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Abstract. The IMS Learning Design specification is acknowledged as the most 
promising option available presently for the implementation of collaboration 
scripts in e-learning. Nevertheless, it has been criticized for a number of short-
comings, and, specifically for its lack of support for constructs that would en-
able comprehensive adaptive support to be effected over the collaborative learn-
ing process. In this paper we propose concrete extensions to the specification, 
which build upon prior work and address a wide range of problems and omis-
sions. The most important modifications introduced include: explicit support for 
groups, and run-time member assignment; addition of a run-time model; intro-
duction of concrete artefacts; introduction of an event-handling model; and, a 
modified sequencing and script organization model. 
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1 Introduction 

It is widely acknowledged that a large part of the success of the learning process lies 
with the opportunities of learners to interact with others: group work, exchanging 
ideas, and helping each other (thereby learning oneself) are standard “classroom” 
practices [1]. The establishment of online learning as a viable alternative to “tradi-
tional” approaches has resulted in the progressive lifting of geographical, temporal 
and other barriers to learning; but, at the same time, it has introduced obstacles in 
approaching learning as a social activity, due to the limited contact between learners 
that absence of physical collocation inevitably incurs [2]. 

The field of Computer-Supported Collaborative Learning (CSCL), which first ap-
peared as a specialized direction in the area of Computer-Supported Collaborative 
Work (CSCW), is at the dichotomy between CSCW and e-learning, and seeks to 
support the various forms of collaborative learning in online settings [3]. A core focus 
of CSCL work is on ways in which collaborative learning supported by technology 
can enhance peer interaction and work in groups, and ways in which collaboration 
and technology facilitate sharing of knowledge and expertise among community 
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members. A promising axis of work within CSCL is the scaffolding of productive 
interactions between learners by specifying in detail the ‘collaboration’ contract in a 
scenario [1], in so-called CSCL scripts [4]. The later are external, computational rep-
resentations of collaboration scripts, which are sets of instructions specifying how the 
members of a group should interact and collaborate to solve a particular problem [5]. 

The work reported in this paper falls within a line of research that seeks to further 
the principles underlying the use of CSCL scripts to guide the collaborative learning 
process, by introducing the dimension of adaptivity [6]. In this context, adaptivity 
concerns the provision of automated support within learning processes that involve 
communication between multiple learners (and, therefore, social interaction), and, 
potentially, collaboration towards common objectives. Furthermore, the support pro-
vided should be tailored to the specific requirements of both the participating indi-
viduals, and the social units in which they are involved (e.g., groups undertaking 
course projects). The goal of this line of work can then be stated as enabling the in-
corporation within CSCL scripts of constructs that would allow for expressing the 
types of adaptive support that a system can automatically offer to learners in the con-
text of collaborative learning activities.  

Unfortunately, the main starting point towards the above stated goal, namely a 
general modelling language for formalising collaboration scripts, is still missing [4]. 
At present, the most promising effort in that direction is the IMS Learning Design 
(IMS LD) specification [7], which evolved out of the Educational Modelling Lan-
guage developed by the Open University of the Netherlands [8]. IMS LD is a learning 
process modelling language, fashioned on the theatrical play metaphor (e.g., with 
plays, actors, roles, etc.), and intended to formally describe any design of teaching-
learning processes for a wide range of pedagogical approaches [8, 9].  

IMS LD has been criticized both for its lack of support for sufficiently expressing 
aspects of the collaborative learning process [4], and for the absence of constructs that 
are vital in supporting adaptivity in scripts [10]. This paper builds upon that criticism, 
as well as on proposals for extensions of the specification that have appeared in the 
literature (discussed in the next section), to propose a comprehensive set of modifica-
tions and additions to IMS LD, aiming to address many of its general shortcomings 
and lay the foundations for improved support for adaptivity in CSCL scripts.  

The rest of the paper is structured as follows. Section 2 presents an account of 
shortcomings of IMS LD and proposals for extensions that have appeared in the lit-
erature. Section 3 outlines the modifications and extensions proposed, relating them to 
two exemplary adaptive collaborative learning scenarios. Finally, section 4 sum-
marizes the goals that can be achieved through the proposed amendments, and pro-
vides an outlook on issues that we want to address in future iterations. 

2 Related Work 

The IMS Learning Design modelling language has its strengths in specifying person-
alized and asynchronous cooperative learning. In the area of (adaptive) collaboration 
scripting, however, a number of shortcomings have been identified [4]: Modelling 
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multiple groups independent from their role(s) is possible in IMS LD only with limi-
tations, and manipulating groups at run-time is not supported. Miao and Hoppe [11] 
introduced an extension for modelling groups, which relies on newly defined oper-
ations for creating and deleting groups, member management and run-time state quer-
ies. However, they do not provide a high-level specification mechanism for run-time 
grouping, which would make it easy for both authors and adaptation engines to ex-
press and understand the semantics of group (membership) management. 

In IMS LD there are also no means to specify how the members of a group interact 
within an activity, other than through a so-called “conference service” [12]. 
Hernández-Leo et al. [13] proposed the “groupservice” for specifying group collabor-
ation spaces with communication facilities, floor control, support for different interac-
tion paradigms and awareness functionality. This approach, however, suffers from the 
same limitations as the original IMS LD specification: the actual collaboration hap-
pens outside the script’s specification and control. Miao et al. [4] proposed running 
multiple instances of activities, if required by the respective social plane (one per 
role/group/person) to allow, for example, groups to work in parallel on the same prob-
lem. Their approach, however, is still not geared towards maximum expressive flexi-
bility. Even with these multiple instance activities, IMS LD provides insufficient 
support for (collective) artefacts [4] and no straightforward mechanism to model the 
flow of artefacts between activities [14]. Therefore, proposed already to some extent 
by Caeiro et al. [15], Miao et al. [4] also defined a possible model for artefacts, where 
the data flow is derived from the specification of creation-/consume- activities. 

IMS LD’s activity sequencing capabilities have been described as “quite simplis-
tic” [16] and fine-grained splitting or synchronization of the control flow is not read-
ily expressible [4]. Caeiro et al. [15] addressed some shortcomings by introducing a 
different model for the role-part in IMS LD. It would link elements according to the 
guiding question of who (roles) does what (act) in which way (operational role) where 
(environment) and towards which objective (outcome). The operational role would be 
independent from a person’s roles in order to make varying responsibilities possible. 
They also proposed having conditional transitions between acts to allow more com-
plex sequencing. Miao et al. [4] reiterated the need for advanced transition and rout-
ing constructs guided by approaches in the area of workflow management. 

The features discussed until now form the basis for collaboration scripting. With 
respect to explicit support for adaptivity, IMS LD is missing a model of the run-time 
state of the script, and an event model, and has only a limited number of functions to 
modify aspects of the collaboration process while the script is running [10]. Para-
mythis and Christea [17] present some more requirements for adaptation languages in 
the area of collaboration support, none of which are supported by IMS LD: workflow- 
or process- based reasoning, temporal operators, policies for grouping and clustering, 
invoking system facilities / manipulating system state and support for “provisional” 
adaptation decisions. In our approach, we address a number of these requirements and 
lay the foundations for supporting more in the future. The following section describes 
our proposed extensions to IMS LD. We aimed to cover the aforementioned collabor-
ation support requirements and the requirements with regard to adaptivity. 



4 Florian König and Alexandros Paramythis 

3 Proposed Extensions to IMS LD 

Our approach combines ideas from many of the extensions proposed in related work, 
puts them into a coherent information model and introduces additional features that 
are intended to better support adaptivity. It encompasses the modelling of groups, run-
time group and role membership assignment (section 3.1), group properties and prop-
erty collections, a run-time model, an adapted and extended set of operators (section 
3.2), an extensible modelling of services (section 3.3), artefacts, event handling, and 
new actions for effecting the scenario at run-time (section 3.4) as well as a flexible 
sequencing model (section 3.5). The relevant changes are depicted in diagrams of the 
information model, to be found in Fig. 1, 2 and 3, and resembling the diagrams in the 
original IMS LD specification [7]: child elements are either in a sequential (orthogo-
nal connectors) or a choice (angular connectors) grouping; they are optional (question 
mark symbol) or required once (no symbol), zero or more times (star symbol), or one 
or more times (plus symbol). In the process of making the diagrams as space-efficient 
as possible, the order of the elements could not always be kept the same as in the 
textual description. Due to the complexity of both the original and the extended 
model, it is advisable to follow the diagrams in parallel to the explanations. 

To explain our extensions in the context of real examples, we will use two well-
known collaborative learning scenarios, JigSaw [18] and Thinking Aloud Pair Prob-
lem Solving (TAPPS) [19], that are often implemented as CSCL scripts. Both exam-
ples require features that cannot be modelled with the original IMS LD specification. 
Table 1 summarizes the unique requirements of each scenario, the limitations of IMS 
LD, and in which section the extension supporting the requirement is proposed. 

Table 1. Limitations of IMS LD support for unique requirements of scenaria. 

Scenario Requirement IMS LD limitations Extension 
JigSaw run-time grouping by characteristics no concept of groups section 3.1 
 run-time casting of group leader roles assigned before start section 3.1 
 (group) collaboration contexts not in process model 

no group workspaces 
section 3.1 
and 3.5 

 explicit artefacts, flow of artefacts only properties section 3.4 
 flexible event handling (e.g., detect-

ing when artefact delivered) 
unstructured set of condi-
tions with no semantics 

section 3.4 

TAPPS service selection by criteria only 3 types of “confer-
ence” service specified 

section 3.3 

 role rotation between participants roles fixed during run section 3.4 
 multiple executions of activity (loop) rigid sequencing model section 3.5 
 
In JigSaw, learners are grouped into mixed (ability, knowledge, …) groups of 5-6 

members and a group leader is appointed. The material is split into 5-6 topics and 
each group member gets assigned to one. Students read their material individually and 
then come together in “expert groups” (one per topic), where they discuss their parts 
and how they are going to present them to their JigSaw groups. The students then re-
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unite in the JigSaw groups, present their topic, and group peers can ask questions. In 
the end, each group collaboratively solves an assignment that involves all topics. The 
instructor collects the assignments and provides feedback. In TAPPS, students are 
paired and given a list of problems. One gets assigned the role of “problem solver”, 
the other becomes the “listener”. The problem solver tries to solve the problem while 
thinking aloud. The listener follows, identifies errors and asks questions. After 
solving a problem, they exchange roles and move on to the next problem. 

3.1 Groups, Roles and Run-Time Member Assignment 

In IMS LD, grouping participants can only be simulated by assigning them to prede-
fined, static roles. Roles are expected to be populated before the unit of learning starts 
and role membership does not change thereafter. In our approach, groups can be di-
rectly modelled, and assignment of participants to both groups and roles is possible at 
run-time. There are statically defined groups and dynamic groups, which are created 
at run-time according to certain constraints (e.g., preferred size). Static groups are 
defined by group elements, which reside in groups in the components part of the 
script (see Fig. 1). Each group has a name (title) and can optionally have information, 
for example regarding its purpose. A group-environment (referencing environment 
elements) can be specified to give a group its own “group space”, for example with 
communication facilities and shared material. In the JigSaw example, there would 
exist a group for each topic (the “expert group”) with the material provided in the 
respective group-environment. Sub-groups can be defined via nested group elements. 

The specification for creating dynamic groups and assigning participants to (static 
and dynamic) groups is located in grouping elements (see Fig. 1). A grouping consists 
of a set of groups and a mapping of participants to them. Groupings may be requested 
from an external provider (provided-grouping) or created at run-time (runtime-
grouping). The first option allows re-using groupings, which exist for example in the 
LMS running the script. For a runtime-grouping the partition specifies, into which 
groups participants should be grouped. This can be a static-group-set containing re-
ferences to existing group definitions or a dynamic-group-set with a set of constraints 
according to which groups are created automatically at run-time: The number-of-
groups can be constrained to an exact number, a range (from, to) and/or to be divisi-
ble-by a specific value. The group-size element can be used to express equivalent 
constraints, so for the pairing in the TAPPS example an exact value of 2 can be set. In 
addition, one can specify a set of proportions to create, for example, groups with the 
size ratios of 1:2:4. Dynamic groups are automatically named and sequentially num-
bered (group-names) by specifying a prefix and/or suffix string around a numbering of 
latin, roman or alphabetical style (e.g., “Group III”, “2. Gruppe”, “Grupo k”). 

The grouping-method defines how the participants are assigned to groups. For a 
manual assignment, a role has to be referenced, which will be tasked to perform it 
manually. With self-selected assignment participants can themselves choose in which 
group they would like to be: a direct assignment is immediate; in a prioritized as-
signment participants can attach numeric priorities to each group to mark their (least) 
favoured choice and will then be assigned by balancing their preferences. 
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A totally automatic assignment can be random. Another possibility is by-grouping-
service where a (possibly external) grouping service can be used to run a certain 
grouping-strategy with a set of parameter elements. This makes it possible to employ 
arbitrarily complex grouping algorithms and provide them with the required feature 
vector(s) of determinants. In the JigSaw example, where mixed groups are required, 
an algorithm could create them when provided with parameters detailing the relevant 
attributes (knowledge, interests, etc.) The automatic method by-existing-grouping can 
re-use the mapping of participants in existing-groups !represented by a grouping or a 
static-group-set! to create new groups. It is possible to distribute the members (ap-
proximately) equally over the new groups or concentrate them (i.e., keep them to-
gether). This is useful for example in JigSaw, where the JigSaw group members 
should be equally distributed across the groups representing the topics. With the 
method role-selectable, grouping methods can be specified, from which, at run-time, 
a member of the referenced role can choose one to perform the grouping. 

For a runtime-grouping a review can be defined, which will present members of a 
referenced role with a certain environment to allow reviewing the result of the group-
ing. Like for single groups, a group-environment can be defined. Each group will be 
provided with its own group space according to this definition, which can also be set 
for a provided-grouping. Should a (static) group already have a group space, then the 
two will be merged with the one defined in group taking precedence. 

The original definition of roles in IMS LD was kept, but a way has been added to 
specify how the assignment (i.e., “casting”) of participants to them is to be performed 
at run-time. Similar to grouping there is a casting element, which also resides in the 
method part of the script (see Fig. 1). Under roles-to-cast multiple roles can be refer-
enced, which will all get the same role-environment, if specified. The casting-method 
is similar to the grouping-method. With by-vote all eligible participants can vote (a) 
candidate(s) into a role either by a direct vote or prioritized by their preference to the 
candidates. The automatic by-casting-service method works like the by-grouping-
service as described above, with one addition: for each role, multiple role-
requirement elements can be used to specify criteria that prospective role members 
should fulfil. In JigSaw, this could contain information such as: the leader role should 
have an authority level above a certain threshold. Like for a grouping, a review can be 
defined for a casting as well. Depending on the scenario, not all roles can be cast at 
run-time, however. Any roles that need to be populated so that the learning-design can 
start must be referenced in the initial-roles element under learning-design. 

3.2 Properties and Run-Time Model 

Storing and accessing data inside a learning design using IMS LD is accomplished via 
properties. We have extended properties to account for groups and the need for col-
lections (lists, sets). Additionally, we have defined a run-time model and means to use 
it in expressions, giving adaptation rules access to the run-time state of a scenario.  
Groups can have a locgroup-property, which is local to the current run, as well as a 
globgroup-property, which is kept across runs. The owning group(s) need(s) to be 
specified in owner (see Fig. 1). 
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Fig. 1. Extensions to IMS LD (gray elements shown in following figures). 
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Static groups exist in every run and can have both local and global properties. Dy-
namically created groups can own only local properties, as the set of groups may 
change in every run. Groups of a provided-grouping may own global properties, 
which they keep as long as the external group exists. 

Some extensions not related to collaboration have been added to the property 
model as well. They apply to every type of property, even though in Fig. 1 they are 
only shown in the context of the locgroup-property. Property and property group 
specifications now feature an optional collection element, where the type (ordered list 
or unordered set) can be specified. The size defines the maximum number of elements 
to be either dynamic or fixed to the result of an expression. The resulting property 
(group) is a collection of its defined data type. In order to constrain the content of a 
property of type file, the restriction now supports mimeType as a restriction-type. It 
takes a comma-separated list of MIME types (e.g. “text/html, text/xml, text/plain”). 

IMS LD allows only very limited access to run-time information via operators like 
is-member-of-role, complete or time-unit-of-learning-started. Most run-time model-
ling requires properties, but these custom-made models are not standardized or readily 
re-usable across scripts. The addition of a well-defined run-time model makes it pos-
sible to access a large part of the state information of a running script. The run-time 
model is structured like the static learning design and every statically defined element 
and attribute can be accessed. References are automatically resolved and the respec-
tive elements appear to contain the referenced ones. In addition, a range of run-time-
only elements and attributes is added to the model (e.g., members in a learner role). 
One important (exclusively) run-time element, reachable for example via members, is 
person, which represents a participant. There is also a system element, which contains 
information about the run-time environment (e.g., current-datetime). 

To access information inside the run-time model, the element runtime-value was 
added under expression in the conditions part as a new type of operand and in the no-
value test operator. It expects a run-time model access expression following this syn-
tax: type[selector].property. The type corresponds to the names of top-level-elements 
like environment, learning-activity or group and specifies which element(s) to access. 
In cases where there is no common type (e.g., learner, staff) the following “virtual” 
types can be used: role, activity, property, condition. If there exist more elements of 
the requested type in the run-time model, the selector can filter them with a logical or 
positional expression. Possible logical operators are =, !=, <, <=, >, >=, & (and), | 
(or) and ! (not). Parentheses can be used to group terms, and the precedence rules of 
the ANSI C programming language apply. Properties of elements to be filtered are 
accessed as @property. Literal values need to be enclosed in quotes (e.g., role[@title 
= "leader"].members). Positional expressions with integer results can be used as zero-
based index in collections and do not need to be quoted (e.g., group[@id = 
"grp1"].members[2]). It is also possible to request collections, perform operations on 
them (see the end of this section), store them in collection properties (see above) or 
use them as parameters for adaptation actions (e.g., creating a group of participants 
which were retrieved from the run-time model). Selectors can contain nested run-time 
model access expressions. If the property in the expression is itself a structured ele-
ment, it can be further filtered. Nested elements are accessed via the dot operator. 
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For writing to the run-time model, everywhere in the information model where 
change-property-value is permitted, the new element change-runtime-value can be 
used. It requires a runtime-ref containing a run-time model access expression pointing 
to the property that should be set. The value comes from an operand element. 

Because the run-time model is dynamic, a new operator exists was introduced to 
check whether an object referenced by a run-time model access expression is present. 
When access to the run-time model is not guarded by an accompanying check with 
exists, accessing non-existing elements can result in exceptions. Therefore, script 
authors need mechanisms to detect exceptions and react accordingly. The specifica-
tion of these exception handling mechanisms will be addressed in future work. 

The following obsolete operators of the original IMS LD specification could be 
removed, because their results are now contained in the run-time model: is-member-
of-role, users-in-role, time-unit-of-learning-started, datetime-activity-started, current-
datetime and complete. The standard arithmetic modulo operator has been introduced, 
as well as a range of set (contains, union, intersection, complement) and temporal 
(precedes, meets, overlaps, equals, includes) operators, which have been omitted from 
the diagram for reasons of space efficiency. To support collections, a count operator 
for getting the number of elements has been added. The number of characters in a text 
string can be determined with the new length operator. 

3.3 Services 

The definition of services in the IMS LD specification has been criticized as being 
rather inflexible [15]. Our approach builds upon the Generic Service Integration ap-
proach of Valentin et al. [20] and provides three ways to specify a service: direct 
reference (URI), type selection (by a descriptor like service:chat) or constraint-based 
(requesting for example a direct, synchronous, speech-oriented communication ser-
vice for the thinking aloud sessions in the TAPPS example). As the service specifica-
tion is, very important in general, albeit not of direct relevance to the immediate sup-
port of collaboration in a learning design, we will not go deeper into this topic here. 

3.4 Activities, Artefacts, Event-Handling and Actions 

Grouping participants and casting them into roles conceptually fits neither in a learn-
ing-activity nor in a support-activity. Therefore, we have created two new activity 
types. A way to specify artefacts as one of the basic building blocks of collaborative 
work has been added as well. In order to support fine-grained means to react to run-
time events, a mechanism to define event handling and perform actions is proposed. 

Like for learning activities, there needs to be an element for describing acts of 
grouping participants or casting them into roles, that can be referenced when defining 
the sequencing of a learning design. We have extended the IMS LD specification by a 
grouping-activity and a casting-activity (see Fig. 2). Both reference a grouping or a 
casting respectively, can use a certain environment and have an activity-description. 
Their mode can be set to either “start from scratch” (create-grouping / cast-roles) or 
to add-members or remove-members, where existing groupings / castings need to be 
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expanded or shrunk. These activities allow for creating groups and populating groups 
and roles. Disbanding groups and removing roles is part of the adaptation actions that 
will be defined in future iterations of this extension to IMS LD. 

 
Fig. 2. Extensions to the activities element of IMS LD. 

In the original IMS LD specification, the results of work performed by participants 
are stored in and retrieved from properties. Access to them is possible via any refer-
enced XHTML document through the use of special global-elements tags. The script 
itself, however, did not contain any explicit information about which result had to be 
created in which activity, and where else this result was used. In our approach, arte-
facts can be specifically defined in a learning-activity. An artefact has a title and the 
author can specify whether the artefact is a collection, or whether any other restriction 
applies (see definition of properties). If an artefact should be visible in a certain ac-
tivity, it can be referenced as a used-artefact. An output artefact can be set during the 
activity, one of type input is only shown, and input-output artefacts can be both ac-
cessed and changed. Artefacts are owned by the entity that created them (participant 
or group). The default permissions (read, write, append) belong to the owner. How-
ever, it is also possible to give those permissions to either nobody, everybody in the 
current activity or members of a certain role. In the JigSaw example, students would 
create an output artefact as a solution to the assignment in one activity. In the next 
activity, this artefact could be used as an input artefact, and the instructor role could 
be given read access. The feedback artefact created by the instructor would be han-
dled in a similar way. Finally, like properties, an artefact may be used in an expres-
sion. It can be either referenced directly as an operand via an artefact-ref or its value 
be read when referencing it inside the artefact-value element (see Fig. 2). 

With the on-completion element in IMS LD one can specify that certain actions 
should be performed (e.g., change-property-value) when something (e.g., an activity) 
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is completed. Two restrictions exist in this approach: it is not possible to perform an 
action when something starts (or some other event occurs); and, there are actions 
(e.g., show and hide for controlling the visibility of elements) that cannot be triggered. 
The first restriction was tackled by replacing on-completion with event-handler ele-
ments, each able to handle a certain event (e.g., started, completed, artefact-delivered, 
…). The second restriction was resolved by collecting common actions in an action 
element in the then (and else) part of a condition (see Fig. 1). In an event-handler, any 
of those actions may be triggered. Depending on the element in which the handler is 
defined, additional actions (e.g., complete-activity) can be defined. The list of possible 
events is also specific to the surrounding element. Every event-handler can also have 
a filter with an expression to specify the exact conditions when it triggers actions. In 
the expression, the run-time event can be accessed via the special construct $event. 
Each event has a timestamp property and, depending on its type, it may have addi-
tional properties (e.g., activity: to access the activity that has completed). A complete 
list of events and their properties cannot be provided here due to lack of space. 

Comprehensive support for adaptive interventions requires a large number of ac-
tions in order to change most parts of the run-time model and effect changes on the 
execution of the learning design. A number of actions has already been added to ad-
dress shortcomings of IMS LD. Event handlers of a learning-activity can for example 
trigger a rotate-artefact action to effect a circular exchange of the referenced artefact 
among the entities (single participants or whole groups) currently performing the 
activity. The rotate-roles action rotates roles among participants of a certain casting 
(which must have assigned more than one role) or the members of a set of groups. In 
TAPPS, for each pair there would be a casting for the “problem solver” and “listener” 
roles. With the rotate-roles action, the roles can be switched between the members of 
each pair. In addition to these two examples, many other actions need to be defined, 
for example for creating and removing roles, groups, environments and activities, 
adding to and removing members from roles and groups, managing properties and 
altering the sequencing of activities, to name just a few. 

3.5 Sequencing 

For complex scenarios and even more so for adaptive collaboration scripts, which 
require flexible execution flows, the sequencing semantics of the original IMS LD 
specification have been found to be constraining [21] and difficult to understand [22]. 
Due to the lack of state-of-the art concurrency control features, one would often have 
to resort to custom-made mechanisms employing properties and conditions. In our 
approach, we have aimed at simplifying the constructs needed for sequencing, while 
at the same time supporting groups, allowing arbitrary transitions between activities 
and employing flexible concurrency controls from the area of workflow management. 

The original metaphor of a theatrical play has been replaced by the following con-
cept (see also Fig. 3): in a story there are scene elements, sequenced by directional 
transitions connecting them. Each scene has actors defined by their role, who perform 
a task: an activity or alternatively a nested story. In addition to the environment in the 
activity, one can be specified for each scene as well, possibly as an override. 
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Fig. 3. Elements for sequencing activities. 

The multiplicity of a scene is a central concept of our approach. When a scene is 
run in a single instance (one-for-all), all actors share the same activity and, through it, 
environment and artefacts. Alternatively, a scene can be split into multiple instances: 
one-per-person or one-per-group with a respective reference to a grouping. For Jig-
Saw, the reading and expert group scenes would be split by topic grouping, whereas 
the topic presentations and assignment solving scenes would be split to give each 
JigSaw group a separate instance. TAPPS pairs also act in individual instances. By 
specifying same-as, the multiplicity is inherited from the referenced scene. The multi-
plicity also defines how artefacts are aggregated or distributed: artefacts created in the 
activity of a multi-instance scene are collected and made available when they are used 
in the activity of a subsequent single-instance scene. Artefacts originating from a 
single-instance scene and used in a multi-instance scene, are copied to each instance. 
Other transfers are only possible when the multiplicity of both scenes matches. 

Our model of sequencing has been influenced by common workflow control-flow 
patterns [23]. These represent generally acknowledged solutions to frequently en-
countered sequencing requirements in flow-oriented process models. Torres and Do-
dero [21] have found IMS LD to be lacking with regard to expressing certain work-
flow patterns. By modelling the patterns’ basic building blocks as well as supporting 
some of them directly, improved support could be attained. Individual scene elements 
are connected by transitions to form a general graph. This provides maximum flexi-
bility and makes it possible to model loops (required for example in the TAPPS scen-
ario, see Fig. 4), which are not supported by IMS LD. As discussed by Gutierrez-
Santos et al. [24], we also needed to amend the original semantics, so that activities 
can be completed multiple times when they are instantiated more than once in a loop. 

Depending on the flow split mode, set via continue-with in sequencing, elements of 
unconditional-transition or conditional-transition are needed. The latter require an if 
element with a logical expression that evaluates to true to activate the transition. Both 
types can lead either to a referenced scene or (through the special value END) to the 
end of the current story. Using the flow split mode of all-following splits the flow to 
all outgoing transitions (AND-split). With single-following, the flow follows the first 
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conditional-transition that has been set active by its condition, or alternatively the 
mandatory unconditional-transition (XOR-split). In multiple-following mode, the 
execution flow continues along all active transitions, resulting in multiple outgoing 
flows (OR-join). Conversely, with the element wait-for the mode of synchronizing 
incoming execution flows can be specified: It is optional by default and all-preceding 
is assumed, which synchronizes all incoming flows (AND-join). With single-
preceding, the flow continues after arriving from a single incoming transition (XOR-
join). The multiple-preceding mode has the following semantics: execution continues 
after one or more incoming flows have been received and there is no incoming transi-
tion left, over which another flow could arrive in the future (OR-join). This last mode, 
albeit useful and used for implementing a number of workflow patterns, is not 
straightforward to implement because it requires non-local semantics [23]. 

 
Fig. 4. Simple representation of TAPPS [19] with new sequencing semantics. 

By default, an instance of a scene (be it the only one or one of multiple) completes 
when its activity or nested sub-story completes. In the complete-instance element, 
however, multiple completion criteria can be defined. The options have been carried 
over from the IMS LD element act, and a new element has been added: role-choice 
gives members of the specified role a possibility for manual intervention. These op-
tions are also valid choices for the complete-scene predicate element. Additionally, 
with when-instances-completed one can specify how many or what percentage of 
instances are required for scene completion. This might be useful to express the fol-
lowing scenario: learners solve a problem and as soon as 80% have solved it, the 
whole class moves on to look at common solutions. 

4 Summary and Outlook 

In this paper, we have presented extensions to the IMS Learning Design specification 
that aim to better express collaboration scripts and allow for more comprehensive 
adaptation to individual learners and groups. The new elements of the information 
model support explicit modelling of (static) groups, their properties and group envi-
ronments. Assignment of participants to static, as well as to dynamically created 
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groups can be controlled via a number of policies; the same is true for the assignment 
to roles. Activity types for these grouping and role casting operations have been 
introduced. The extensions support a run-time model, giving access to all elements of 
the script and pure run-time data, such as information on participants, while it is run-
ning. Access to the run-time model is possible in expressions, making some operators 
obsolete. New set and temporal operators have been added. The service specification 
has been made more flexible to account for the plethora of possible services in to-
day’s learning management systems. Artefacts can be modelled explicitly, may be 
assigned a data type, and have restrictions associated with them, like properties. In the 
context of a learning activity, artefacts may be used as input, output or transient ele-
ments, optionally with access permissions (read, write, append) for different partici-
pants. An extensible event handling specification with event-condition-action (ECA) 
semantics has been introduced, and new actions (e.g., rotate artefacts, rotate roles) for 
adapting the scenario at run-time have been defined. Finally, the original sequencing 
model has been replaced with a more flexible one, which supports running multiple 
instances of activities according to the social plane (class, group, individual), offers 
(conditional) transitions for arbitrary sequencing of activities and uses workflow se-
mantics for synchronizing and splitting the flow of action. 

For future iterations of this information model, we plan to fine-tune its current fea-
tures and provide new ones to enhance its expressiveness towards improved adap-
tivity. First, the run-time model needs to be fully and thoroughly specified, providing 
clear semantics for every element, its (data) type and multiplicity and introducing a 
temporal dimension to allow access to historic state information. Exception handling 
mechanisms need to be introduced to protect against script failure when non-existing 
elements of the run-time model are accessed. The run-time model needs to be made 
accessible from the client side (assuming the script is “executed” on the server side), 
in a way that conceptually extends (and ideally replaces) the global-elements of IMS 
LD. The main idea is to provide an implementation-independent interface specifica-
tion similar to the SCORM run-time API [25], to allow for bi-directional data transfer 
between the learning design engine and the client (application). Another requirement 
is access from within the learning design script to external models like, for example, 
the personal learner models of participants in the learning management system. Mak-
ing these models accessible via the respective element in the run-time model (e.g., 
person) would render them immediately usable by the mechanisms described so far. 

For effecting adaptations, more actions are needed, especially for re-sequencing 
scenes, invoking system facilities (e.g., notifying participants) and manipulating the 
system state (e.g., controlling services). As suggested by Miao and Hoppe [11], a way 
to create expressions and action declarations needs to be modelled, in order to allow 
re-using sets of actions and complicated expressions. To support provisional adapta-
tion decisions, a mechanism must exist to specify that certain participants (e.g., the 
instructor) should be consulted about whether to apply a specific adaptation or not. 
One of the benefits of such a model is that the instructor does not need to be present at 
all times, but can still monitor and control the scenario. Finally, the event model needs 
to be made more fine-grained to capture all possible events that occur during the run 
of a learning design and may be relevant for adaptation rules. This includes a basic 
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event model for the different service types, so that participants’ actions in them (e.g., 
chat entered, message posted, wiki page edited) can be reacted upon. 

Once we have arrived at a mature specification that includes the additional ele-
ments described above, we intend to integrate a prototypical implementation of it into 
the Sakai e-learning platform [26]. This will then be employed in real-world student-
based evaluations, where we will seek to establish the impact of the types of adaptive 
support that the new specification enables on the collaborative learning process.  
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