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Introduction 

 General aspects 

 Why and where to use 

 Technical aspects 

 Symmetric vs. asymmetric cryptography 

 Algorithms and their strength, required environment 

 Encryption/signing: Diffie-Hellman, RSA, AES 

 Hash algorithms: MD5, SHA-1, SHA-256 

 Certificates 

 Content, PKI, revocation 

 SSL/TLS 

 Modes, protocol 

 XML Signature/Encryption 
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Why cryptography? 

 Security is a very important aspect, especially if money (or 

equivalents) are affected by transactions 

 Not every information should be available to everyone 

 Note: Data is sent in the Internet over numerous "open 

systems", where anyone can listen it! 

Security is needed! 

 The technical aspect of security is cryptography 

 Encrypting data against disclosure and modifications 

 Signing data against modifications and repudiation 

 Note: Cryptography does not solve all security problems! 

 Example: Communication analysis (who talks to whom when) 

 Other aspects of security are also needed 

» E.g.: Do you know what your employees actually do with data? 

 Solutions: DRM, deactivation codes, anonymizers, … 
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Application areas 

 Storing data in encrypted form 

 Even access will not lead to disclosure (Stolen Laptops!) 

 Example: File/file system encryption programs 

 Transmitting data securely 

 Enc. transmission prevents eavesdropping and tampering 

 Example: TLS 

 Identifying your partner 

 Preventing man-in-the-middle attacks 

 Example: TLS with uni-/bidirectional certificates 

 Proof of identity 

 Avoiding impersonation 

 Example: GPG E-Mail signatures, digital signatures 

("Bürgerkarte") 
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Motivation 

 Data is being 

 transmitted 

 stored 

 processed 

 and exposed to the following attacks: 

 Inspection: without / with understanding 

 Modification: without / with understanding 

 Deletion: random / targeted 

 Addition: random / targeted 

 Replay: with / without knowledge  

of consequences 

Those cases where 

the attacker can 

understand the 

data/consequences 

(here underlined), 

are more 

problematic! 
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Software components 

 Several different classes of algorithms required: 

 Hash functions: Handling the whole document takes too long 

» Drawback: Content could be substituted (collisions)! 

 Encryption/Decryption: The same algorithm for symmetric, 

but different one for asymmetric encryption/signatures 

» Encryption: Combining a document with a public key 

– Decryption: Combing encrypted document with private key 

» Signature: Combining a document with a private key 

– Verification: Checking the document + signature with public key 

 Key agreement: Creating a shared secret 

» Even if both parties do not have a shared secret to start with! 

» Especially useful if the communication channel is insecure 

 Key generation: Creating secure keys 

» Requires e.g. secure random generators 

» From passwords: Creating keys suitable for algorithms 

 For each class many algorithms exist: Good & bad 
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Basic functionality cryptography 

Cipher text 

Encryption 

Plain text 

Key  

Key 

Decryption 
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Common requirements 

 Key comparatively very small 

 Data to encrypt very large 

 In comparison to the other; not necessarily absolute 

Insecure channel 

Secure channel 

Plain 

text 

Plain 

text 
Encryption 

Cipher 

text 

Cipher 

text 
Decryption 

Gutmann P.: „Network Security: Security Requirements“, University of Auckland,  

http://www.cs.auckland.ac.nz/~pgut001 



Michael Sonntag 9 Introduction to Cryptography 

Symmetric vs. asymmetric cryptography 

 Symmetric cryptography: Very old 

 Keys are short: >=56 Bits (DES) 

» Many algorithms known (many of them now insecure!) 

 Well suited to a large (homogenous) group of participants 

» Everyone knows the same key and can en-/decrypt messages 

from all others 

 Key distribution: Problematic (Secure channel needed) 

 Computationally very fast (1/100 – 1/1000 of asymm.) 

 Asymmetric cryptography: Very new (≈1970) 

 Keys are long: >=512 Bits (RSA/DSA; Ell. curves >=112) 

» Few algorithms known (most of them very secure) 

» Keys consist of two parts: One public, one private 

 Only suitable for a single person 

» Encrypt TO this person or verify signatures FROM this person 

 Certification distribution: Problematic (common TTP needed)! 

 Computationally slow: Calculation difficult/time-consuming 
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Symmetric (secret key) encryption 

Plain text Cipher text 

Encryption 

Decryption 

Secret Key 
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Symmetric cryptography 

 The same key is used for encryption and decryption 

 The key must therefore remain absolutely secret! 

 So it must be transported securely 

» This is only possible through a different channel! 

 Keys must be changed regularly (much encrypted content 

renders breaking the encryption easier!) 

 Also used for authentication (but: repudiation possible!) 

 "MAC" Message Authentication Code 

Cleartext Cleartext Encrypted message 

? 

Key exchange over secure channel 
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Asymmetric (public key) encryption 

Plain text Cipher text 

Encryption 

Decryption 

Private key 

Public key 

Key generation 

Trapdoor 

function 

Random 

number(s) 
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Private key 

Asymmetric cryptography 

 One part (private) of the key is used for decryption/signature 

 A encrypted to B: B's private key is used to decrypt 

 A signed to B: A's private key is used to sign 

 The other (public) is used for encryption/verification 

 A encrypted to B: B's public key is used to encrypt 

 A signed to B: A's public key is used to verify the signature 

 The public key is available to everyone 

 Problem: Association "Key ↔ Person" must be ensured 

Cleartext Cleartext Encrypted message 

? 
Public key can be obtained in various ways, 

e.g. from a trusted third party 

Public key 
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(Fast) symmetric 

encryption 

(Large) 

Plain text 

message 

(Large) 

Cipher text 

K 

D 

Random key 

(Slow) asymmetric 

encryption 

Receiver‘s 
public key 

D 

K 

Encrypted 

random 

key 

Goal: 

Combination of 

the functionality of 

asymmetric encryption with 

the speed of symmetric encryption  

Combining Symmetric & Asymmetric 

Encryption (1) 
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Combining Symmetric & Asymmetric 

Encryption (2) 

(Fast) symmetric 

decryption 

(Large) 

Plain text 

message 

K 

D 

(Large) 

Cipher text 

Encrypted 

random 

Key 

D 

K 

(Slow) asymmetric 

decryption 

Receiver‘s 
private key 

Goal: 

Combination of 

the functionality of 

asymmetric encryption with 

the speed of symmetric encryption  
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Sign: Encryption with private key + ... 

Plain text Cipher text 

Decryption 

Public key 

Private key 

Plain text 

==? Ok? 

Encryption 

Sign 
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Check: Decrypt with public key + compare 

Plain text Cipher text 

Decryption 

Private key 

Sign 

Plain text 

Ok? 

Encryption 

Message Digest 

==? Public Key 

Message Digest 
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Signature & Encryption 

Sender 

Random 
key 

Symmetric 
encryption 

Message 
digest 

Sender 
private key 

Asymmetric 
encryption 

Cipher text 

Receiver 
public key 

Asymmetric 
encryption 

Random 
generator 

Encrypted 
random key 

Encrypted 
signature 

Plain text 

K 

K 

K 

D 

D 

D 
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Signature & Decryption 

 Receiver      

Random 
key 

Symmetric 
decryption 

Message 
digest 

Sender 
public key 

Asymmetric 
decryption 

Cipher text 

Receiver 
private key 

Asymmetric 
decryption 

Encrypted 
random key 

Encrypted 
signature 

Plain text 

==? “Signature” 

OK? 

K 

K 

K 

D 

D 

D 
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Algorithms 

 Symmetric: 

 DES/3DES: Based on permutations, substitution; block cipher 

» 56/112 Bit; DES is now insecure 

– 3DES (=DES three times with different keys) is sufficient for 

commercial use (frequent key changes recommended) 

 AES (=Rijndael): “New & standard” algorithm  

» Several key sizes available 

 Asymmetric: 

 RSA: Classic asymmetric cipher (rather slow) 

» Arbitrary key size (>=1024 recommended); no longer patented! 

 Elliptic curves: Based on discrete logarithm 

» 160 Bit  1024 Bit RSA 

» DSA (=one variant): Only signatures, no encryption possible 

 Diffie-Hellman: Key agreement without previous knowledge 

» Generates a shared secret key 

» Original source of all asymmetric cryptography! 
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Algorithms 

 Hash: 

 SHA-1, RIPEMD-160: 160 Bit 

» SHA-1: Deemed to be not quite secure anymore 

 SHA-2: 224-512 Bit 

» Bit length varies 

 MD5: 128 Bit (not recommended any more; insecure) 

 Look unimportant, but in practice the security of many 

signatures (and other procedures) absolutely rely on them! 

 Don’t break the signature, just create a new document with 

the same hash as a known one and copy the signature! 

 Currently there is a selection procedure going on in the USA 

for choosing a new standard hash algorithm 

 Started 2007, probable end: 2012 

» So long because it includes intensive scientific scrutiny of all 

candidates in several rounds! 
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Strength of algorithms for the future 

 The necessary key length is not static: 

 Faster computers 

 Advances in mathematics 

 New attacks (most dangerous of all!) 

 Decision for length must incorporate: 

 Time/power required for en-/decryption 

» See e.g. smartcards/RFID (computing and electrical power)! 

 Degree of security (=amount of money required for breaking) 

 Absolute time the calculated value should remain secure! 

» Very often ignored! 

» Guideline: For the next 15 years (values below: 2024) 

– Symmetric: ≈ 89 Bit 

– Asymmetric: RSA, ...: ≈ 2113 Bit; DSA: ≈ 157 Bit 

– Corresponds to a budget for an attack in 1 day of ≈ 732 million US$ 

Source: Lenstra, A. K.,Verheul, E. R.: Selecting Cryptographic Key Sizes. DuD 24 (2000), 166 
Full article: http://security.ece.orst.edu/koc/ece575/papers/cryptosizes.pdf 
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Key exchange: 

Diffie-Hellman 

 Establishing a shared secret without prior knowledge over 

an insecure communication channel 

 Note: Vulnerable to man-in-the-middle attacks! 

» Attacker establishes shared secrets with both parties 

independently  Some method of authentication is needed 

 Incorporated in numerous protocols as a part 

 Idea: One-way function (easy to compute, hard to invert) 

 Here: Given xy mod p, x, p  Calculate y 

» Exponentiation: Simple; Discrete logarithm: Very hard 

 A: Selects a, p, g (p=prime number) 

 B: Select b, and obtains p and g 

 A  B: ga mod p  B A: gb mod p 

 A calculates: (gb mod p)a mod p = SECRET 

 B calculates: (ga mod p)b mod p = SECRET 
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Encryption: 

DES 

 Symmetric encryption algorithm with 56 Bit key length 

 Now seen as insecure because of short key length 

 Specifically secure against a much later published attack 

» Differential cryptoanalysis  Was already known but kept secret! 

 Currently attacks with brute force possible 

 Superseded by 3DES and AES 

 Triple-DES: Encrypt(key1,Decrypt(key2,Encrypt(key3))) 

» Because of a special attack, security is still only 112 Bits! 

 Because of its design, DES is fast to implement in hardware, 

but slow to implement in software 

 Basic idea: 

 Permutations, Expansion, Substitution, Permutation 

 Encryption and decryption are identical (only: key reversed) 
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Encryption: 

AES 

 Replacement for DES – Symmetric encryption 

 Key length: 128, 192, or 256 Bits 

 192, 256 Bits are allowed for US classification "Top secret" 

 Fast to implement in hard- and software 

 Now widely used in various devices and software 

 No known weaknesses of the algorithm 

 Note: Implementations may still suffer from problems 

» Example: Side channel attacks like timing encryption steps, 

measuring power usage, … 

 Basic idea: 

 Expansion, Substitution, Transposition, Mixing 
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Encryption: 

RSA 

 First public-key algorithm suitable for signing and encryption 

 Still secure, if long enough keys are used! 

 Basic idea: 

 Choose two very large prime numbers and multiply them 

» Factorization of this number is very hard 

 From these numbers a private and a public key are derived 

 Some mathematical weaknesses exist, therefore … 

 use a random padding, so each encryption of the same text 

produces different output 

 the same key should not be used for signing and encryption 

 good random number generators are needed 

 Prime numbers are usually only checked probabilistically 

 Key length: 1024 Bit might be broken in the near future 

 Recommendation: Use 2048 Bit key 
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Signing: 

DSA 

 Public key algorithm useable only for signatures 

 Based on the same method as Diffie-Hellman 

 Exponentiation modulo p 

 A variant exists: Elliptic Curve DSA 

 Requires a secure hash function and a good random 

number generator 

 Basic idea: 

 Choose public p, q, g (with certain mathematical relations) 

 Select x by random (0<x<q) 

 Calculate y = gx mod p 

 Public key: (p, q, g, y) 

 Private key: (x) 

 Signing: Involves the hash function and a new random value 
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Hashing: 

MD5 

 MD5 = Message Digest algorithm 5 

 Hash length: 128 Bit 

» Typically: 32 characters (hexadecimal encoding) 

 Very widely used 

 Attention: Several flaws are known! 

 Collisions (= 2 texts with identical hash) can be constructed 

 Interesting: MD5 is used in many webpages  Google can 

be used as a lookup tool! 

 Certain attacks are trivial (find some bytes that attached to a 

freely selectable file produce a chosen hash value) or simple 

(find “any” two documents with same hash value); for some 

still strong (find another document for a given hash value) 
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Hashing: 

MD5 

 Function: 

 Cut message up into 512 Byte blocks (use padding for last) 

 Based on addition, shifting, non-linear function 

 Still often used for storing password: "store MD5(pwd)" 

 Use at least "salting“ 

 Or: "Better" algorithms, i.e. requiring more time to calculate 

 Salting: Should be used with all kinds of hash algorithms! 

 Create a random value (for each operation anew!): Salt 

» Not only for each account, but for each new password to encrypt! 

 Create hash of random value concatenated with data 

 Store result + cleartext of random value: “x, MD5(x || pwd)” 

 Verification: Concatenate password with salt, hash it, and 

compare the result to the stored value 
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Hashing: 

SHA-x 

 SHA-1 = Secure Hash Algorithm 

 SHA-1: 160 Bits 

 SHA-2: 224, 256, 384 or 512 Bits (Individually: SHA-224, …) 

 Not completely secure any more! 

 No know attacks, but mathematics has proved weaknesses 

 Originally thought: Strength 80 Bit (birthday paradox) 

» =1/2 length; maximum value possible  280 tries for a collision 

 Current state: 263 tries 

» Just barely useful for very-large-budget organizations (NSA) 

 Function: Similar to MD5, but with different configuration 

 SHA-2 uses different algorithms 

 No know weaknesses, but not much investigation either! 



Michael Sonntag 31 Introduction to Cryptography 

Hashing: 

SHA-3 (Keccak) 

 Selected after public world-wide competition in 2012 

 Not yet (2/2013) officially announced as a standard 

 Not a replacement for SHA-2 (no problems known), but 

rather as an alternative 

 Should SHA-2 prove to be susceptible in the future 

 Inner working: 

 5*5 array of 64-bit words 

 Compute parity of columns and XOR it into two columns 

 Bitwise rotation of all words for a different number of bits 

 Permutation of the 25 words in a fixed pattern 

 Bitwise combine with next two rows (non-linear function!) 

 XOR of one word of state with linear shift register output 
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Hashing: 

SHA-3 (Keccak) 

 Calculation: 

 XOR some bits into the state, perform block permutation, 

XOR next bits, …… 

 End: Leading bits of the state are the hash 

 Number of bits to add per round depends on the hash size 

» 144 bytes  224 bit hash; 72 bytes  512 bit hash 

– “Better” hash  Add data to function more slowly to allow it to 

“permute” through all parts of the state! 

 Speed: 

 Very fast in hardware 

 Software: Allegedly 12.6 CPU cycles per input byte 

» On x86-64 with 64-bit code 
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Environmental components 

 Encryption algorithms are not all there is, to be secure 

 Many other elements must be taken care of: 

 Technical "surroundings": 

» Secure viewer: Showing exactly the content to sign and not 

something different 

» Secure transmission of codes/PINs from chipcards/terminals to 

the CPU actually calculating the signatures or the hashcode in 

reverse when signing takes place on the card/terminal 

» Physical access control/restrictions? 

» Side channels: Power, temperature, timing, cache access, … 

 Organizational issues: 

» Who knows the encryption keys and where are these stored? 

» How to get at them in case of illness/dismissal? 

– And how to invalidate them afterwards! 

» Who is allowed to do what? Does the equipment support these 

different security levels? 

» Securing keys/certificates etc. against loss 
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Certificates 

 Public keys must be connected to a certain individual/device 

 Everyone can use/create a key, but how do you know that 

the person holding the private key is actually "Dagobert 

Duck" (or a certain person using this pseudonym)? 

 "Someone" guarantees, that these two belong together 

Certificates connect a public key to a name 

 Certificates may contain other information 

 E.g. server certificates may contain the administrator's E-Mail 

 Personal certificates may contain restrictions or special 

permissions/empowerments 

» “May act on behalf of company A”, transaction restrictions etc. 

 Certificates are signed too, so nobody can tamper with them 

 Chicken-egg problem: Who signed the certificate? 

» Pre-shared "master" certificate/Public Key Infrastructure (PKI) 
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Certificate content 

 Currently only certificates of type X.509 are of importance 

 Several versions available; current one is three  X509v3 

 Standard is not too clear 

» Certificates from one vendor might be incompatible with those 

from another vendor or with some software 

» Special problem: What data, which form, which "schema" 

 No problem: 

 Public key including algorithm 

 Issuer: Who "guarantees" for the association key ↔ name 

 Version, serial number, validity, unique IDs 

 Problems: 

 Subject (=associated name): Different elements (E-Mail, 

additional/missing parts, ...) 

 Extensions: Key usage, CRL distribution, constraints, etc. 
See http://www.hack.org/mc/texts/x509guide.txt 
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Certificate 

Valid from: ............... 

Valid until: ............... 

Subject: Email, .…….. 

Name: ….……....……. 

Public key: ..…….….. 

….... ………………….. 

Signed by:  ... CA 

Signature 

Message 

digest 

CA 

private key 

Signing 

Message 

digest 

CA 
public key 

Verify ==? 

? 

? 

Certification Authority 

“CA” Certificate 
Verification of the  

certificate 

Trust? 
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Public Key Infrastructure (PKI) 

 Who guarantees, that the certificate is "correct"? 
» I.e. that the key belongs to exactly this person and that this 

person was securely identify (and not some impostor) 

 The issuer through his signature of the certificate 

 Who guarantees that this signature is "correct"? 

» ... 

– ... 

 Solution: The "top-level" certificate is self-signed 

 Key used for signing is the one for public key contained in it 

 This certificate you "just have to trust" 

» Obtained from a secure source, verified (e.g. fingerprint), ... 

 Can also be "cross-certified": One top-level certificate is used 

to sign another top-level certificate and in reverse 

» Good for few CAs only (otherwise: O(N2)!) 
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PKI Example 

Root CA 1 Root CA 2 

CA 1 CA 2 CA 3 CA 4 

User 1 User 2 User 5 User 4 User 3 

Message Program 

Self-signed Self-signed 

Cross-certification 

CA list 

Public 
authority 
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Certificate revocation 

 Sometimes certificates must be "removed", e.g. when 

 some attributes are incorrect (name/profession changes) 

 private key is disclosed 

 algorithm is now insecure 

 no longer used (e.g. server certificates) 

 Although they are still valid (looked at them alone)! 

 Solution: Revocation lists 

 Must (should) be consulted on each verification of a signature 

 Must happen fast e.g. on lost signature cards 

» In the meantime someone else could sign "for you"! 

 Contains a timestamp 

» Signatures before the revocation must remain valid indefinitely 

 Biggest problem: This requires continuous online connection! 

 Every transaction must check the revocation status for the 

very moment it is made ( DoS, …) 

Or: Private Key of CA disclosed/broken! 
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Certificate revocation: OCSP 

 CRLs are lists, which continuously become longer 

 Distribution/lookup is therefore problematic 

 Online Certificate Status Protocol makes this easier! 

 Note: The basic problem (=online access required) remains! 

 Security issues: 

 The status request reveals an interest in a specific person 

» At least to CA; depending on request encryption also publicly! 

 Where to get the OCSP URL from? 

» Typically included in the certificate  Check first against root! 

 Basic idea: 

 Send certificate to CA (name, key, serial number, …) 

 CA checks list and generates response 

 CA signs response and sends it back 

 Client checks signature and retrieves result 

 Support: IE 7 (>=Vista only!), all other major browsers 
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Certificates and digital signatures 

 Creating/Verifying a digital signature: 

 Encrypt values (see below) with private key 

 Send document and/or encrypted value to recipient 

 Recipient obtains certificate of signer (however) and checks it 

» Certificate chain, root certificate, revocation, expiry date, etc. 

 Recipient decrypts value with public part of key and checks it 

 Two kinds of signatures possible 

 "Internal": The document is "encrypted" with the private key 

» Verification=Decryption; reading the document takes long 

– "Avalanche property" of good (!) algorithms: Minimal modifications 

lead to complete gibberish on decryption 

 "External": A hash value is calculated and then signed 

» Verification=Comparing the decrypted hash with the (newly) 

calculated one from the plaintext document; quite fast 

– Possible problem: Finding a similar text with same hash value 

– Quality of hash algorithm is therefore very important here! 
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Encryption for the WWW 

 When transmitting sensitive information on the Web, the 

communication should be encrypted 

 Examples: Credit card numbers, company-internal forms, ... 

 Currently one method is widely used: TLS 

 Secure Socket Layer: A general solution for encrypted TCP 

traffic; most common use with http (https; NOT: shttp) 

» Option to use http and switch internally to TLS (=STARTTLS)! 

 TLS (Transport Layer Security): SSL successor, very similar 

 TLS provides: 

 Encrypted communication: Eavesdropping impossible 

» Depends on the actual algorithm/key length used 

» Uses symm. cryptography for speed; numbering against replay 

» Asymmetric cryptography used for key exchange 

 (Mutual) authentication by asym. cryptography supported 

 Configuration very important (algorithms, cert. storage, ...) 
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Security for the WWW 

IP 

TCP 

TLS (SSL) HTTP S-HTTP 

HTTP 

IPSec 

PGP SMTP 

SMTP 

 PGP: Pretty Good Privacy 

 TLS (SSL): Transport Layer Security (Secure Socket Layer) 

 The whole communication is secured 

 S-HTTP: HTTP + security extensions 

 Single messages are secured 

 HTTPS: HTTP over TLS 

 IPSec: IP Security 

 Every communication is encrypted and/or authenticated 
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Authentication modes 

 Either the server alone, or both server and client can be 

authenticated; but never the client alone 

 For the WWW this means, authenticating only the web 

browser is not possible! 

 Normally the server alone is authenticated 

» Client authentication only in closed systems ( cert. distrib.!) 

 Authentication requires a certificate 

 Most browsers come with a list of top-level CA certificates 

 Unknown certificates can be imported or accepted ad-hoc 

» Large part of CA business is based on this: No questions! 

 For smaller companies: Create their own certificate and 

distribute it to partners 

» For public: Present it on website (but is this really secure?) 

 Webserver must have access to private key: Must be 

secured very well within the system! 
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TLS: The protocol (1) 

Client Server 

ClientHello 
ServerHello 
[Certificate] 
[ServerKeyExchange] 
[CertificateRequest] 
ServerHelloDone 

[ClientCertificate] 
ClientKeyExchange 
[CertificateVerify] 
ChangeCipherSpec 
Finished 

ChangeCipherSpec 
Finished 

Encrypted [and authenticated] 
communication []: Optional parts 
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TLS: The protocol (2) 

 Client-/ServerHello: Contains a random number and 

encryption/compression capabilities 

 Random number: Prevents replay attacks 

 Certificate: Server certificate including chain to top-level CA 

 ServerKeyExchange: If the server has no certificate or it 

cannot be used for encryption 

 Commonly uses Diffie-Hellman Key Exchange protocol 

 Signed by certificate to avoid man-in-the-middle attacks 

 CertificateRequest: Non-anonymous server can request a 

client certificate 

 Contains list of certificate types understood 

 Contains list of DNs of acceptable CAs 

» DN = Distinguished Name; format for name in X.509 certificates 
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TLS: The protocol (3) 

 ServerHelloDone: Hand-off to tell client that this is all 

 ClientCertificate: Certificate of the client or warning that no 

(matching) one is available 

 Server can accept without certificate or terminate protocol 

 ClientKeyExchange: Client part of key exchange protocol 

 Always required! 

 CertificateVerify: Signed digest of messages 

 To prove the knowledge of the private key for the certificate 

 Finished: Encrypted & signed with (new) negotiated values 

 Content may be sent immediately (no wait for reply required) 

 ChangeCipherSpec: Switch to encryption 

 This message is still handled according to the old algorithms! 

» At the beginning this means, it is sent unencrypted 
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What you (don't) get! 

 Server (=counterpart) is the one specified in the certificate 

 Not necessarily the actual webserver; this is verified by the 

browser, however! 

» Difficulties for servers with several domain names, as in the TLS 

handshake there is no place for the hostname (as is in http!) 

– Virtual hosts: Separate and matching certificate should be provided 

 Client knows private key for its own certificate (if provided) 

 Certificate revocation was checked 

 Depends on the browser; not in protocol itself! 

» Sometimes: “Try again later” is accepted as “valid” 

 Encryption, authentication, integrity, non-repudiation,  

no manipulation, no replay 

 What you don't get: 

 Additional certificate content (e.g. attributes) often ignored 

 Hiding who talks to whom 
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Alternatives: 

Pre-shared keys 

 Only suitable for very small group of partners communicating 

 See VPN later; especially VPN tunnels! 

 Keys must be exchanged over a trusted channel 

 I.e. NOT over the channel used for communicating! 

 Protocols must use "Challenge-Response": The key may 

never be sent in clear! 
» Before you don't know who is on the other side … 

 Common way: Random value sent, hashed with secret key, 

sent back, compared to expected response 

» No eavesdropper/man-in-the-middle can retrieve the key from it 

 Not possible with SSL or TLS! 

 Advantage: Usually very simple to manage 

 Agree on a keyphrase in a telephone call  works! 

» No additional infrastructure needed (PKI, CRL, etc.) 
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Alternatives: 

Web of trust 

 Similar to PKI, but distributed model 

 Signing someone other's keys to certify, that the association 

is correct; diverse servers for storing keys and signatures 

 Based on transitivity of trust (=the signatures): 

 A trusts B, B trusts C, C trusts D  A trusts D 

 Not possible with TLS! 

 Uses different certificate format 

 Currently mainly used for E-Mails 

 Advantage: No single point of failure 

 Problem: No guaranteed decision 

 Perhaps just no trusted connection exists; still valid & correct! 

 CA's are possible, but not necessary 

 The system reliable only, if keys are signed by many people 

 Such people are not found easily everywhere 
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"Official" certificates: 

Advantages / Disadvantages 

+ No warning messages for browsers  

+ Identity of person/company verified accurately 

» More trust than a self-signed certificate 

+ Browser interoperability (creating a "good" one is not easy!) 

+ Key length issues, etc. are taken care of 

+ Provides reliable directory servers and CRL/OCSP services 

- Costs money (and expires regularly, requiring a new one!) 

At least one free provider now available (http://cert.startcom.org/)! 

- May take some time to obtain (depending on CA/location) 

- Guarantees for content are small or non-existing 

 Result: 

 Public website: Indispensable (browser warning) 

 Private/internal use: Very few reasons 

» Except: Large companies, where managing secure and 

available directories and CRLs are difficult (rare combination!) 



Michael Sonntag 52 Introduction to Cryptography 

"Official" certificates: 

Obtaining one 

 Fill in form for certificate (or local software) 

 Creates a "Certificate Signing Request" (CSR) 

» Contains the certificate data, but not the private key! 

 Pay the price 

 CA verifies the content 

 Usually through notarized/official documents 

» Perhaps also personally (depending on application) 

 CA creates the certificate 

 Signed by its own private key 

 CA makes the certificate available 

 To the customer 

 Usually also in the directory 

» Everyone can download it 
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VPNs 

 VPN = Virtual Private Network 

 A private network across a public medium 

 Replacement of leased lines by encrypted/authenticated 

communication using the "ordinary" and common internet 

» In the generic case, it can also be any kind of other communi-

cation system, but the internet is by far the most important one! 

 Especially important for mobile workers 

 Always "virtually" located in the home network  

» Telephone (VoIP): Same number same functionality, … 

» Server access: E-Mail, file servers etc. 

» Internal applications available 

 Can move from place to place freely 

 Other application: Branch offices 

 The internet serves as the company backbone 
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VPNs: Advantages 

 Transparent for users (apart from establishing perhaps) 

 User virtually sits on the other end of the tunnel 

 Obviates the need for a firewall 

 Everything is encrypted and authenticated 

» Filtering would be impossible anyway 

 But does NOT secure against "internal" attacks 

» Internet is protected against, Intranet must be secure itself! 

– Especially important for mobile workers: The laptop is virtually 

inside the company, but may have been connected also to other 

networks and is therefore possible infected, insecure, … 

 Does NOT apply in "split" configurations 

» Some traffic is sent through the tunnel (e.g. file server access) 

» Some traffic is sent to the Internet directly (e.g. webbrowser) 

 Practice: VPN connections are in a kind of "DMZ" 

 Easy to set up if basic configuration exists (i.e. 2nd, 3rd, …) 
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VPNs: Problems 

 Traffic can no longer be compressed 

 Must happen before or at the tunnel endpoint 

» Modern devices support this 

 No QoS (as often available with leased lines) 

 The Internet only does what it can 

 But possible regarding what is sent through the VPN! 

 Sometimes difficult to set up; interoperability difficult 

 Becomes better with IPSec 

 Easier with TLS-based VPNs 

 Powerful hardware needed for encrypting larger bandwidth 

 Dedicated devices/daughtercards, "VPN concentrators", … 

 Overhead; more bandwidth required 

 This is today usually only a small problem! 

 Data is physically outside: Not necessarily secured as well! 
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 Consists of two independent parts: 

 XML Signature: Providing non-repudiation 

 XML Encryption: Providing secrecy 

 Both trivially possible by existing technologies/standards 

 But only for the complete file! 

» This prevents e.g. writing the signature into the XML file itself! 

» Locating parts is no longer possible in encrypted files 

» Tags are also encrypted  known plaintext attack possible 

» No schema validation while encrypted 

 Solution: Standards for encrypting/signing parts of XML files 

 Problem: XML may differ binary, but be logically the same 

 E.g. LF, blanks, entity style/replacement, CDATA sections,… 

 Solution: Canonical XML 

» Specific "formatting" always producing the same binary result 

XML Security 
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 Produce unique physical representation of an XML fragment 

 Not foolproof: Even more strict is "Exclusive XML Canonic." 

 Works not really well for parts which are not well-formed 

 Unifies: 

 Character set: Always UTF-8 in NFC (=Normalization Form C) 

 Linebreaks: Always #xA 

 Attribute values: Normalized, double quotes, default 

attributes added 

 Content text: CDATA, entities, special characters, … 

 Superfluous elements: XML declaration, DTD, unneeded NS 

 Extraneous whitespace: Within tags, outside of document el. 

 Ordering: Attributes within a tag, namespace declarations 

 Limitations: 

 Base URIs, notations, external unparsed entity references, 

attribute types in DTD 

C14N: 

XML Canonicalization 
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 Encrypted can be: 

 The whole XML documents 

 A single XML element 

 XML element content: several (sub-)elements 

 XML element content: character data 

 Encrypted data can again be encrypted without problem 

 Encrypted data is represented by the following information 

 Encryption method: The algorithm used 

 Key information: How to find the decryption key 

» Symmetric encryption: The key itself (encrypted!) 

» Asymmetric encryption: The public key used 

» General: Name or pointer to the key to be used 

 The enciphered data: Value or pointer to it 

 Additional properties 

XML Encryption 

Structure 
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 Algorithms are identified by URIs 

 Some must be implemented (not used!), some are optional 

 Block encryption: TripleDES, AES-128, AES-256, AES-192 

 Stream encryption: None specified! 

 Key transport: RSA-v1.5, RSA-OAEP 

 Key agreement: Diffie-Hellman 

 Symmetric key wrap (encrypting keys): TripleDES, AES-

128, AES-256, AES-192 

 Message digest: SHA1, SHA256, SHA512, RIPEMD-160 

 Message authentication: XML digital signature 

 Canonicalization: (Exclus.) canonical; with(-out) comments 

 Encoding: Base64 

 The encoded result is for almost all algorithms binary data! 

XML Encryption 

Algorithms 

Required  Recommended  Optional 



Michael Sonntag 69 Introduction to Cryptography 

 When namespaces are used, these may be inherited by the 

element which is to be encrypted 

 Or explicitly removed by specifying ' xmlns:ns="" ' 

 When this is encrypted and later decrypted and put into a 

different context, the result might be invalid! 

 With empty namespace even in the same context 

» On canonicalization this might be stripped away, so after de-

cryption the default namespace is inherited instead of removed! 

 xml:base, xml:lang, xml:space attributes may cause problems 

 These are also inherited! 

 

The application must take care to specify these things 

explicitly or know exactly into which context to put the result 

of decryption! 

XML Encryption 

Problems 
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 A signature consists of 

 The actual signature value (base64 encoded) 

 Signature information: 

» Canonicalization, signature, digest method 

» What was signed: URI/XPath, …; additional transformations 

 Information on the key to use for verification 

» E.g. certificate (X.509, PGP, …), key name, … 

 Object information: What is actually signed 

 Additional properties: E.g. timestamp 

 Three kinds of signatures exist 

 Enveloping: Signed data contained within Object information 

 Enveloped: An ancestor of the signature is signed 

» The signature itself must be excluded from digesting, obviously! 

 Detached: External content (identified by URI or Transform) 

XML Signature 
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 Describe how to obtain the data object to be digested 

 Ordered list: Result of first is input for second, … 

 Each transform consists of an algorithm and appr. Attributes 

 Examples: 

 Two enveloped signatures required: Each signature must 

exclude itself, but it must also exclude the other signature 

 Enveloped transform: Equivalent to the following XPath 

transform 
 <XPath xmlns:dsig="&dsig;"> 

count(ancestor-or-self::dsig:Signature | here()/ancestor::dsig:Signature[1]) > 

count(ancestor-or-self::dsig:Signature)</XPath>  

» If the direct parent signature is in the set of all outer signatures, 

this element is excluded from signing 

 

XML Signature 

Transformations 
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 Algorithms are identified by URIs 

 Some must be implemented (not used!), some are optional 

 Digest: SHA1 

 Encoding: Base64 

 MAC: HMAC-SHA1 

 MAC=Message Authentication Code (=crypt. hash algorithm) 

 Signature: DSAwithSHA1, RSAwithSHA1 

 Canonicalization: Canonical XML omitting comment, with 

comm. 

 Transform: Enveloped signature, XPath, XSLT 

XML Signature 

Algorithms 

Required  Recommended  Optional 
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 Both do not specify new algorithms 

 These must be acquired separately (patent problems, …)! 

 Combining both can lead to problems 

 Signing encrypted data: How to know what is really signed? 

» Should be avoided; task of the application! 

 Encrypting signed data: How to know whether signature 

verification should be done before decryption or afterwards? 

» If complete structure is encrypted  no problem 

» When only subparts are encrypted, this gets important! 

» Example: Signing the payment information and later on en-

crypting the creditcard number, but leaving the name in cleartext 

» There exists a separate specification for this! 

– Introduces "exception" elements to the transformation 

XML Signature + Encryption 
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Conclusions 

 Using VPNs, SSL, digital signatures is nice (and necessary!), 

but does not solve all problems: 

 Denial of Service 

 Endpoint security (storing those credit card numbers) 

 Users: Security is cumbersome and therefore circumvented 

 Cryptography is only as secure as the key storage 

» Who uses really good passwords/passphrases? 

» How is the "backup" of the password organized (bank safe)? 

 Physical security? Social engineering? Internal attacks? 

 But security is also not self-serving: 

 Value of goods to be secured vs. cost of protection 

 

A holistic view is required for encompassing security! 
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Questions? 

Thank you for your attention! 

? ? 

? ? 

? 
? 


