
Michael Sonntag

Institute for Information processing and

microprocessor technology (FIM)

Johannes Kepler University Linz, Austria

sonntag@fim.uni-linz.ac.at

Introduction to Web Security

1

2 Introduction to Web Security, © 2012

Why attack web applications/servers?

 Ubiquity: Every company has a web server, and many a shop, Web 2.0

elements etc.  If not here, try the next million sites!

 Simple techniques: Protocols are simple and attacks are widely known

— Text input  Manipulation is easy and many tools exist/custom programming trivial

— OS buffer overflow: Compare this to SQL injection (finding & exploiting)!

 Anonymity: You don't need to be there; proxies for HTTP(S) are everywhere

 Firewall bypassing: Web traffic is always allowed in both directions: in & out

 Custom code: Web application programming is simple, so "simpletons" do it!

— No security education for them!

 Immature security: No sessions, authentication weak: "Do everything yourself"

 Constant change: Numerous persons always change the web application

— OS: Producer, Software: Rare updates only

3 Introduction to Web Security, © 2012

What can go wrong?

 Denial of Service (DoS): Your webshop is not accessible  Direct losses

— Party/company website down: Reputation loss, …

 Defacement: The content of the website is changed

— Shop: Price modifications for you or all customers  Expensive!

— Reputation loss, shutdown by government (e.g. illegal content), added to blacklists etc.

 Data loss: Data from you (or your customers/employees/…!) is stolen

— This is usually no immediate problem – you still have it

— But the consequences can be dire: Trade secrets lost, fines/compensations to pay,

bad reputation/customer loss, …

 Service stealing: Whatever service/data you provide is used for free

 "Piggybacking": Using your resources, e.g. to send Spam, host own data,

phishing, infect visitors, …

— Liability, increased costs, lower performance, blacklists etc.

4 Introduction to Web Security, © 2012

Where to attack?

 Operating System: Not covered here; remote attacks rare and difficult

 Transport: HTTP / TLS sniffing; extremely difficult if not on path

 Web Server: The server itself and any necessary applications/languages

— PHP, Python, Ruby, …/Server plugins

 Web application platform: Basic frameworks used by the application

— Spring, JSF, Ruby on Rails, Struts, Typestry, Cold Spring,…(Drupal, Typo3…)

 Database: Typically only an indirect target

— PostgreSQL, MySQL, MS SQL Server, DB2, Oracle; any non-relational ones

 Web application: Server-side  See later!

 Web Client: Client-side  See later!

 Availability: Sending enormous amount of requests (few variations)

— Any kind of packets or full legitimate connections

5 Introduction to Web Security, © 2012

How to attack: Profiling

 Gathering information on potential vulnerabilities (or excluding non-working ones)

— Basic information: What OS, web server, application framework, language, load

balancers, local time&timezone, proxies, web application firewall, services running,…

— User information: Who owns it? Names, E-Mail addressed, IP addresses (web server,

DNS, internal servers, …)

— Website information: Complete mirror of pages, known accounts, static/dynamic pages,

form pages, directory layout, presence of common files, source code (accessible, open

source repositories, …) etc.

— Vulnerability information:

• Common profiles for applications/frameworks

• Automated scanners for testing known ones

• Manually looking for potential problems

— Gathering data on vulnerabilities: How to exploit it, working code, assembling payload,

preparing server for further code/control, …

6 Introduction to Web Security, © 2012

How to attack: Executing the attack

 When will the system be most likely un-/less supervised?

 Exploiting the vulnerability or testing for any probable vulnerability

— Or just testing anything, perhaps we are lucky!

— Repeating the test – some are not deterministic

 Hiding traces of the attack while in progress (logs)

 Hiding the source of the attack (IP)

 Injecting the first "foothold": Typically some (root/Administrator) shell

— Almost always fragile: Only in memory, very small, almost no functionality

 Expanding the foothold: Connecting back out, loading additional code, privilege

escalation, installing permanently …

— Has often to be done blindly, e.g. by a pre-defined script!

 Gaining access: Installing a backdoor/command receiver and testing it

7 Introduction to Web Security, © 2012

Hiding: Various traces (1)

 Source (IP): Use another computer as proxy

— Commercial, hacked, …

— Or third parties, e.g. through SPAM

• Let them try; if the attack is successful, the hacked computer will "phone home"

– but to you, not to the third party!

 Source: Don't mix legitimate and "attack" traffic

— Logging in and then trying  Bad idea!

— Use different IP addresses and no connection data (e.g. session IDs!)

— Different systems and different times

— Use different credentials

 Progress: Rare tries

— Not a single barrage of requests, but one every few hours split over several days –

The server is going nowhere!

8 Introduction to Web Security, © 2012

Hiding: Various traces (2)

 Progress: Huge tries (try to fill up the log and crash the computer after the attack)

 Progress: Log evasion (staying out of the log files)

— Long URLs: Some logs limit the size of log entries (to avoid DoS attacks!)

• So add harmless parameters in front of the "real" ones (depends on server used)!

• E.g. http://victim.com/sh_prod.asp?uid=<4096 random chars>&uname=' or 1=1; --

— Encoding: Encode everything as URLEncode

• Makes it harder to see the attack unless explicitly looking

• E.g. uname%3D'%20or%201%3D1%3B%20--%20

• Or: %75%6e%61%6d%64%3d%27%20%6f%72%20%31%3d%31%3b%20%2d%2d%20

 Progress: Evading IDS (Intrusion Detection Systems)

— E.g. inserting packets into a stream, which are physically addressed at the IDS (MAC

address only; IP is for attacking connection!): Sees different data stream than recipient

• Especially the IP and TCP layers allow numerous "errors" to confuse listeners

9 Introduction to Web Security, © 2012

How to attack: Exploiting

 Install some malware: Typically a hidden "remote control" application

 Depending on the intention, various avenues are open:

— Political/personal gain: Deface the website, download for free etc.

— "Terrorist": Delete data, crash system

— Espionage: Steal specific confidential information

— Crime: Steal any data which might be worth something

• Credit card/identity numbers, account credentials, E-Mail addresses

• Introduce slight modifications into data: Bank account for payments

 Note: Very often the actual user of the illegal access is someone else;

— "Renting" computers (botnets)

— Selling raw data for exploitation by others

— Selling the software itself (without any hacked computers!)

10 Introduction to Web Security, © 2012

Who is responsible for web security?

 More persons than you probably thought!

— The developer: Writing the application so it is secure

• Or at least: Can be configured/used in a secure way

— The webserver operator: Do not add insecurity through configuration

• And make sure the web server, framework, application is installed securely

— The network operator(s): Prevent attacks on the infrastructure

• E.g. DNS attacks are very dangerous!

— The end user: Use up-to-date clients as well as common sense

 Why? Server + Transport + Client must be secure (all of them simultaneously!)

— Server insecure: Others can modify data on it, …

— Transport insecure: Eavesdropping, MitM, …

— Client: Some attacks can only be prevented by the client (like phishing)!

11 Introduction to Web Security, © 2012

What do you have to do?

 Generally for security and specifically for web security:

— Authenticate users: Is the person really who he/she claims to be?

— Authorize users: Restrict the users to what they are allowed to do

• Accessing/modifying/deleting data (files, webpages, DB content, …)

• Check content: Even if from you, you shouldn't distribute infected webpages/files

— Prevent eavesdropping: Nobody else should be able to access information being

transmitted (stored  authorization!)

— Ensure availability: DoS attacks, resource exhaustion/overload etc.

• Icluding technical problems, force majeure, …

— Tracing: Ensure that enough logging exists to be able to identify the source of attacks

or any undesirable behaviour of the system (might also be legally required)

 Practical 80/20 rule: Protect the 20% of the system, which are high-impact and

high-risk areas first to get rid of 80% of all incidents!

12 Introduction to Web Security, © 2012

How to do it: Web application guidelines

 Build security in from the start ("good enough security")

— Especially take care of adding "hooks" to improve/add security later!

— Investigate what are the main assets to protect and what are potential attackers

 Test security: Not only functional testing, but also for security

— Input which is deliberately wrong or strange; don't bank on random/ape tests to find it!

 Keep it simple and centralized

— E.g. one point where every request must pass through

— Give out only as much information as necessary (esp. error messages; but: local logs)

 Store all data unescaped and raw  Escape all data when creating output

(according to location) or using it (e.g. as commands, DB query content)

— Because you don't know where it will end up, so you can't appropriately escape it!

 Don't do it yourself: Cryptography, authentication etc.

— Should be part of framework used  Use it securely (and actually use it!)

13 Introduction to Web Security, © 2012

Classes/Types of attacks
 Very coarse classification:

— Information leakage: Not an actual attack, but allows profiling for one

• Becomes a real attack in combination with trusting the client/input validation

— Attacks against cryptography: Typically not breaking, but circumventing it

• "Adding TLS" is not going to help one bit if the key is static

— Incorrect code: Forgetting about security or implementing it erroneously

• Note: The code is perfectly working (=functionality) & might even be tested for this!

• Good algorithm + bad implementation vs. correct implementation of bad algorithm

— Trusting the client: Protecting the clients from themselves

• Plus input validation (see below!)

— Input validation problems: The trusted user sends data from his/her client computer…

• … but it turns out to be not that harmless at all (or not that user )!

• Can be anything: Data, programs/scripts, commands (shell, DB,…) etc.

• This is the main and most important type!

14 Introduction to Web Security, © 2012

Difficulties of protecting against attacks (1)

 You need to know about the attacks (at least classes/types) to be able to

protect against them

 Most examples and getting started guides are extremely "bad"

— And this is never even mentioned or corrected (best example: SQL injection)

 You have to protect everything all the time against anyone

— The attacker can choose, wait, and try again

 Problems are often not easily "localized" (="this is the erroneous statement")

— Mostly such statements are correct, but should not be used at this locations and

while this activity is going on and while the DB is in a certain state (emergence!)

 A defect might not be exploitable because of the system design, but on

extension, modification etc. it suddenly becomes so

 You may not be able to fix it: Defect in library (might even be open source!)

15 Introduction to Web Security, © 2012

Difficulties of protecting against attacks (2)

 Vulnerabilities are often significantly downplayed by vendor

 Whose job is it (would it be) to fix it?

— Browser vs. plugin, framework vs. OS vs. application, …

 Technological limitations:

— Some procedures/functions just cannot be used securely

— Protocols or standards might have flaws, but must still be implemented "as defined"

• Because of various reasons, e.g. compatibility or legal

 Disclosure process varies:

— 0-day attacks; sent to developer but ignored/delayed; multiple mailing lists; …

 Marketing: "This system is secure!"  But against what in which circumstances?

This does NOT mean its hopeless!

16 Introduction to Web Security, © 2012

Summary

 Web applications will definitely be attacked – sooner or later

— Automated software kits used by "script kiddies"

 Getting it secure is very difficult, but "reasonable" security is not hard!

— A bit of Floriani principle/not-in-my-backyard, however …

 Security must be built in from the beginning and needs at least some monitoring

 As user you cannot depend on the provider

— Some things he cannot do, some things he won't

 Prepare for incidents or unpatched vulnerabilities

— Modules for restricting access/filtering URLs etc. should be in there from the start

— Backups, alternate versions (e.g. static copy of website) etc. should be prepared

Michael Sonntag

Institute for Information processing and

microprocessor technology (FIM)

Johannes Kepler University Linz, Austria

sonntag@fim.uni-linz.ac.at

Thank you for your attention!

17

