<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

An Architecture for Distributed Visualization of Technical Processes

Bernhard Leisch, Peter Schuhmayer

Research-Institute for Microprocessor applications (FIM)
University Linz, Austria

Abstract
The goal of the work presented here was to create the prototype of a graphical user interface for process visualization which requires only a fraction of the memory and processing power needed by today’s de-facto industry standards for graphical user interfaces. As a result an application framework for distributed process visualization called Vision was developed. This paper describes the architecture of Vision, which achieved our goals by the consequent use of object-oriented design in the components of the user interface.
The system offers a fully functional GUI as a basis, with special capabilities for fail save distribution of process-related events within a network of visualization stations. Several basic classes for visualizing process data are included.

1. Introduction

The main task of controlling- and automation systems is to guarantee that a given technical process executes as specified and desired. Furthermore the human operator has to be informed about the actual process state, in particular on any relevant changes of the process status. The architecture of the past is characterized by centralized systems for controlling. Typically, all the functional components in such systems are integrated into only one central process control system. Actual data of the process is provided by sensors (i.e. temperature, pressure) as usual, but is sent to the centralized system directly. This central unit in turn calculates and actualizes values for some control-devices of the process (i.e. control valves,..). The application as a whole was serviced by one computer system.

In contrast to the situation described above modern automation systems are characterized by a distributed data processing structure [Baco92]. The entire functionality of the controlling application is divided into parallel working units because of the following reasons:

· easily extendible for varying applications
· better adaptability to the functional structure of the process
A basic requirement for the effective use of a distributed control system is to find a suitable partitioning of the application. Then a connection medium must be installed between the distributed components. This medium together with appropriate mechanisms supports the communication requirements between the various and different devices. The sets of activities involved in process control fall into one of the following classes:

· monitoring and recording events and sequences of state transitions
· controlling events and changes in the process development; i.e. controlling includes tuning and responding, particularly to alarms.
Although there is no hierarchy involved in the distributed control systems, we may distinguish between components positioned near the process and such nodes, which are positioned rather close to the human operators and/or supervisors. Consequently we distinguish between "servers" and "clients" and characterize their specific tasks as follows:

· Servers are positioned close to the controlled process. They implement all automatic reactions of the control system to events in the process. Their purpose is to assist tuning, responding to alarms, and handling exceptions.
· Clients perform any visualization of process data and provide the interaction with the user too. Essentially clients serve as interfaces to the persons involved in the controlling process.
Because a server must not exceed a defined guaranteed response time in its actions, servers have to support real-time capabilities. Servers are usually micro-controller applications with special preferences for controlling, driven by a real-time kernel as the operating system, with little or no user interface. The term "hard real time system" is used to indicate that the timing requirements are absolute. "Soft real time" means that failing to meet a deadline will not lead to a catastrophe. Depending on the size and complexity of the control-application, one or more servers are positioned near the process and connected directly to sensors and actuators. Examples of real time systems are control systems for power stations, chemical plants, robot controllers, etc.

Clients and servers are connected by a communication network to represent the whole controlling system. Due to different types of control-servers in such a distributed control-application a heterogeneous structure is quite common in practice. Therefore in general a modern control and automation system is regarded as a client-server system.

The object-oriented application framework for distributed control-applications presented here supports the implementation of a graphical user interface for the client stations. It allows the usage of different data communication protocols and is thus also suitable for a heterogeneous control environment.

In [PoBl93] the concept of an application framework is defined as an extended collection of classes, which cooperate to support a complete application architecture or application model, providing more complete application development support than a simple set of classes.

For our purposes we define an application framework as an integrated object-oriented software system that offers all the application level classes needed by the generic application. The application framework embodies a particular philosophy for structuring the application. It is carrying the control flow for automation applications and offers the frame for a executable application, which has to be specialized for particular use.

The process of building a client application for data visualization consists of inheriting and extending classes from the application framework.

Various servers for special process control functionality from different vendors can be connected to clients with the corresponding communication lines. The client’s task is to communicate with different links and possibly via different protocols. To achieve this the framework contains classes for low-level communication of hardware-interfaces (i.e. serial line, field bus). Some higher protocol-layer classes perform the transformation of the particular data to internal standardized message types, and realize full protocol-transparency. Special message handling classes do the distribution of messages to and from the graphical visualization objects on the screen.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
2. Centralized Visualization with Vision
A corporate sponsor of our institute triggered the Vision project when they decided to make a switch from a user interface which just incorporates graphics to a truly graphics oriented one. Looking for a ready to use product at the beginning, the restrictions for the user interface which finally lead to a new development were:
· low memory consumption

· low system run-time overhead

· the source code must be available to be able to act quickly and independently from the system vendor in case of an emergency

· predictable run-time behavior

· fit for long system up-times, i.e. > one year

In fact a Vision based application is now able to perform well on a i386 based machine with only 1MB of RAM. The current prototype runs on an MS-DOS based machine, though all hardware dependent parts of the implementation have been encapsulated to minimize the effort needed to create a micro-controller based version.
The first step in development was to design and implement the classes, which provide the human user interface and message distribution on a single computer. Similar to popular graphical user interfaces Vision implements its own interface with windows, buttons and menus.

Figure 1: The Vision graphical user interface
2.1 Basic Structure
Each visible element of the user interface is represented by an instance of a corresponding class. Basic elements like buttons, or static text fields are atomic; they do not contain objects themselves. More complex items like windows are composed of a group object, which manages one or more other objects that are used as its building blocks. Thus object reuse is more frequently done by aggregation than by inheritance. Whenever an instance of a compound object is created, usually its constructor in turn creates all of its elements. However this is not required by the system. The elements of a compound object may vary during its life cycle. The best example for this is the object representing the global desktop, which also contains all currently existing top-level windows.
The visible user interface can be viewed as an n-ary tree whose root is the global desktop, whose nodes are compound objects and whose leaves are the atomic building blocks of the user interface.

Figure 2: Example of a tree of user interface objects
Visibility is defined by the following rules:
· Each user interface object covers a rectangular area of defined size and position.

· Atomic objects are able to draw a screen representation, which defines the contents of the entire area covered by them.

· The screen representation of compound objects is defined by their elements entirely. Elements may overlap. The total area covered by the elements needs to cover the entire area of the parent. Elements exceeding the boundaries of the parent are clipped.

· Precedence of overlapping elements in the tree is left to right.

2.2 Events
Vision is an event driven system. Message passing between objects is based more on explicit events rather than method invocations. Each object is able to send and process messages. Sent messages are queued in Visions message queue, which is serviced by the object which forms the root of an n-ary tree of active event handling objects at runtime. The tree of visible user interface objects is part of this tree of event handlers, but not all event handlers are associated with an object on the screen.
Messages are represented as structures. To allow both different attributes for different kinds of messages and also different ways of determining the target of a message, there are four different structures to represent four classes of events.
· mouse events: Events specific for the mouse, which are always combined with the mouse pointer coordinates. Any event is passed to the top-most (=visible) user interface object covering the area, which includes the mouse coordinate. Events are passed down the event handler tree until the destination is found.

· keyboard events: Events generated when a key is pressed. Any event is passed to the atomic user interface object currently holding the input focus. Events are passed down the event handler tree until the destination is found.

· message events: Events generated for internal program communication. An event of this class either has a single object as specific destination or is a broadcast event sent to all objects.

· process data events: Events related to process data, either sent from or to the process controller.

After a particular event has been handled the type field describing the events class is set to the reserved value evNothing. This signals that the event has been handled properly and no further processing is needed.

Figure 3: Example of a tree of event handlers at runtime
In addition to ordinary event handling mechanisms there exist two special phases. The "pre-process" phase enables an object to monitor all events of a specific class, which occur in the system. The "post-process" phase allows monitoring of all events that have not been processed properly during normal event handling. To receive events in any of those two phases an object has to set this in its options via a method call. During the pre-process and post-process phase events are broadcasted to all objects registered for the respective phase. Sending all events through the entire tree of objects would cause a heavy performance penalty. Therefore whenever the option for receiving events in one of the two phases is changed the minimal subset of the tree required for event distribution is determined and a flag in each node is set accordingly for later use when these specialized broadcasts take place.
So when a message is read from the event queue, it is first sent through the event handler tree in the pre-process phase. Then it is sent either through the tree or directly to its destination depending on the type of the event. If the event was not processed it is then again broadcasted through the tree in the post-process phase.
2.3 Handling of Process Data
To be able to relate to specific process data values, both the visualization system and the process controller need to share a common data model for process variables.

Figure 4: establishing a common data model
On each system there exists a local copy of a common process data specification. There the individual data values which represent sensory input or target settings of the control system are defined together with unique ids and other properties, such as whether changes of a value are sent to the visualization automatically or only upon request.
Individual process data values may be visible on more than one instrument at a time, but need not be visible at all. To be able to access the most recent value of a specific process variable at any time and also to cope with the update problem when a variable is visible on several instruments at the same time there is a central object which handles these tasks during the entire up-time of a visualization system. This object is an instance of the class "Post" and because there exists precisely one instance of that class we also refer to that object as the "post". This concept is explained in detail in [MuEs94].
The post keeps track of all process variables. It handles the entire communication with the controller. When a new instrument is instantiated it has to send a special message to the post to register itself for a process data variable. When an instrument is closed the destructor automatically sends a message to cancel all registrations for that instrument. Thus the post knows all objects referring to a specific process data variable at all times and ensures the consistency of the displayed data by generating update events when necessary.

2. Distributed Visualization with Vision

There are several motivations to create a distributed visualization of technical processes:

· information is accessible all over the company
· human supervisors can check the production process at distant places
· separation of visualization makes the development of controller software easier
· separated visualization increases the performance of controller software
Vision supports a distributed model, which allows multiple visualization stations to monitor the same process controller. All participating stations run a copy of the same executable. They are only distinguished by local configuration information. Therefore, although the initial presentation of process data may differ between stations, each station has the ability to display the entire range of available instruments. Also, multiple stations may display both control instruments and passive instruments, which are linked to the same process value at the same time.

The distributed version of Vision uses the same basic concept as the single station version. Also in the distributed version there exists only one instance of the post in the entire system at a time. The way instruments are created and registered at the post, and the way they communicate with the post did not have to be altered. The major extension to the concept needed is a transparent extension of the event handling which allows the addressing and sending of events concerning process data across the network. This has been done by supplementing the event address of instruments with a network address. When events are dispatched from a systems event queue, the network address is compared with the address of the system itself and if this is found not to be identical the event is serialized and sent across the network.

The logical network connections are arranged as follows:

· There exists one logical connection between two communicating processes; Broadcasts and multicasts are not allowed.
· The communication with the process controller is performed by exactly one logical connection. The Vision station on which the post exists sets up this connection. All the other stations only have a connection to the post.

Figure 5: logical connections

However, because of the inherent asynchronous parallelism of the distributed model an invariant of the single station version is not valid any more, which is concerned with the existence of event destinations. Because event handling across machine boundaries has been limited to events concerning process data, and for all events sent across the network the post is either sender or receiver, it is sufficient to consider the protocol of event exchanges implemented by the post. The post assumes that all instruments registered there are existing and thus the event address formed by the network address and memory location of a registered instrument is valid. Based on that assumption the post generates update events for all registered instruments when necessary. Parallel to that an instrument may be closed, but the event, which notifies the post, may be processed only after an update event for a non-existing instrument has been sent.

Figure 6: synchronization problem

To solve this problem, at each station the mechanism which receives events from the network maintains a private list of local valid instruments and processes only events with valid destinations. On the other side of the line the post is an object which is never deleted and thus always exists. Considerations concerning the total failure of a station and especially the station running the post are presented later. No other synchronization problems are introduced by system distribution, which might compromise system integrity and stability.

To ensure that there is no loss of data when transferring it on the network, we use an error tolerant connection oriented network protocol. In case there are many visualization stations connected, network traffic can increase to the limit set by the protocol and by the hardware. For this reason, distributed visualization can never fulfill hard real time requirements, but as the visualization is fully separated from controlling there is no need for it. Visions performance has been tested on a simple Ethernet LAN, using the TCP/IP protocol. Because of the intelligent buffering mechanism employed by Vision, which is described later, network congestion does not cause immediate system failure. Even then the worst case measured for an update was below one second. Because all critical automated responses are part of the controller software, and seeing this in relation to the response time of the user of the visualization, this is tolerable.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
4. Implementation details of key concepts
4.1 Centralized coordination and event replication by the Post
Communication between Post and control has its own rules. There is a data model, represented by a data definition file, which each stations and the control must have. This data definition file contains a description for all process data variables used in a Vision system. The description includes a unique variable ID which is used by all objects when they send messages concerning process data or register/deregister. A group ID entry is used for defining groups of variables which belong together. Groups are only updated, if the timestamps of all group members are identical. An example for groups are X/Y/Z axes. An entry length is used for dynamically allocating memory for process data, which is passed through a stations message queue. This enables Vision to handle huge process data packets without losing performance.
An important detail is the way how data comes from the control to the Post. There are two ways the Post can receive data from the control. A first one is that the Post behaves passive and simply waits for data from the control. This takes place when the update entry of a data description is set to auto or groupauto. Sometimes the control delivers sensor values faster than a human operator can recognize, or some data values may not be so important to be updated in short intervals. To avoid unwanted high network traffic the update entry can be given a timer interval, which is used by the Post for requesting new data values for a specific variable ID from the control. In this mode the Post is the active part who requests data while the control behaves passive waiting for the Post´s requests.
The following shows an entry of a Vision´s data definition file:
diameter
name = diameter ; name of the variable
ident = 43 ; clear identification
group_id = 0 ; group membership
type = integer ; element type
length = 1 ; number of elements
update = timer:36 ; specifies, how the variable should be updated
controllable = true ; specifies, weather the variable can be modified
defaultinstrument = ... ; reserved for future improvements
4.2 Implementation of Instruments
All visualization Instruments are structured by the following hierarchy: At the top there is an instance of the class ViewWindow. This class traces a window with a frame on the desktop, which can be freely positioned. Within this Viewer multiple instruments (classes: GraphInstru, RoundInstru, AnalogBarInstru, ..) can be placed. Instruments again can consist of several displayelements. Displayelements are classes directly derived fromView: DispMicro, DispZoom, DispUpdate, DispCursor, ScaleGrid, ScaleVert, ...
This hierarchy allows to combine different displayelements within an instrument. Furthermore the complexity of instruments is reduced by dividing them into components.

Figure 7. Example for the structure of a display object
The class instrument is the basis class for instruments. Its constructor implements common behaviour like building a window, setting up the instruments background and displaying a titletext. Basic communication with the post is performed by the methods Register(ident), GetUpdate() and GetName(ident). Register(ident) must be called in order to become registered for the process variable ident at the post. If ident doesn´t belong to a group, the post sends the latest value immediately. Otherwise the instrument has to call GetUpdate() after the registration of the last variable to get the latest values right now.
4.3 A Graph Instrument
The graph instrument is used to figure process data as characteristic line with a cursor. The current value at the cursor position is shown in a separate part of the instrument. For displaying the whole graph there exists a reduced chart, where the part which is shown in detail is colored.

Figure 8. The graph instrument
This instrument consists of seven display elements:

Figure 9. Components of the graph instrument
A graph instrument can receive and handle the following events:
evCommand: This is an event, which carries new process data values. The instrument stores the data and plots the new characteristic curve. Afterwards the graph instrument has to free the memory where the delivered data was stored. Any receiver of process data must do this.
evKeyDown: Event for user interaction. It can contain the following key codes:
key_left: cursor one position to the left
key_right: cursor one position to the right
key_ctlleft: cursor ten positions to the left
key_ctlright: cursor ten positions to the right
key_pos1: cursor to position 1
key_ende: cursor to the end of the data array
4.4 VertAnalogBarInput - an example for an input instrument
This instrument consists of three display elements and can be used to manipulate process variables. It can handle both keyboard- and mouse events.
The variable, which the instrument is registered for, can be modified by clicking into the vertical analog bar. Its also possible to input new values by keyboard.

Figure 10. The vertical analog bar instrument and its components
Updating of a process variable by the instrument:
The instrument creates an event of type evCommand, which is addressed to the unknown receiver with destip = NULL and infoadr = NULL. Of course the events destination is the post, but instruments do not know the posts address. The event is sent along the object hierarchy until it is caught by VNetPrograms HandleEvent method. Because of the addressing to NULL this method recognizes that the event is meant for the post. It fills the fields destip and infoadr with the correct values and decides if the event has to be sent over network or not. When the event reaches the post the new process data value is distributed to all registered instruments as described above.
4.5 Failure safety
Failure safety is implemented on a level, which allows for the total failure of any participating station. The recovery time of the system depends on whether the station failed on which the post was running. If that was not the case, there is no perceivable delay in operations.
If the station running the post fails, all logical network connections break down. To be able to resume operations another station needs to create a new post and establish connections with the process controller and all other stations.

Figure 11. Presentation of the ICMP control connections
To accomplish that each station is capable of creating and running an instance of the post class. The decision on which of them has to actually do that is embedded in Visions communication protocol. It is essential that only exactly one new post is created.
The communication module manages a list of active station (LAS). The dead station is removed from this list. The station which detects that it is now the first in the list generates the new post and connects to the process controller. Through the same mechanism the other stations automatically know the network address of the new post and try to log in and register their instruments. If the first m of n stations fail at the same time, the m+1st station can not log in at the station, which should create a new post. After a defined time out, the station that should execute the post is declared dead and the m+1st station takes that position.
To recognize the failure of stations, the network layer periodically uses diagnostic messages to check the other stations. In the TCP/IP based implementation of the prototype ICMP (Internet control message protocol) packets are used for that purpose. An important property of the diagnostic messages is that they are transferred with priority over the logical connections, thus making it possible to distinguish between network congestion and station failure.
4.6 Network performance considerations
An important goal of Vision is safety. To reach this goal a fault tolerant connection oriented protocol is used for network communications. The disadvantage of the TCP/IP protocol used by the prototype and other similar protocols is that they do not satisfy real-time requirements. On the other hand this is not necessary for pure visualization. But it is important to have an estimate for the worst case response time.
As long as the data sources for a station do not generate more data than the station can process, the maximum response time is determined by the time needed for passing an event to its destinations plus the longest time needed to process an event. It is the responsibility of the programmer not to create event-handling routines, which take extended periods of time to complete. The event handling routines contained in Vision itself all take only milliseconds (depending on the hardware) to complete.
The maximum throughput measured on a test system using cheap hardware (i386-20) lies between 50 kB/s and 70 kB/s. Frequently process data does not arrive continuously but in bursts when a lot of sensor readings are taken during a short significant period of time during the process. This transfer characteristic presents the worst case for the system because although in the average there is enough transfer bandwidth the system might not be able to process the data as fast as it is generated.
The following diagram shows possible throughput and traffic density:

Figure 12: Network traffic overload
To solve this problem and to eliminate the necessity to dimension the hardware according to peak transfer needs Vision uses a smart buffering technique especially suited for process data. Only the latest measurements for individual process data values are buffered, while other data like Register/DeRegister messages are fully buffered. Therefore stations can survive long periods of network overload without getting problems with buffer overflows.
4.7 Communication module is replaceable (i.e. for different communication protocols)
As mentioned already VISION works with the TCP/IP protocol at the moment. This was fine during development, but TCP/IP isn’t used in common real-time systems. It was one of the development goals that communication protocols can be changed without big efforts. The design of VISION is extremely modular so changing the communication protocol is very easy. One only has to replace the communication module because this is the only part where network functions are called. The other parts of Vision don’t care where messages should go. Messages go through a distribution module, which decides if they are addressed to a different station. In this case a message is serialized, converted into a packet and passed to the communication module. There it is sent across the network according to the rules of the communication protocol used. The distribution module periodically asks the communication module for new data arrived from the network. If there is any, the packets are converted into messages, which are queued in Vision’s message queue.

Figure 13. Communication interfaces in Vision
The interface between the distribution module Post and the communication module doesn’t change, therefore there is no danger of side effects.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
5. Conclusion
Vision is an application framework for distributed visualization of technical processes, which promises to increase productivity by speeding up the creation of new applications. Although an impact on productivity compared to development on the basis of the most widespread GUI initially was not one of the primary design goals, the slim object-oriented programming interface of Vision showed a high potential in that direction when the test applications were implemented.

The design goals for efficiency have been attained by consequent modularization of its components and the use of object-oriented design techniques. The qualities claimed for performance, fault-tolerance and failure safety on a station level have been verified in the test phase.

References

[PoBl93] G: Pomberger, G. Blaschek, Software Engineering.
Hanser Verlag, 1993

[Baco92] Jean Bacon, University of Cambridge. Concurrent Systems.
Addison-Wesley Publishing Company, 1992

[BuWe92] A. Burns, A. Wellings. Real-Time Systems and their programming languages.
Addison-Wesley Publishing Company, 1992

[MuEs94] J. R. Mühlbacher, G. Eschelbeck. A Framework of Classes for Distributed Controlling
Proceedings EUROMICRO Conference Liverpool, pp. 240-246,
IEEE Computer Society Press, 1994.

[Cham93] Dennis de Champeaux. Object-oriented System Development.
Addison-Wesley Publishing Company; Reading, MA, 1993

[Murr93] Robert Murray. C++ Strategies and Tactics.
Addison-Wesley Publishing Company; Reading, MA, 1993

[Vald92] Ray Valdes. Application Frameworks and Class Libraries
Dr. Dobbs Journal, Oct. 1992.
[Bend90] Klaus Bender. Profibus: Der Feldbus für die Automation
Carl Hanser, 1990

Designing Class Libraries
C++ Report, May 1993.
Douglas E. Comer. Internetworking with TCP/IP
Volume 1: Principles, Protocols and Architecture
Prentice Hall, Inc

PC/TCP Version 1.09 Packet Driver Specification
FTP Software Inc. Princess Street, Wakefield
