
Towards Improved Support for Adaptive Collaboration
Scripting in IMS LD

Florian König and Alexandros Paramythis

Johannes Kepler University
Institute for Information Processing and Microprocessor Technology (FIM)

Altenbergerstraße 69, A-4040 Linz, Austria
{koenig, alpar}@fim.uni-linz.ac.at

Abstract. The IMS Learning Design specification is acknowledged as the most
promising option available presently for the implementation of collaboration
scripts in e-learning. Nevertheless, it has been criticized for a number of short-
comings, and, specifically for its lack of support for constructs that would en-
able comprehensive adaptive support to be effected over the collaborative learn-
ing process. In this paper we propose concrete extensions to the specification,
which build upon prior work and address a wide range of problems and omis-
sions. The most important modifications introduced include: explicit support for
groups, and run-time member assignment; addition of a run-time model; intro-
duction of concrete artefacts; introduction of an event-handling model; and, a
modified sequencing and script organization model.

Keywords: collaborative learning, adaptive support, learning design, IMS LD,
extension, sequencing, grouping, artefact

1 Introduction

It is widely acknowledged that a large part of the success of the learning process lies
with the opportunities of learners to interact with others: group work, exchanging
ideas, and helping each other (thereby learning oneself) are standard “classroom”
practices [1]. The establishment of online learning as a viable alternative to “tradi-
tional” approaches has resulted in the progressive lifting of geographical, temporal
and other barriers to learning; but, at the same time, it has introduced obstacles in
approaching learning as a social activity, due to the limited contact between learners
that absence of physical collocation inevitably incurs [2].

The field of Computer-Supported Collaborative Learning (CSCL), which first ap-
peared as a specialized direction in the area of Computer-Supported Collaborative
Work (CSCW), is at the dichotomy between CSCW and e-learning, and seeks to
support the various forms of collaborative learning in online settings [3]. A core focus
of CSCL work is on ways in which collaborative learning supported by technology
can enhance peer interaction and work in groups, and ways in which collaboration
and technology facilitate sharing of knowledge and expertise among community

2 Florian König and Alexandros Paramythis

members. A promising axis of work within CSCL is the scaffolding of productive
interactions between learners by specifying in detail the ‘collaboration’ contract in a
scenario [1], in so-called CSCL scripts [4]. The later are external, computational rep-
resentations of collaboration scripts, which are sets of instructions specifying how the
members of a group should interact and collaborate to solve a particular problem [5].

The work reported in this paper falls within a line of research that seeks to further
the principles underlying the use of CSCL scripts to guide the collaborative learning
process, by introducing the dimension of adaptivity [6]. In this context, adaptivity
concerns the provision of automated support within learning processes that involve
communication between multiple learners (and, therefore, social interaction), and,
potentially, collaboration towards common objectives. Furthermore, the support pro-
vided should be tailored to the specific requirements of both the participating indi-
viduals, and the social units in which they are involved (e.g., groups undertaking
course projects). The goal of this line of work can then be stated as enabling the in-
corporation within CSCL scripts of constructs that would allow for expressing the
types of adaptive support that a system can automatically offer to learners in the con-
text of collaborative learning activities.

Unfortunately, the main starting point towards the above stated goal, namely a
general modelling language for formalising collaboration scripts, is still missing [4].
At present, the most promising effort in that direction is the IMS Learning Design
(IMS LD) specification [7], which evolved out of the Educational Modelling Lan-
guage developed by the Open University of the Netherlands [8]. IMS LD is a learning
process modelling language, fashioned on the theatrical play metaphor (e.g., with
plays, actors, roles, etc.), and intended to formally describe any design of teaching-
learning processes for a wide range of pedagogical approaches [8, 9].

IMS LD has been criticized both for its lack of support for sufficiently expressing
aspects of the collaborative learning process [4], and for the absence of constructs that
are vital in supporting adaptivity in scripts [10]. This paper builds upon that criticism,
as well as on proposals for extensions of the specification that have appeared in the
literature (discussed in the next section), to propose a comprehensive set of modifica-
tions and additions to IMS LD, aiming to address many of its general shortcomings
and lay the foundations for improved support for adaptivity in CSCL scripts.

The rest of the paper is structured as follows. Section 2 presents an account of
shortcomings of IMS LD and proposals for extensions that have appeared in the lit-
erature. Section 3 outlines the modifications and extensions proposed, relating them to
two exemplary adaptive collaborative learning scenarios. Finally, section 4 sum-
marizes the goals that can be achieved through the proposed amendments, and pro-
vides an outlook on issues that we want to address in future iterations.

2 Related Work

The IMS Learning Design modelling language has its strengths in specifying person-
alized and asynchronous cooperative learning. In the area of (adaptive) collaboration
scripting, however, a number of shortcomings have been identified [4]: Modelling

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 3

multiple groups independent from their role(s) is possible in IMS LD only with limi-
tations, and manipulating groups at run-time is not supported. Miao and Hoppe [11]
introduced an extension for modelling groups, which relies on newly defined oper-
ations for creating and deleting groups, member management and run-time state quer-
ies. However, they do not provide a high-level specification mechanism for run-time
grouping, which would make it easy for both authors and adaptation engines to ex-
press and understand the semantics of group (membership) management.

In IMS LD there are also no means to specify how the members of a group interact
within an activity, other than through a so-called “conference service” [12].
Hernández-Leo et al. [13] proposed the “groupservice” for specifying group collabor-
ation spaces with communication facilities, floor control, support for different interac-
tion paradigms and awareness functionality. This approach, however, suffers from the
same limitations as the original IMS LD specification: the actual collaboration hap-
pens outside the script’s specification and control. Miao et al. [4] proposed running
multiple instances of activities, if required by the respective social plane (one per
role/group/person) to allow, for example, groups to work in parallel on the same prob-
lem. Their approach, however, is still not geared towards maximum expressive flexi-
bility. Even with these multiple instance activities, IMS LD provides insufficient
support for (collective) artefacts [4] and no straightforward mechanism to model the
flow of artefacts between activities [14]. Therefore, proposed already to some extent
by Caeiro et al. [15], Miao et al. [4] also defined a possible model for artefacts, where
the data flow is derived from the specification of creation-/consume- activities.

IMS LD’s activity sequencing capabilities have been described as “quite simplis-
tic” [16] and fine-grained splitting or synchronization of the control flow is not read-
ily expressible [4]. Caeiro et al. [15] addressed some shortcomings by introducing a
different model for the role-part in IMS LD. It would link elements according to the
guiding question of who (roles) does what (act) in which way (operational role) where
(environment) and towards which objective (outcome). The operational role would be
independent from a person’s roles in order to make varying responsibilities possible.
They also proposed having conditional transitions between acts to allow more com-
plex sequencing. Miao et al. [4] reiterated the need for advanced transition and rout-
ing constructs guided by approaches in the area of workflow management.

The features discussed until now form the basis for collaboration scripting. With
respect to explicit support for adaptivity, IMS LD is missing a model of the run-time
state of the script, and an event model, and has only a limited number of functions to
modify aspects of the collaboration process while the script is running [10]. Para-
mythis and Christea [17] present some more requirements for adaptation languages in
the area of collaboration support, none of which are supported by IMS LD: workflow-
or process- based reasoning, temporal operators, policies for grouping and clustering,
invoking system facilities / manipulating system state and support for “provisional”
adaptation decisions. In our approach, we address a number of these requirements and
lay the foundations for supporting more in the future. The following section describes
our proposed extensions to IMS LD. We aimed to cover the aforementioned collabor-
ation support requirements and the requirements with regard to adaptivity.

4 Florian König and Alexandros Paramythis

3 Proposed Extensions to IMS LD

Our approach combines ideas from many of the extensions proposed in related work,
puts them into a coherent information model and introduces additional features that
are intended to better support adaptivity. It encompasses the modelling of groups, run-
time group and role membership assignment (section 3.1), group properties and prop-
erty collections, a run-time model, an adapted and extended set of operators (section
3.2), an extensible modelling of services (section 3.3), artefacts, event handling, and
new actions for effecting the scenario at run-time (section 3.4) as well as a flexible
sequencing model (section 3.5). The relevant changes are depicted in diagrams of the
information model, to be found in Fig. 1, 2 and 3, and resembling the diagrams in the
original IMS LD specification [7]: child elements are either in a sequential (orthogo-
nal connectors) or a choice (angular connectors) grouping; they are optional (question
mark symbol) or required once (no symbol), zero or more times (star symbol), or one
or more times (plus symbol). In the process of making the diagrams as space-efficient
as possible, the order of the elements could not always be kept the same as in the
textual description. Due to the complexity of both the original and the extended
model, it is advisable to follow the diagrams in parallel to the explanations.

To explain our extensions in the context of real examples, we will use two well-
known collaborative learning scenarios, JigSaw [18] and Thinking Aloud Pair Prob-
lem Solving (TAPPS) [19], that are often implemented as CSCL scripts. Both exam-
ples require features that cannot be modelled with the original IMS LD specification.
Table 1 summarizes the unique requirements of each scenario, the limitations of IMS
LD, and in which section the extension supporting the requirement is proposed.

Table 1. Limitations of IMS LD support for unique requirements of scenaria.

Scenario Requirement IMS LD limitations Extension
JigSaw run-time grouping by characteristics no concept of groups section 3.1
 run-time casting of group leader roles assigned before start section 3.1
 (group) collaboration contexts not in process model

no group workspaces
section 3.1
and 3.5

 explicit artefacts, flow of artefacts only properties section 3.4
 flexible event handling (e.g., detect-

ing when artefact delivered)
unstructured set of condi-
tions with no semantics

section 3.4

TAPPS service selection by criteria only 3 types of “confer-
ence” service specified

section 3.3

 role rotation between participants roles fixed during run section 3.4
 multiple executions of activity (loop) rigid sequencing model section 3.5

In JigSaw, learners are grouped into mixed (ability, knowledge, …) groups of 5-6

members and a group leader is appointed. The material is split into 5-6 topics and
each group member gets assigned to one. Students read their material individually and
then come together in “expert groups” (one per topic), where they discuss their parts
and how they are going to present them to their JigSaw groups. The students then re-

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 5

unite in the JigSaw groups, present their topic, and group peers can ask questions. In
the end, each group collaboratively solves an assignment that involves all topics. The
instructor collects the assignments and provides feedback. In TAPPS, students are
paired and given a list of problems. One gets assigned the role of “problem solver”,
the other becomes the “listener”. The problem solver tries to solve the problem while
thinking aloud. The listener follows, identifies errors and asks questions. After
solving a problem, they exchange roles and move on to the next problem.

3.1 Groups, Roles and Run-Time Member Assignment

In IMS LD, grouping participants can only be simulated by assigning them to prede-
fined, static roles. Roles are expected to be populated before the unit of learning starts
and role membership does not change thereafter. In our approach, groups can be di-
rectly modelled, and assignment of participants to both groups and roles is possible at
run-time. There are statically defined groups and dynamic groups, which are created
at run-time according to certain constraints (e.g., preferred size). Static groups are
defined by group elements, which reside in groups in the components part of the
script (see Fig. 1). Each group has a name (title) and can optionally have information,
for example regarding its purpose. A group-environment (referencing environment
elements) can be specified to give a group its own “group space”, for example with
communication facilities and shared material. In the JigSaw example, there would
exist a group for each topic (the “expert group”) with the material provided in the
respective group-environment. Sub-groups can be defined via nested group elements.

The specification for creating dynamic groups and assigning participants to (static
and dynamic) groups is located in grouping elements (see Fig. 1). A grouping consists
of a set of groups and a mapping of participants to them. Groupings may be requested
from an external provider (provided-grouping) or created at run-time (runtime-
grouping). The first option allows re-using groupings, which exist for example in the
LMS running the script. For a runtime-grouping the partition specifies, into which
groups participants should be grouped. This can be a static-group-set containing re-
ferences to existing group definitions or a dynamic-group-set with a set of constraints
according to which groups are created automatically at run-time: The number-of-
groups can be constrained to an exact number, a range (from, to) and/or to be divisi-
ble-by a specific value. The group-size element can be used to express equivalent
constraints, so for the pairing in the TAPPS example an exact value of 2 can be set. In
addition, one can specify a set of proportions to create, for example, groups with the
size ratios of 1:2:4. Dynamic groups are automatically named and sequentially num-
bered (group-names) by specifying a prefix and/or suffix string around a numbering of
latin, roman or alphabetical style (e.g., “Group III”, “2. Gruppe”, “Grupo k”).

The grouping-method defines how the participants are assigned to groups. For a
manual assignment, a role has to be referenced, which will be tasked to perform it
manually. With self-selected assignment participants can themselves choose in which
group they would like to be: a direct assignment is immediate; in a prioritized as-
signment participants can attach numeric priorities to each group to mark their (least)
favoured choice and will then be assigned by balancing their preferences.

6 Florian König and Alexandros Paramythis

A totally automatic assignment can be random. Another possibility is by-grouping-
service where a (possibly external) grouping service can be used to run a certain
grouping-strategy with a set of parameter elements. This makes it possible to employ
arbitrarily complex grouping algorithms and provide them with the required feature
vector(s) of determinants. In the JigSaw example, where mixed groups are required,
an algorithm could create them when provided with parameters detailing the relevant
attributes (knowledge, interests, etc.) The automatic method by-existing-grouping can
re-use the mapping of participants in existing-groups !represented by a grouping or a
static-group-set! to create new groups. It is possible to distribute the members (ap-
proximately) equally over the new groups or concentrate them (i.e., keep them to-
gether). This is useful for example in JigSaw, where the JigSaw group members
should be equally distributed across the groups representing the topics. With the
method role-selectable, grouping methods can be specified, from which, at run-time,
a member of the referenced role can choose one to perform the grouping.

For a runtime-grouping a review can be defined, which will present members of a
referenced role with a certain environment to allow reviewing the result of the group-
ing. Like for single groups, a group-environment can be defined. Each group will be
provided with its own group space according to this definition, which can also be set
for a provided-grouping. Should a (static) group already have a group space, then the
two will be merged with the one defined in group taking precedence.

The original definition of roles in IMS LD was kept, but a way has been added to
specify how the assignment (i.e., “casting”) of participants to them is to be performed
at run-time. Similar to grouping there is a casting element, which also resides in the
method part of the script (see Fig. 1). Under roles-to-cast multiple roles can be refer-
enced, which will all get the same role-environment, if specified. The casting-method
is similar to the grouping-method. With by-vote all eligible participants can vote (a)
candidate(s) into a role either by a direct vote or prioritized by their preference to the
candidates. The automatic by-casting-service method works like the by-grouping-
service as described above, with one addition: for each role, multiple role-
requirement elements can be used to specify criteria that prospective role members
should fulfil. In JigSaw, this could contain information such as: the leader role should
have an authority level above a certain threshold. Like for a grouping, a review can be
defined for a casting as well. Depending on the scenario, not all roles can be cast at
run-time, however. Any roles that need to be populated so that the learning-design can
start must be referenced in the initial-roles element under learning-design.

3.2 Properties and Run-Time Model

Storing and accessing data inside a learning design using IMS LD is accomplished via
properties. We have extended properties to account for groups and the need for col-
lections (lists, sets). Additionally, we have defined a run-time model and means to use
it in expressions, giving adaptation rules access to the run-time state of a scenario.
Groups can have a locgroup-property, which is local to the current run, as well as a
globgroup-property, which is kept across runs. The owning group(s) need(s) to be
specified in owner (see Fig. 1).

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 7

Fig. 1. Extensions to IMS LD (gray elements shown in following figures).

8 Florian König and Alexandros Paramythis

Static groups exist in every run and can have both local and global properties. Dy-
namically created groups can own only local properties, as the set of groups may
change in every run. Groups of a provided-grouping may own global properties,
which they keep as long as the external group exists.

Some extensions not related to collaboration have been added to the property
model as well. They apply to every type of property, even though in Fig. 1 they are
only shown in the context of the locgroup-property. Property and property group
specifications now feature an optional collection element, where the type (ordered list
or unordered set) can be specified. The size defines the maximum number of elements
to be either dynamic or fixed to the result of an expression. The resulting property
(group) is a collection of its defined data type. In order to constrain the content of a
property of type file, the restriction now supports mimeType as a restriction-type. It
takes a comma-separated list of MIME types (e.g. “text/html, text/xml, text/plain”).

IMS LD allows only very limited access to run-time information via operators like
is-member-of-role, complete or time-unit-of-learning-started. Most run-time model-
ling requires properties, but these custom-made models are not standardized or readily
re-usable across scripts. The addition of a well-defined run-time model makes it pos-
sible to access a large part of the state information of a running script. The run-time
model is structured like the static learning design and every statically defined element
and attribute can be accessed. References are automatically resolved and the respec-
tive elements appear to contain the referenced ones. In addition, a range of run-time-
only elements and attributes is added to the model (e.g., members in a learner role).
One important (exclusively) run-time element, reachable for example via members, is
person, which represents a participant. There is also a system element, which contains
information about the run-time environment (e.g., current-datetime).

To access information inside the run-time model, the element runtime-value was
added under expression in the conditions part as a new type of operand and in the no-
value test operator. It expects a run-time model access expression following this syn-
tax: type[selector].property. The type corresponds to the names of top-level-elements
like environment, learning-activity or group and specifies which element(s) to access.
In cases where there is no common type (e.g., learner, staff) the following “virtual”
types can be used: role, activity, property, condition. If there exist more elements of
the requested type in the run-time model, the selector can filter them with a logical or
positional expression. Possible logical operators are =, !=, <, <=, >, >=, & (and), |
(or) and ! (not). Parentheses can be used to group terms, and the precedence rules of
the ANSI C programming language apply. Properties of elements to be filtered are
accessed as @property. Literal values need to be enclosed in quotes (e.g., role[@title
= "leader"].members). Positional expressions with integer results can be used as zero-
based index in collections and do not need to be quoted (e.g., group[@id =
"grp1"].members[2]). It is also possible to request collections, perform operations on
them (see the end of this section), store them in collection properties (see above) or
use them as parameters for adaptation actions (e.g., creating a group of participants
which were retrieved from the run-time model). Selectors can contain nested run-time
model access expressions. If the property in the expression is itself a structured ele-
ment, it can be further filtered. Nested elements are accessed via the dot operator.

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 9

For writing to the run-time model, everywhere in the information model where
change-property-value is permitted, the new element change-runtime-value can be
used. It requires a runtime-ref containing a run-time model access expression pointing
to the property that should be set. The value comes from an operand element.

Because the run-time model is dynamic, a new operator exists was introduced to
check whether an object referenced by a run-time model access expression is present.
When access to the run-time model is not guarded by an accompanying check with
exists, accessing non-existing elements can result in exceptions. Therefore, script
authors need mechanisms to detect exceptions and react accordingly. The specifica-
tion of these exception handling mechanisms will be addressed in future work.

The following obsolete operators of the original IMS LD specification could be
removed, because their results are now contained in the run-time model: is-member-
of-role, users-in-role, time-unit-of-learning-started, datetime-activity-started, current-
datetime and complete. The standard arithmetic modulo operator has been introduced,
as well as a range of set (contains, union, intersection, complement) and temporal
(precedes, meets, overlaps, equals, includes) operators, which have been omitted from
the diagram for reasons of space efficiency. To support collections, a count operator
for getting the number of elements has been added. The number of characters in a text
string can be determined with the new length operator.

3.3 Services

The definition of services in the IMS LD specification has been criticized as being
rather inflexible [15]. Our approach builds upon the Generic Service Integration ap-
proach of Valentin et al. [20] and provides three ways to specify a service: direct
reference (URI), type selection (by a descriptor like service:chat) or constraint-based
(requesting for example a direct, synchronous, speech-oriented communication ser-
vice for the thinking aloud sessions in the TAPPS example). As the service specifica-
tion is, very important in general, albeit not of direct relevance to the immediate sup-
port of collaboration in a learning design, we will not go deeper into this topic here.

3.4 Activities, Artefacts, Event-Handling and Actions

Grouping participants and casting them into roles conceptually fits neither in a learn-
ing-activity nor in a support-activity. Therefore, we have created two new activity
types. A way to specify artefacts as one of the basic building blocks of collaborative
work has been added as well. In order to support fine-grained means to react to run-
time events, a mechanism to define event handling and perform actions is proposed.

Like for learning activities, there needs to be an element for describing acts of
grouping participants or casting them into roles, that can be referenced when defining
the sequencing of a learning design. We have extended the IMS LD specification by a
grouping-activity and a casting-activity (see Fig. 2). Both reference a grouping or a
casting respectively, can use a certain environment and have an activity-description.
Their mode can be set to either “start from scratch” (create-grouping / cast-roles) or
to add-members or remove-members, where existing groupings / castings need to be

10 Florian König and Alexandros Paramythis

expanded or shrunk. These activities allow for creating groups and populating groups
and roles. Disbanding groups and removing roles is part of the adaptation actions that
will be defined in future iterations of this extension to IMS LD.

Fig. 2. Extensions to the activities element of IMS LD.

In the original IMS LD specification, the results of work performed by participants
are stored in and retrieved from properties. Access to them is possible via any refer-
enced XHTML document through the use of special global-elements tags. The script
itself, however, did not contain any explicit information about which result had to be
created in which activity, and where else this result was used. In our approach, arte-
facts can be specifically defined in a learning-activity. An artefact has a title and the
author can specify whether the artefact is a collection, or whether any other restriction
applies (see definition of properties). If an artefact should be visible in a certain ac-
tivity, it can be referenced as a used-artefact. An output artefact can be set during the
activity, one of type input is only shown, and input-output artefacts can be both ac-
cessed and changed. Artefacts are owned by the entity that created them (participant
or group). The default permissions (read, write, append) belong to the owner. How-
ever, it is also possible to give those permissions to either nobody, everybody in the
current activity or members of a certain role. In the JigSaw example, students would
create an output artefact as a solution to the assignment in one activity. In the next
activity, this artefact could be used as an input artefact, and the instructor role could
be given read access. The feedback artefact created by the instructor would be han-
dled in a similar way. Finally, like properties, an artefact may be used in an expres-
sion. It can be either referenced directly as an operand via an artefact-ref or its value
be read when referencing it inside the artefact-value element (see Fig. 2).

With the on-completion element in IMS LD one can specify that certain actions
should be performed (e.g., change-property-value) when something (e.g., an activity)

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 11

is completed. Two restrictions exist in this approach: it is not possible to perform an
action when something starts (or some other event occurs); and, there are actions
(e.g., show and hide for controlling the visibility of elements) that cannot be triggered.
The first restriction was tackled by replacing on-completion with event-handler ele-
ments, each able to handle a certain event (e.g., started, completed, artefact-delivered,
…). The second restriction was resolved by collecting common actions in an action
element in the then (and else) part of a condition (see Fig. 1). In an event-handler, any
of those actions may be triggered. Depending on the element in which the handler is
defined, additional actions (e.g., complete-activity) can be defined. The list of possible
events is also specific to the surrounding element. Every event-handler can also have
a filter with an expression to specify the exact conditions when it triggers actions. In
the expression, the run-time event can be accessed via the special construct $event.
Each event has a timestamp property and, depending on its type, it may have addi-
tional properties (e.g., activity: to access the activity that has completed). A complete
list of events and their properties cannot be provided here due to lack of space.

Comprehensive support for adaptive interventions requires a large number of ac-
tions in order to change most parts of the run-time model and effect changes on the
execution of the learning design. A number of actions has already been added to ad-
dress shortcomings of IMS LD. Event handlers of a learning-activity can for example
trigger a rotate-artefact action to effect a circular exchange of the referenced artefact
among the entities (single participants or whole groups) currently performing the
activity. The rotate-roles action rotates roles among participants of a certain casting
(which must have assigned more than one role) or the members of a set of groups. In
TAPPS, for each pair there would be a casting for the “problem solver” and “listener”
roles. With the rotate-roles action, the roles can be switched between the members of
each pair. In addition to these two examples, many other actions need to be defined,
for example for creating and removing roles, groups, environments and activities,
adding to and removing members from roles and groups, managing properties and
altering the sequencing of activities, to name just a few.

3.5 Sequencing

For complex scenarios and even more so for adaptive collaboration scripts, which
require flexible execution flows, the sequencing semantics of the original IMS LD
specification have been found to be constraining [21] and difficult to understand [22].
Due to the lack of state-of-the art concurrency control features, one would often have
to resort to custom-made mechanisms employing properties and conditions. In our
approach, we have aimed at simplifying the constructs needed for sequencing, while
at the same time supporting groups, allowing arbitrary transitions between activities
and employing flexible concurrency controls from the area of workflow management.

The original metaphor of a theatrical play has been replaced by the following con-
cept (see also Fig. 3): in a story there are scene elements, sequenced by directional
transitions connecting them. Each scene has actors defined by their role, who perform
a task: an activity or alternatively a nested story. In addition to the environment in the
activity, one can be specified for each scene as well, possibly as an override.

12 Florian König and Alexandros Paramythis

Fig. 3. Elements for sequencing activities.

The multiplicity of a scene is a central concept of our approach. When a scene is
run in a single instance (one-for-all), all actors share the same activity and, through it,
environment and artefacts. Alternatively, a scene can be split into multiple instances:
one-per-person or one-per-group with a respective reference to a grouping. For Jig-
Saw, the reading and expert group scenes would be split by topic grouping, whereas
the topic presentations and assignment solving scenes would be split to give each
JigSaw group a separate instance. TAPPS pairs also act in individual instances. By
specifying same-as, the multiplicity is inherited from the referenced scene. The multi-
plicity also defines how artefacts are aggregated or distributed: artefacts created in the
activity of a multi-instance scene are collected and made available when they are used
in the activity of a subsequent single-instance scene. Artefacts originating from a
single-instance scene and used in a multi-instance scene, are copied to each instance.
Other transfers are only possible when the multiplicity of both scenes matches.

Our model of sequencing has been influenced by common workflow control-flow
patterns [23]. These represent generally acknowledged solutions to frequently en-
countered sequencing requirements in flow-oriented process models. Torres and Do-
dero [21] have found IMS LD to be lacking with regard to expressing certain work-
flow patterns. By modelling the patterns’ basic building blocks as well as supporting
some of them directly, improved support could be attained. Individual scene elements
are connected by transitions to form a general graph. This provides maximum flexi-
bility and makes it possible to model loops (required for example in the TAPPS scen-
ario, see Fig. 4), which are not supported by IMS LD. As discussed by Gutierrez-
Santos et al. [24], we also needed to amend the original semantics, so that activities
can be completed multiple times when they are instantiated more than once in a loop.

Depending on the flow split mode, set via continue-with in sequencing, elements of
unconditional-transition or conditional-transition are needed. The latter require an if
element with a logical expression that evaluates to true to activate the transition. Both
types can lead either to a referenced scene or (through the special value END) to the
end of the current story. Using the flow split mode of all-following splits the flow to
all outgoing transitions (AND-split). With single-following, the flow follows the first

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 13

conditional-transition that has been set active by its condition, or alternatively the
mandatory unconditional-transition (XOR-split). In multiple-following mode, the
execution flow continues along all active transitions, resulting in multiple outgoing
flows (OR-join). Conversely, with the element wait-for the mode of synchronizing
incoming execution flows can be specified: It is optional by default and all-preceding
is assumed, which synchronizes all incoming flows (AND-join). With single-
preceding, the flow continues after arriving from a single incoming transition (XOR-
join). The multiple-preceding mode has the following semantics: execution continues
after one or more incoming flows have been received and there is no incoming transi-
tion left, over which another flow could arrive in the future (OR-join). This last mode,
albeit useful and used for implementing a number of workflow patterns, is not
straightforward to implement because it requires non-local semantics [23].

Fig. 4. Simple representation of TAPPS [19] with new sequencing semantics.

By default, an instance of a scene (be it the only one or one of multiple) completes
when its activity or nested sub-story completes. In the complete-instance element,
however, multiple completion criteria can be defined. The options have been carried
over from the IMS LD element act, and a new element has been added: role-choice
gives members of the specified role a possibility for manual intervention. These op-
tions are also valid choices for the complete-scene predicate element. Additionally,
with when-instances-completed one can specify how many or what percentage of
instances are required for scene completion. This might be useful to express the fol-
lowing scenario: learners solve a problem and as soon as 80% have solved it, the
whole class moves on to look at common solutions.

4 Summary and Outlook

In this paper, we have presented extensions to the IMS Learning Design specification
that aim to better express collaboration scripts and allow for more comprehensive
adaptation to individual learners and groups. The new elements of the information
model support explicit modelling of (static) groups, their properties and group envi-
ronments. Assignment of participants to static, as well as to dynamically created

14 Florian König and Alexandros Paramythis

groups can be controlled via a number of policies; the same is true for the assignment
to roles. Activity types for these grouping and role casting operations have been
introduced. The extensions support a run-time model, giving access to all elements of
the script and pure run-time data, such as information on participants, while it is run-
ning. Access to the run-time model is possible in expressions, making some operators
obsolete. New set and temporal operators have been added. The service specification
has been made more flexible to account for the plethora of possible services in to-
day’s learning management systems. Artefacts can be modelled explicitly, may be
assigned a data type, and have restrictions associated with them, like properties. In the
context of a learning activity, artefacts may be used as input, output or transient ele-
ments, optionally with access permissions (read, write, append) for different partici-
pants. An extensible event handling specification with event-condition-action (ECA)
semantics has been introduced, and new actions (e.g., rotate artefacts, rotate roles) for
adapting the scenario at run-time have been defined. Finally, the original sequencing
model has been replaced with a more flexible one, which supports running multiple
instances of activities according to the social plane (class, group, individual), offers
(conditional) transitions for arbitrary sequencing of activities and uses workflow se-
mantics for synchronizing and splitting the flow of action.

For future iterations of this information model, we plan to fine-tune its current fea-
tures and provide new ones to enhance its expressiveness towards improved adap-
tivity. First, the run-time model needs to be fully and thoroughly specified, providing
clear semantics for every element, its (data) type and multiplicity and introducing a
temporal dimension to allow access to historic state information. Exception handling
mechanisms need to be introduced to protect against script failure when non-existing
elements of the run-time model are accessed. The run-time model needs to be made
accessible from the client side (assuming the script is “executed” on the server side),
in a way that conceptually extends (and ideally replaces) the global-elements of IMS
LD. The main idea is to provide an implementation-independent interface specifica-
tion similar to the SCORM run-time API [25], to allow for bi-directional data transfer
between the learning design engine and the client (application). Another requirement
is access from within the learning design script to external models like, for example,
the personal learner models of participants in the learning management system. Mak-
ing these models accessible via the respective element in the run-time model (e.g.,
person) would render them immediately usable by the mechanisms described so far.

For effecting adaptations, more actions are needed, especially for re-sequencing
scenes, invoking system facilities (e.g., notifying participants) and manipulating the
system state (e.g., controlling services). As suggested by Miao and Hoppe [11], a way
to create expressions and action declarations needs to be modelled, in order to allow
re-using sets of actions and complicated expressions. To support provisional adapta-
tion decisions, a mechanism must exist to specify that certain participants (e.g., the
instructor) should be consulted about whether to apply a specific adaptation or not.
One of the benefits of such a model is that the instructor does not need to be present at
all times, but can still monitor and control the scenario. Finally, the event model needs
to be made more fine-grained to capture all possible events that occur during the run
of a learning design and may be relevant for adaptation rules. This includes a basic

Towards Improved Support for Adaptive Collaboration Scripting in IMS LD 15

event model for the different service types, so that participants’ actions in them (e.g.,
chat entered, message posted, wiki page edited) can be reacted upon.

Once we have arrived at a mature specification that includes the additional ele-
ments described above, we intend to integrate a prototypical implementation of it into
the Sakai e-learning platform [26]. This will then be employed in real-world student-
based evaluations, where we will seek to establish the impact of the types of adaptive
support that the new specification enables on the collaborative learning process.

Acknowledgements. The work reported in this paper has been supported by the “Ad-
aptive Support for Collaborative E-Learning” (ASCOLLA) project, financed by the
Austrian Science Fund (FWF; project number P20260-N15).

References

1. Dillenbourg, P.: What do you mean by collaborative learning? In: Dillenbourg, P. (ed.)
Collaborative-learning: Cognitive and Computational Approaches. pp. 1–19. Elsevier, Ox-
ford (1999).

2. Paramythis, A., Mühlbacher, J.R.: Towards New Approaches in Adaptive Support for
Collaborative e-Learning. Proceedings of the 11th IASTED International Conference. pp.
95–100, Crete, Greece (2008).

3. Lipponen, L.: Exploring foundations for computer-supported collaborative learning. Pro-
ceedings of the Conference on Computer Support for Collaborative Learning: Foundations
for a CSCL Community. pp. 72–81, International Society of the Learning Sciences, Boul-
der, Colorado (2002).

4. Miao, Y., Hoeksema, K., Hoppe, H.U., Harrer, A.: CSCL Scripts: Modelling Features and
Potential Use. Proceedings of the 2005 Conference on Computer Support for Collaborative
Learning – Learning 2005: The next 10 Years! pp. 423–432, International Society of the
Learning Sciences, Taipei, Taiwan (2005).

5. O’Donnell, A.M., Dansereau, D.F.: Scripted Cooperation in Student Dyada: A Method for
Analyzing and Enhancing Academic Learning and Performance. In: Hertz-Lazarowitz, R.
and Miller, N. (eds.) Interaction in Cooperative Groups: The theoretical Anatomy of Group
Learning. pp. 120–141,Cambridge University Press, London (1992).

6. Jameson, A.: Adaptive interfaces and agents. The human-computer interaction handbook:
fundamentals, evolving technologies and emerging applications. pp. 305–330, L. Erlbaum
Associates Inc. (2003).

7. IMS Global Learning Consortium, Inc.: Learning Design Specification (Version 1.0 Final
Specification), http://www.imsglobal.org/learningdesign/, (2003).

8. Koper, R.: Modeling units of study from a pedagogical perspective: the pedagogical meta-
model behind EML, http://hdl.handle.net/1820/36, (2001).

9. Koper, R., Olivier, B.: Representing the Learning Design of Units of Learning. Educational
Technology & Society. 7, 97–111 (2004).

10. Paramythis, A.: Adaptive Support for Collaborative Learning with IMS Learning Design:
Are We There Yet? Proceedings of the Adaptive Collaboration Support Workshop, held in
conjunction with the 5th International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH'08). pp. 17–29, Hannover, Germany (2008).

11. Miao, Y., Hoppe, U.: Adapting Process-Oriented Learning Design to Group Characteristics.
Proceeding of the 2005 conference on Artificial Intelligence in Education: Supporting

16 Florian König and Alexandros Paramythis

Learning through Intelligent and Socially Informed Technology. pp. 475–482, IOS Press
(2005).

12. Santos, O.C., Boticario, J.G., Barrera, C.: Authoring A Collaborative Task Extending the
IMS-LD to be Performed in a Standard-Based Adaptive Learning Management System
Called aLFanet. Proceedings of the Workshop on Adaptive Hypermedia and Collaborative
Web-based Systems (AHCW'04) held in conjunction with the International Conference on
Web Engineering (ICWE 2004). Munich, Germany (2004).

13. Hernández-Leo, D., Perez, J., Dimitriadis, Y.: IMS Learning Design Support for the For-
malization of Collaborative Learning Patterns. Proceedings of the IEEE International Con-
ference on Advanced Learning Technologies (ICALT 2004). pp. 350–354 (2004).

14. Miao, Y., Burgos, D., Griffiths, D., Koper, R.: Representation of Coordination Mechanisms
in IMS Learning Design to Support Group-based Learning. Handbook of Research on
Learning Design and Learning Objects: Issues, Applications and Technologies. pp. 330–
351, IDEA Group (2008).

15. Caeiro, M., Anido, L., Llamas, M.: A Critical Analysis of IMS Learning Design. Proceed-
ings of CSCL 2003. pp. 363–367, Bergen, Norway (2003).

16. Dalziel, J.: From Re-usable E-learning Content to Re-usable Learning Designs: Lessons
from LAMS, http://www.lamsinternational.com/CD/html/resources.html, (2005).

17. Paramythis, A., Cristea, A.: Towards Adaptation Languages for Adaptive Collaborative
Learning Support. Proceedings of the First International Workshop on Individual and
Group Adaptation in Collaborative Learning Environments (WS12) held in conjunction
with the 3rd European Conference on Technology Enhanced Learning (EC-TEL 2008).
CEUR Workshop Proceedings, ISSN 1613-0073, online CEUR-WS.org/Vol-384/.
Maastricht, The Netherlands (2008).

18. Aronson, E., Blaney, N., Stephin, C., Sikes, J., Snapp, M.: The Jigsaw Classroom. Sage
Publishing Company, Beverly Hills, CA (1978).

19. Lochhead, J., Whimbey, A.: Teaching analytical reasoning through thinking aloud pair
problem solving. New Directions for Teaching and Learning. 1987, 73–92 (1987).

20. de la Fuente Valentin, L., Miao, Y., Pardo, A., Delgado Kloos, C.: A Supporting Architec-
ture for Generic Service Integration in IMS Learning Design. Times of Convergence. Tech-
nologies Across Learning Contexts. pp. 467–473 (2008).

21. Torres, J., Dodero, J.M.: Analysis of Educational Metadata Supporting Complex Learning
Processes. Metadata and Semantic Research. pp. 71–82 (2009).

22. Hagen, K., Hibbert, D., Kinshuk, P.: Developing a Learning Management System Based on
the IMS Learning Design Specification. IEEE International Conference on Advanced
Learning Technologies (ICALT 2006). pp. 420–424, IEEE Computer Society, Los Alami-
tos, CA, USA (2006).

23. Russell, N., Arthur, van der Aalst, W., Mulyar, N.: Workflow Control-Flow Patterns: A
Revised View. BPM Center (2006).

24. Gutierrez-Santos, S., Pardo, A., Kloos, C.D.: Authoring Courses with Rich Adaptive Se-
quencing for IMS Learning Design. Journal of Universal Computer Science. 14, 2819–2839
(2008).

25. Advanced Distributed Learning Initiative: Sharable Content Object Reference Model
(SCORM) 2004 4th Edition Version 1.1 – Run-Time Environment,
http://www.adlnet.gov/Technologies/scorm/, (2009).

26. Sakai Project. Sakai Foundation, http://www.sakaiproject.org.

