(115)

Pitfall 1: Big evaluation study at project end
Big evaluation study planned for project end
Summative evaluation cannot recover failures in
earlier stages
Recommendations
» Conduct several

formative studies
(cf. methods section)

» Distributed across
the development
cycle

Graphic © GNSE Group, 2007

http://www.gnsegroup.com/application_development_process.shtml

Programmiersprache C++ Winter 2005 Operator overloading (116)(116)

Pitfall 2: Not enough resources left
Empirical studies require personnel,
organizational, and financial resources
Recommendations
» Spread studies across the development cycle
» Expert evaluation
» Evaluate inference mechanism with simulated

users and empirical data
» Use cognitive models

Programmiersprache C++ Winter 2005 Operator overloading (117)(117)

Pitfall 3: Wrong control condition selected
Switching off the adaptivity
might result in an incomplete or
even useless system
Recommendation
» Compare various adaptation

decision conditions that are
based on the same user
characteristics

Programmiersprache C++ Winter 2005 Operator overloading (118)(118)

Pitfall 4: Too much variance in data
High variance corrupts
statistical analysis
Recommendations
» Try to find a sample that is

• heterogeneous in terms of the
modeled user characteristics,

• but homogeneous in terms of
other factors

» Use repeated measurement
» Control variables that might

have an impact on the results
» Separate groups of users

Graphic © Research KB, 2007

http://www.socialresearchmethods.net/kb/stat_t.php

Programmiersprache C++ Winter 2005 Operator overloading (119)(119)

Pitfall 5: Confusion which criterion to choose
There is no single
evaluation criterion for
adaptivity
Recommendations
» Define goals of

adaptivity precisely
» Derive criteria from

these goals

Photo © Sport Thieme, 2007

http://www.sport-thieme.co.uk/rl/r=2/pe-18_zanoxuk/-?cid=zanox/art=611150201/zan_pid=2707773C1571905869

Programmiersprache C++ Winter 2005 Operator overloading (120)(120)

Pitfall 6: Reporting Adaptivity Effects
Users might be unable to tell
about adaptivity
Users might not have
noticed adaptivity at all
Recommendations
» Use user feedback in

combination with objective
measures

» E.g., log-files, behaviour
observation

Programmiersprache C++ Winter 2005 Operator overloading (121)(121)

Pitfall 7: Results Reported Incomplete
Results are often reported
incomplete or anecdotally
Incomplete report of results
corrupts interpretation of
study
Recommendations
» Guidelines on reporting

statistical data
» Include important information

for adaptivity (e.g., empirically
identified user characteristics,
effect size)

Programmiersprache C++ Winter 2005 Operator overloading (122)(122)

Recommendations
Plan carefully and in advance
» Sample
» Control condition
» Criteria

Slice (or dice) system: Layered Evaluation
Publish your results

Where to next?

Programmiersprache C++ Winter 2005 Operator overloading (124)(124)

Reading List
[User as Wizard] Nguyen, H., Masthoff, J. & Edwards, P. (2007). Modelling a
receiver's position to persuasive arguments. Proc of the Persuasive Conference
(Stanford, USA).

[Usability methods] Gena, C. & Weibelzahl, S. (2007). Usability Engineering for the
Adaptive Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web:
Methods and Strategies of Web Personalization, Lecture Notes in Computer
Science, Vol. 4321 (© Springer). Berlin: Springer.

[User as Wizard, Simulated Users] Masthoff, J. & Gatt, A. (2006). In pursuit of
satisfaction and the prevention of embarrassment: Affective state in Group
Recommender Systems. User Modeling and User Adapted Interaction, 16, pp281-
319.

[User as Wizard] Masthoff, J. (2006). The user as wizard: A method for early
involvement in the design and evaluation of adaptive systems. Proc of the Fifth
Workshop on User-Centred Design and Evaluation of Adaptive Systems, held at
AH'06 (Dublin, Ireland).

Programmiersprache C++ Winter 2005 Operator overloading (125)(125)

Reading List (cont)
[Pitfalls] Weibelzahl, S. (2005). Problems and pitfalls in the evaluation of adaptive
systems. In S. Chen & G. Magoulas (Eds.). Adaptable and Adaptive Hypermedia
Systems (pp. 285-299). Hershey, PA: IRM Press.

[Layered Evaluation] Paramythis, A. & Weibelzahl, S. (2005). A Decomposition
Model for the Layered Evaluation of Interactive Adaptive Systems. In Ardissono, L.,
Brna, P., & Mitrovic, A. (Eds.), Proceedings of the 10th International Conference on
User Modeling (UM2005), Edinburgh, Scotland, UK, July 24-29 (pp. 438-442)
(Lecture Notes in Computer Science LNAI 3538, Springer Verlag). Berlin: Springer.

[Task-based Experiment, Simulated Users] Masthoff, J. (2002). The evaluation of
adaptive systems. In N. V. Patel (Ed.), Adaptive evolutionary information systems.
Idea Group publishing. pp329-347

[Task-based Experiment] Weibelzahl, S., & Weber, G. (2002). Adapting to prior
knowledge of learners. In de Bra, P., Brusilovsky, P., & Conejo, R. (Eds.),
Proceedings of the second international conference on Adaptive Hypermedia and
Adaptive Web Based Systems, Malaga, Spain, AH2002 (pp. 448-451). Berlin:
Springer.

Programmiersprache C++ Winter 2005 Operator overloading (126)(126)

Reading List (cont)
[Empirical Evaluation] Weibelzahl, S., Lippitsch, S., & Weber, G. (2002).
Advantages, opportunities, and limits of empirical evaluations: Evaluating adaptive
systems. Künstliche Intelligenz, 3/02, 17-20.

[Layered evaluation] Weibelzahl, S. (2001). Evaluation of adaptive systems. In M.
Bauer, P. Gmytrasiewicz & J. Vassileva (Eds.), User Modeling 2001: Proceedings of
the Eighth International Conference, UM2001. (pp. 292-294) (Lecture Notes in
Computer Science LNAI 2109; © Springer-Verlag). Berlin: Springer.

[Layered evaluation] Paramythis, A., Totter, A., & Stephanidis, C. (2001). A modular
approach to the evaluation of Adaptive User Interfaces. In S. Weibelzahl, D. Chin &
G. Weber (Eds.), Proceedings of the Workshop on Empirical Evaluations of
Adaptive Systems, held in the context of the 8th International Conference on User
Modeling (UM'2001), 13-17 July, Sonthofen, Germany (pp.9-24). Freiburg:
Pedagogical University of Freiburg.

[Task-based Experiment] Chin, D.N. (2001). Empirical Evaluation of User Models
and User-Adapted Systems. User Modeling and User-Adapted Interaction 11: 181-
194, 2001.

[Pitfalls] Höök, K., Karlgren, J., Waern, A., Dahlback, N., Jansson, C., Karlgren, K.,
and Lemaire, B. (1996). A glass box approach to adaptive hypermedia. User
Modeling and User-Adapted Interaction, 6:157-184, 1996.

Programmiersprache C++ Winter 2005 Operator overloading (127)(127)

Additional resources
Tutorial’s site
http://www.easy-hub.org/hub/tutorials/um2007/

» Expanded “reading list” for this tutorial

Evaluation of Adaptive Systems Hub
http://www.easy-hub.org/

» Previous workshops
» Guidelines
» Literature references

http://www.easy-hub.org/hub/tutorials/um2007/
http://www.easy-hub.org/

	Formative Evaluation Methods for Adaptive Systems
	Presenters
	Time plan
	Introduction
	Evaluation in general
	Why is evaluation important?
	Why is the evaluation of adaptation different?
	An (elusively) simple example
	Tutorial goals
	Introduction of Layers
	Example Study
	Pre-Tests
	Exercises
	Exercise Feedback
	Adaptation Strategy
	Adaptation Strategy
	How can I evaluate my system?
	Layered evaluation
	How can I evaluate my system?
	Layered Evaluation
	Collection of Input Data
	Collection of Input Data
	Interpretation of the Collected Data
	Interpretation of the Collected Data
	Example Study with HTML-Tutor
	Modelling of the Current State of the World
	Modelling of the Current State of the World
	Example Study with HTML-Tutor
	Decide upon Adaptation
	Decide upon Adaptation
	Example Study
	Applying Adaptation Decisions
	Applying Adaptation Decisions
	Evaluating Adaptation as a Whole
	Evaluating Adaptation as a Whole
	Field Study
	Results
	Layered Evaluation – Recap
	Layered Evaluation Summary
	“Hands-on” Session
	“Hands-on” session overview – 1st Part
	“Hands-on” session overview – 1st Part
	Target evaluation systems
	Target evaluation systems (cont)
	Target evaluation systems (cont)
	Questions to focus on
	Evaluation Methods
	Different methods
	How the evaluation is done
	How the evaluation is done (cont)
	By whom the evaluation is done
	Evaluation Methods Overview
	Evaluation Methods
	Focus Group – Traditional
	Focus Group on layer’s performance
	Example: UM Layer of ITS
	Example: DA Layer of Recommender
	Example: AA Layer of Recommender
	Focus Group – Summary
	Evaluation Methods
	Cognitive Walkthrough – Traditional
	Cognitive Walkthrough of an Adaptive System
	Example: Scrutability of UM
	Cognitive Walkthrough – Summary
	Evaluation Methods
	Heuristic Evaluation – Traditional
	Heuristic Evaluation of an Adaptive System
	Heuristic Evaluation of an Adaptive System
	Heuristic Evaluation of an Adaptive System
	Heuristic Evaluation of an Adaptive System
	Example: AA Layer of an ITS
	Heuristic Evaluation – Summary
	Evaluation Methods
	Task-based Experiment – Traditional
	Task-based Experiment of an Adaptive System
	Example: Transparency of recommender UM
	Example: DA and AA layers of ITS
	Task-based Experiment – Summary
	Comment on indirect experiments
	Comment on observational methods
	Comment on observational methods (cont)
	Evaluation Methods
	Play with Layer
	Example: CID and ID layers of Recommender
	Example: DA Layer of Group Recommender
	Example: DA/AA Layer of Recommender
	Play with Layer
	Evaluation Methods
	Wizard-of-Oz – Traditional
	Wizard-of-Oz – Traditional
	User/Expert as Wizard (1)
	Example: User Model Layer of a Persuasive System
	Example: AD Layer of a Group Recommender
	Example: DA/AA layer of a hierarchy generator
	User/Expert as Wizard (2)
	Example: DA/AA Layer of a Hierarchy Generator
	Example: AD Layer of a Group Recommender
	User/Expert as Wizard – Summary
	Evaluation Methods
	Simulated Users – Traditional
	Simulated Users for Adaptive System
	Example: Simulated Users for ITS
	Example: DA layer of Group Recommender
	Simulated Users – Summary
	Evaluation Methods Overview
	Evaluation Methods Summary
	“Hands-on” Session
	“Hands-on” session overview – 2nd Part
	“Hands-on” session overview – 2nd Part
	Questions to focus on
	Pitfalls
	Which pitfalls should I try to avoid?
	Pitfall 1: Big evaluation study at project end
	Pitfall 2: Not enough resources left
	Pitfall 3: Wrong control condition selected
	Pitfall 4: Too much variance in data
	Pitfall 5: Confusion which criterion to choose
	Pitfall 6: Reporting Adaptivity Effects
	Pitfall 7: Results Reported Incomplete
	Recommendations
	Where to next?
	Reading List
	Reading List (cont)
	Reading List (cont)
	Additional resources

