
© Michael Sonntag 2012

Introduction to Cryptography

Institute for Information Processing and

Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at

http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Thanks to Rudolf Hörmanseder for some slides (esp. drawings!)

Michael Sonntag 2 Introduction to Cryptography

Introduction

 General aspects

 Why and where to use

 Technical aspects

 Symmetric vs. asymmetric cryptography

 Algorithms and their strength, required environment

 Encryption/signing: Diffie-Hellman, RSA, AES

 Hash algorithms: MD5, SHA-1, SHA-256

 Certificates

 Content, PKI, revocation

 SSL/TLS

 Modes, protocol

 XML Signature/Encryption

Michael Sonntag 3 Introduction to Cryptography

Why cryptography?

 Security is a very important aspect, especially if money (or

equivalents) are affected by transactions

 Not every information should be available to everyone

 Note: Data is sent in the Internet over numerous "open

systems", where anyone can listen it!

Security is needed!

 The technical aspect of security is cryptography

 Encrypting data against disclosure and modifications

 Signing data against modifications and repudiation

 Note: Cryptography does not solve all security problems!

 Example: Communication analysis (who talks to whom when)

 Other aspects of security are also needed

» E.g.: Do you know what your employees actually do with data?

 Solutions: DRM, deactivation codes, anonymizers, …

Michael Sonntag 4 Introduction to Cryptography

Application areas

 Storing data in encrypted form

 Even access will not lead to disclosure (Stolen Laptops!)

 Example: File/file system encryption programs

 Transmitting data securely

 Enc. transmission prevents eavesdropping and tampering

 Example: TLS

 Identifying your partner

 Preventing man-in-the-middle attacks

 Example: TLS with uni-/bidirectional certificates

 Proof of identity

 Avoiding impersonation

 Example: GPG E-Mail signatures, digital signatures

("Bürgerkarte")

Michael Sonntag 5 Introduction to Cryptography

Motivation

 Data is being

 transmitted

 stored

 processed

 and exposed to the following attacks:

 Inspection: without / with understanding

 Modification: without / with understanding

 Deletion: random / targeted

 Addition: random / targeted

 Replay: with / without knowledge

of consequences

Those cases where

the attacker can

understand the

data/consequences

(here underlined),

are more

problematic!

Michael Sonntag 6 Introduction to Cryptography

Software components

 Several different classes of algorithms required:

 Hash functions: Handling the whole document takes too long

» Drawback: Content could be substituted (collisions)!

 Encryption/Decryption: The same algorithm for symmetric,

but different one for asymmetric encryption/signatures

» Encryption: Combining a document with a public key

– Decryption: Combing encrypted document with private key

» Signature: Combining a document with a private key

– Verification: Checking the document + signature with public key

 Key agreement: Creating a shared secret

» Even if both parties do not have a shared secret to start with!

» Especially useful if the communication channel is insecure

 Key generation: Creating secure keys

» Requires e.g. secure random generators

» From passwords: Creating keys suitable for algorithms

 For each class many algorithms exist: Good & bad

Michael Sonntag 7 Introduction to Cryptography

Basic functionality cryptography

Cipher text

Encryption

Plain text

Key

Key

Decryption

Michael Sonntag 8 Introduction to Cryptography

Common requirements

 Key comparatively very small

 Data to encrypt very large

 In comparison to the other; not necessarily absolute

Insecure channel

Secure channel

Plain

text

Plain

text
Encryption

Cipher

text

Cipher

text
Decryption

Gutmann P.: „Network Security: Security Requirements“, University of Auckland,

http://www.cs.auckland.ac.nz/~pgut001

Michael Sonntag 9 Introduction to Cryptography

Symmetric vs. asymmetric cryptography

 Symmetric cryptography: Very old

 Keys are short: >=56 Bits (DES)

» Many algorithms known (many of them now insecure!)

 Well suited to a large (homogenous) group of participants

» Everyone knows the same key and can en-/decrypt messages

from all others

 Key distribution: Problematic (Secure channel needed)

 Computationally very fast (1/100 – 1/1000 of asymm.)

 Asymmetric cryptography: Very new (≈1970)

 Keys are long: >=512 Bits (RSA/DSA; Ell. curves >=112)

» Few algorithms known (most of them very secure)

» Keys consist of two parts: One public, one private

 Only suitable for a single person

» Encrypt TO this person or verify signatures FROM this person

 Certification distribution: Problematic (common TTP needed)!

 Computationally slow: Calculation difficult/time-consuming

Michael Sonntag 10 Introduction to Cryptography

Symmetric (secret key) encryption

Plain text Cipher text

Encryption

Decryption

Secret Key

Michael Sonntag 11 Introduction to Cryptography

Symmetric cryptography

 The same key is used for encryption and decryption

 The key must therefore remain absolutely secret!

 So it must be transported securely

» This is only possible through a different channel!

 Keys must be changed regularly (much encrypted content

renders breaking the encryption easier!)

 Also used for authentication (but: repudiation possible!)

 "MAC" Message Authentication Code

Cleartext Cleartext Encrypted message

?

Key exchange over secure channel

Michael Sonntag 12 Introduction to Cryptography

Asymmetric (public key) encryption

Plain text Cipher text

Encryption

Decryption

Private key

Public key

Key generation

Trapdoor

function

Random

number(s)

Michael Sonntag 13 Introduction to Cryptography

Private key

Asymmetric cryptography

 One part (private) of the key is used for decryption/signature

 A encrypted to B: B's private key is used to decrypt

 A signed to B: A's private key is used to sign

 The other (public) is used for encryption/verification

 A encrypted to B: B's public key is used to encrypt

 A signed to B: A's public key is used to verify the signature

 The public key is available to everyone

 Problem: Association "Key ↔ Person" must be ensured

Cleartext Cleartext Encrypted message

?
Public key can be obtained in various ways,

e.g. from a trusted third party

Public key

Michael Sonntag 14 Introduction to Cryptography

(Fast) symmetric

encryption

(Large)

Plain text

message

(Large)

Cipher text

K

D

Random key

(Slow) asymmetric

encryption

Receiver‘s
public key

D

K

Encrypted

random

key

Goal:

Combination of

the functionality of

asymmetric encryption with

the speed of symmetric encryption

Combining Symmetric & Asymmetric

Encryption (1)

Michael Sonntag 15 Introduction to Cryptography

Combining Symmetric & Asymmetric

Encryption (2)

(Fast) symmetric

decryption

(Large)

Plain text

message

K

D

(Large)

Cipher text

Encrypted

random

Key

D

K

(Slow) asymmetric

decryption

Receiver‘s
private key

Goal:

Combination of

the functionality of

asymmetric encryption with

the speed of symmetric encryption

Michael Sonntag 16 Introduction to Cryptography

Sign: Encryption with private key + ...

Plain text Cipher text

Decryption

Public key

Private key

Plain text

==? Ok?

Encryption

Sign

Michael Sonntag 17 Introduction to Cryptography

Check: Decrypt with public key + compare

Plain text Cipher text

Decryption

Private key

Sign

Plain text

Ok?

Encryption

Message Digest

==? Public Key

Message Digest

Michael Sonntag 18 Introduction to Cryptography

Signature & Encryption

Sender

Random
key

Symmetric
encryption

Message
digest

Sender
private key

Asymmetric
encryption

Cipher text

Receiver
public key

Asymmetric
encryption

Random
generator

Encrypted
random key

Encrypted
signature

Plain text

K

K

K

D

D

D

Michael Sonntag 19 Introduction to Cryptography

Signature & Decryption

 Receiver

Random
key

Symmetric
decryption

Message
digest

Sender
public key

Asymmetric
decryption

Cipher text

Receiver
private key

Asymmetric
decryption

Encrypted
random key

Encrypted
signature

Plain text

==? “Signature”

OK?

K

K

K

D

D

D

Michael Sonntag 20 Introduction to Cryptography

Algorithms

 Symmetric:

 DES/3DES: Based on permutations, substitution; block cipher

» 56/112 Bit; DES is now insecure

– 3DES (=DES three times with different keys) is sufficient for

commercial use (frequent key changes recommended)

 AES (=Rijndael): “New & standard” algorithm

» Several key sizes available

 Asymmetric:

 RSA: Classic asymmetric cipher (rather slow)

» Arbitrary key size (>=1024 recommended); no longer patented!

 Elliptic curves: Based on discrete logarithm

» 160 Bit  1024 Bit RSA

» DSA (=one variant): Only signatures, no encryption possible

 Diffie-Hellman: Key agreement without previous knowledge

» Generates a shared secret key

» Original source of all asymmetric cryptography!

Michael Sonntag 21 Introduction to Cryptography

Algorithms

 Hash:

 SHA-1, RIPEMD-160: 160 Bit

» SHA-1: Deemed to be not quite secure anymore

 SHA-2: 224-512 Bit

» Bit length varies

 MD5: 128 Bit (not recommended any more; insecure)

 Look unimportant, but in practice the security of many

signatures (and other procedures) absolutely rely on them!

 Don’t break the signature, just create a new document with

the same hash as a known one and copy the signature!

 Currently there is a selection procedure going on in the USA

for choosing a new standard hash algorithm

 Started 2007, probable end: 2012

» So long because it includes intensive scientific scrutiny of all

candidates in several rounds!

Michael Sonntag 22 Introduction to Cryptography

Strength of algorithms for the future

 The necessary key length is not static:

 Faster computers

 Advances in mathematics

 New attacks (most dangerous of all!)

 Decision for length must incorporate:

 Time/power required for en-/decryption

» See e.g. smartcards/RFID (computing and electrical power)!

 Degree of security (=amount of money required for breaking)

 Absolute time the calculated value should remain secure!

» Very often ignored!

» Guideline: For the next 15 years (values below: 2024)

– Symmetric: ≈ 89 Bit

– Asymmetric: RSA, ...: ≈ 2113 Bit; DSA: ≈ 157 Bit

– Corresponds to a budget for an attack in 1 day of ≈ 732 million US$

Source: Lenstra, A. K.,Verheul, E. R.: Selecting Cryptographic Key Sizes. DuD 24 (2000), 166
Full article: http://security.ece.orst.edu/koc/ece575/papers/cryptosizes.pdf

Michael Sonntag 23 Introduction to Cryptography

Key exchange:

Diffie-Hellman

 Establishing a shared secret without prior knowledge over

an insecure communication channel

 Note: Vulnerable to man-in-the-middle attacks!

» Attacker establishes shared secrets with both parties

independently  Some method of authentication is needed

 Incorporated in numerous protocols as a part

 Idea: One-way function (easy to compute, hard to invert)

 Here: Given xy mod p, x, p  Calculate y

» Exponentiation: Simple; Discrete logarithm: Very hard

 A: Selects a, p, g (p=prime number)

 B: Select b, and obtains p and g

 A  B: ga mod p B A: gb mod p

 A calculates: (gb mod p)a mod p = SECRET

 B calculates: (ga mod p)b mod p = SECRET

Michael Sonntag 24 Introduction to Cryptography

Encryption:

DES

 Symmetric encryption algorithm with 56 Bit key length

 Now seen as insecure because of short key length

 Specifically secure against a much later published attack

» Differential cryptoanalysis  Was already known but kept secret!

 Currently attacks with brute force possible

 Superseded by 3DES and AES

 Triple-DES: Encrypt(key1,Decrypt(key2,Encrypt(key3)))

» Because of a special attack, security is still only 112 Bits!

 Because of its design, DES is fast to implement in hardware,

but slow to implement in software

 Basic idea:

 Permutations, Expansion, Substitution, Permutation

 Encryption and decryption are identical (only: key reversed)

Michael Sonntag 25 Introduction to Cryptography

Encryption:

AES

 Replacement for DES – Symmetric encryption

 Key length: 128, 192, or 256 Bits

 192, 256 Bits are allowed for US classification "Top secret"

 Fast to implement in hard- and software

 Now widely used in various devices and software

 No known weaknesses of the algorithm

 Note: Implementations may still suffer from problems

» Example: Side channel attacks like timing encryption steps,

measuring power usage, …

 Basic idea:

 Expansion, Substitution, Transposition, Mixing

Michael Sonntag 26 Introduction to Cryptography

Encryption:

RSA

 First public-key algorithm suitable for signing and encryption

 Still secure, if long enough keys are used!

 Basic idea:

 Choose two very large prime numbers and multiply them

» Factorization of this number is very hard

 From these numbers a private and a public key are derived

 Some mathematical weaknesses exist, therefore …

 use a random padding, so each encryption of the same text

produces different output

 the same key should not be used for signing and encryption

 good random number generators are needed

 Prime numbers are usually only checked probabilistically

 Key length: 1024 Bit might be broken in the near future

 Recommendation: Use 2048 Bit key

Michael Sonntag 27 Introduction to Cryptography

Signing:

DSA

 Public key algorithm useable only for signatures

 Based on the same method as Diffie-Hellman

 Exponentiation modulo p

 A variant exists: Elliptic Curve DSA

 Requires a secure hash function and a good random

number generator

 Basic idea:

 Choose public p, q, g (with certain mathematical relations)

 Select x by random (0<x<q)

 Calculate y = gx mod p

 Public key: (p, q, g, y)

 Private key: (x)

 Signing: Involves the hash function and a new random value

Michael Sonntag 28 Introduction to Cryptography

Hashing:

MD5

 MD5 = Message Digest algorithm 5

 Hash length: 128 Bit

» Typically: 32 characters (hexadecimal encoding)

 Very widely used

 Attention: Several flaws are known!

 Collisions (= 2 texts with identical hash) can be constructed

 Interesting: MD5 is used in many webpages  Google can

be used as a lookup tool!

 Certain attacks are trivial (find some bytes that attached to a

freely selectable file produce a chosen hash value) or simple

(find “any” two documents with same hash value); for some

still strong (find another document for a given hash value)

Michael Sonntag 29 Introduction to Cryptography

Hashing:

MD5

 Function:

 Cut message up into 512 Byte blocks (use padding for last)

 Based on addition, shifting, non-linear function

 Still often used for storing password: "store MD5(pwd)"

 Use at least "salting“

 Or: "Better" algorithms, i.e. requiring more time to calculate

 Salting: Should be used with all kinds of hash algorithms!

 Create a random value (for each operation anew!): Salt

» Not only for each account, but for each new password to encrypt!

 Create hash of random value concatenated with data

 Store result + cleartext of random value: “x, MD5(x || pwd)”

 Verification: Concatenate password with salt, hash it, and

compare the result to the stored value

Michael Sonntag 30 Introduction to Cryptography

Hashing:

SHA-x

 SHA-1 = Secure Hash Algorithm

 SHA-1: 160 Bits

 SHA-2: 224, 256, 384 or 512 Bits (Individually: SHA-224, …)

 Not completely secure any more!

 No know attacks, but mathematics has proved weaknesses

 Originally thought: Strength 80 Bit (birthday paradox)

» =1/2 length; maximum value possible  280 tries for a collision

 Current state: 263 tries

» Just barely useful for very-large-budget organizations (NSA)

 Function: Similar to MD5, but with different configuration

 SHA-2 uses different algorithms

 No know weaknesses, but not much investigation either!

Michael Sonntag 31 Introduction to Cryptography

Hashing:

SHA-3 (Keccak)

 Selected after public world-wide competition in 2012

 Not yet (2/2013) officially announced as a standard

 Not a replacement for SHA-2 (no problems known), but

rather as an alternative

 Should SHA-2 prove to be susceptible in the future

 Inner working:

 5*5 array of 64-bit words

 Compute parity of columns and XOR it into two columns

 Bitwise rotation of all words for a different number of bits

 Permutation of the 25 words in a fixed pattern

 Bitwise combine with next two rows (non-linear function!)

 XOR of one word of state with linear shift register output

Michael Sonntag 32 Introduction to Cryptography

Hashing:

SHA-3 (Keccak)

 Calculation:

 XOR some bits into the state, perform block permutation,

XOR next bits, ……

 End: Leading bits of the state are the hash

 Number of bits to add per round depends on the hash size

» 144 bytes  224 bit hash; 72 bytes  512 bit hash

– “Better” hash  Add data to function more slowly to allow it to

“permute” through all parts of the state!

 Speed:

 Very fast in hardware

 Software: Allegedly 12.6 CPU cycles per input byte

» On x86-64 with 64-bit code

Michael Sonntag 33 Introduction to Cryptography

Environmental components

 Encryption algorithms are not all there is, to be secure

 Many other elements must be taken care of:

 Technical "surroundings":

» Secure viewer: Showing exactly the content to sign and not

something different

» Secure transmission of codes/PINs from chipcards/terminals to

the CPU actually calculating the signatures or the hashcode in

reverse when signing takes place on the card/terminal

» Physical access control/restrictions?

» Side channels: Power, temperature, timing, cache access, …

 Organizational issues:

» Who knows the encryption keys and where are these stored?

» How to get at them in case of illness/dismissal?

– And how to invalidate them afterwards!

» Who is allowed to do what? Does the equipment support these

different security levels?

» Securing keys/certificates etc. against loss

Michael Sonntag 34 Introduction to Cryptography

Certificates

 Public keys must be connected to a certain individual/device

 Everyone can use/create a key, but how do you know that

the person holding the private key is actually "Dagobert

Duck" (or a certain person using this pseudonym)?

 "Someone" guarantees, that these two belong together

Certificates connect a public key to a name

 Certificates may contain other information

 E.g. server certificates may contain the administrator's E-Mail

 Personal certificates may contain restrictions or special

permissions/empowerments

» “May act on behalf of company A”, transaction restrictions etc.

 Certificates are signed too, so nobody can tamper with them

 Chicken-egg problem: Who signed the certificate?

» Pre-shared "master" certificate/Public Key Infrastructure (PKI)

Michael Sonntag 35 Introduction to Cryptography

Certificate content

 Currently only certificates of type X.509 are of importance

 Several versions available; current one is three  X509v3

 Standard is not too clear

» Certificates from one vendor might be incompatible with those

from another vendor or with some software

» Special problem: What data, which form, which "schema"

 No problem:

 Public key including algorithm

 Issuer: Who "guarantees" for the association key ↔ name

 Version, serial number, validity, unique IDs

 Problems:

 Subject (=associated name): Different elements (E-Mail,

additional/missing parts, ...)

 Extensions: Key usage, CRL distribution, constraints, etc.
See http://www.hack.org/mc/texts/x509guide.txt

Michael Sonntag 36 Introduction to Cryptography

Certificate

Valid from:

Valid until:

Subject: Email, .……..

Name: ….……....…….

Public key: ..…….…..

….... …………………..

Signed by: ... CA

Signature

Message

digest

CA

private key

Signing

Message

digest

CA
public key

Verify ==?

?

?

Certification Authority

“CA” Certificate
Verification of the

certificate

Trust?

Michael Sonntag 37 Introduction to Cryptography

Public Key Infrastructure (PKI)

 Who guarantees, that the certificate is "correct"?
» I.e. that the key belongs to exactly this person and that this

person was securely identify (and not some impostor)

 The issuer through his signature of the certificate

 Who guarantees that this signature is "correct"?

» ...

– ...

 Solution: The "top-level" certificate is self-signed

 Key used for signing is the one for public key contained in it

 This certificate you "just have to trust"

» Obtained from a secure source, verified (e.g. fingerprint), ...

 Can also be "cross-certified": One top-level certificate is used

to sign another top-level certificate and in reverse

» Good for few CAs only (otherwise: O(N2)!)

Michael Sonntag 38 Introduction to Cryptography

PKI Example

Root CA 1 Root CA 2

CA 1 CA 2 CA 3 CA 4

User 1 User 2 User 5 User 4 User 3

Message Program

Self-signed Self-signed

Cross-certification

CA list

Public
authority

Michael Sonntag 39 Introduction to Cryptography

Certificate revocation

 Sometimes certificates must be "removed", e.g. when

 some attributes are incorrect (name/profession changes)

 private key is disclosed

 algorithm is now insecure

 no longer used (e.g. server certificates)

 Although they are still valid (looked at them alone)!

 Solution: Revocation lists

 Must (should) be consulted on each verification of a signature

 Must happen fast e.g. on lost signature cards

» In the meantime someone else could sign "for you"!

 Contains a timestamp

» Signatures before the revocation must remain valid indefinitely

 Biggest problem: This requires continuous online connection!

 Every transaction must check the revocation status for the

very moment it is made ( DoS, …)

Or: Private Key of CA disclosed/broken!

Michael Sonntag 40 Introduction to Cryptography

Certificate revocation: OCSP

 CRLs are lists, which continuously become longer

 Distribution/lookup is therefore problematic

 Online Certificate Status Protocol makes this easier!

 Note: The basic problem (=online access required) remains!

 Security issues:

 The status request reveals an interest in a specific person

» At least to CA; depending on request encryption also publicly!

 Where to get the OCSP URL from?

» Typically included in the certificate  Check first against root!

 Basic idea:

 Send certificate to CA (name, key, serial number, …)

 CA checks list and generates response

 CA signs response and sends it back

 Client checks signature and retrieves result

 Support: IE 7 (>=Vista only!), all other major browsers

Michael Sonntag 41 Introduction to Cryptography

Certificates and digital signatures

 Creating/Verifying a digital signature:

 Encrypt values (see below) with private key

 Send document and/or encrypted value to recipient

 Recipient obtains certificate of signer (however) and checks it

» Certificate chain, root certificate, revocation, expiry date, etc.

 Recipient decrypts value with public part of key and checks it

 Two kinds of signatures possible

 "Internal": The document is "encrypted" with the private key

» Verification=Decryption; reading the document takes long

– "Avalanche property" of good (!) algorithms: Minimal modifications

lead to complete gibberish on decryption

 "External": A hash value is calculated and then signed

» Verification=Comparing the decrypted hash with the (newly)

calculated one from the plaintext document; quite fast

– Possible problem: Finding a similar text with same hash value

– Quality of hash algorithm is therefore very important here!

Michael Sonntag 42 Introduction to Cryptography

Encryption for the WWW

 When transmitting sensitive information on the Web, the

communication should be encrypted

 Examples: Credit card numbers, company-internal forms, ...

 Currently one method is widely used: TLS

 Secure Socket Layer: A general solution for encrypted TCP

traffic; most common use with http (https; NOT: shttp)

» Option to use http and switch internally to TLS (=STARTTLS)!

 TLS (Transport Layer Security): SSL successor, very similar

 TLS provides:

 Encrypted communication: Eavesdropping impossible

» Depends on the actual algorithm/key length used

» Uses symm. cryptography for speed; numbering against replay

» Asymmetric cryptography used for key exchange

 (Mutual) authentication by asym. cryptography supported

 Configuration very important (algorithms, cert. storage, ...)

Michael Sonntag 43 Introduction to Cryptography

Security for the WWW

IP

TCP

TLS (SSL) HTTP S-HTTP

HTTP

IPSec

PGP SMTP

SMTP

 PGP: Pretty Good Privacy

 TLS (SSL): Transport Layer Security (Secure Socket Layer)

 The whole communication is secured

 S-HTTP: HTTP + security extensions

 Single messages are secured

 HTTPS: HTTP over TLS

 IPSec: IP Security

 Every communication is encrypted and/or authenticated

Michael Sonntag 44 Introduction to Cryptography

Authentication modes

 Either the server alone, or both server and client can be

authenticated; but never the client alone

 For the WWW this means, authenticating only the web

browser is not possible!

 Normally the server alone is authenticated

» Client authentication only in closed systems ( cert. distrib.!)

 Authentication requires a certificate

 Most browsers come with a list of top-level CA certificates

 Unknown certificates can be imported or accepted ad-hoc

» Large part of CA business is based on this: No questions!

 For smaller companies: Create their own certificate and

distribute it to partners

» For public: Present it on website (but is this really secure?)

 Webserver must have access to private key: Must be

secured very well within the system!

Michael Sonntag 45 Introduction to Cryptography

TLS: The protocol (1)

Client Server

ClientHello
ServerHello
[Certificate]
[ServerKeyExchange]
[CertificateRequest]
ServerHelloDone

[ClientCertificate]
ClientKeyExchange
[CertificateVerify]
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Encrypted [and authenticated]
communication []: Optional parts

Michael Sonntag 46 Introduction to Cryptography

TLS: The protocol (2)

 Client-/ServerHello: Contains a random number and

encryption/compression capabilities

 Random number: Prevents replay attacks

 Certificate: Server certificate including chain to top-level CA

 ServerKeyExchange: If the server has no certificate or it

cannot be used for encryption

 Commonly uses Diffie-Hellman Key Exchange protocol

 Signed by certificate to avoid man-in-the-middle attacks

 CertificateRequest: Non-anonymous server can request a

client certificate

 Contains list of certificate types understood

 Contains list of DNs of acceptable CAs

» DN = Distinguished Name; format for name in X.509 certificates

Michael Sonntag 47 Introduction to Cryptography

TLS: The protocol (3)

 ServerHelloDone: Hand-off to tell client that this is all

 ClientCertificate: Certificate of the client or warning that no

(matching) one is available

 Server can accept without certificate or terminate protocol

 ClientKeyExchange: Client part of key exchange protocol

 Always required!

 CertificateVerify: Signed digest of messages

 To prove the knowledge of the private key for the certificate

 Finished: Encrypted & signed with (new) negotiated values

 Content may be sent immediately (no wait for reply required)

 ChangeCipherSpec: Switch to encryption

 This message is still handled according to the old algorithms!

» At the beginning this means, it is sent unencrypted

Michael Sonntag 48 Introduction to Cryptography

What you (don't) get!

 Server (=counterpart) is the one specified in the certificate

 Not necessarily the actual webserver; this is verified by the

browser, however!

» Difficulties for servers with several domain names, as in the TLS

handshake there is no place for the hostname (as is in http!)

– Virtual hosts: Separate and matching certificate should be provided

 Client knows private key for its own certificate (if provided)

 Certificate revocation was checked

 Depends on the browser; not in protocol itself!

» Sometimes: “Try again later” is accepted as “valid”

 Encryption, authentication, integrity, non-repudiation,

no manipulation, no replay

 What you don't get:

 Additional certificate content (e.g. attributes) often ignored

 Hiding who talks to whom

Michael Sonntag 49 Introduction to Cryptography

Alternatives:

Pre-shared keys

 Only suitable for very small group of partners communicating

 See VPN later; especially VPN tunnels!

 Keys must be exchanged over a trusted channel

 I.e. NOT over the channel used for communicating!

 Protocols must use "Challenge-Response": The key may

never be sent in clear!
» Before you don't know who is on the other side …

 Common way: Random value sent, hashed with secret key,

sent back, compared to expected response

» No eavesdropper/man-in-the-middle can retrieve the key from it

 Not possible with SSL or TLS!

 Advantage: Usually very simple to manage

 Agree on a keyphrase in a telephone call  works!

» No additional infrastructure needed (PKI, CRL, etc.)

Michael Sonntag 50 Introduction to Cryptography

Alternatives:

Web of trust

 Similar to PKI, but distributed model

 Signing someone other's keys to certify, that the association

is correct; diverse servers for storing keys and signatures

 Based on transitivity of trust (=the signatures):

 A trusts B, B trusts C, C trusts D  A trusts D

 Not possible with TLS!

 Uses different certificate format

 Currently mainly used for E-Mails

 Advantage: No single point of failure

 Problem: No guaranteed decision

 Perhaps just no trusted connection exists; still valid & correct!

 CA's are possible, but not necessary

 The system reliable only, if keys are signed by many people

 Such people are not found easily everywhere

Michael Sonntag 51 Introduction to Cryptography

"Official" certificates:

Advantages / Disadvantages

+ No warning messages for browsers

+ Identity of person/company verified accurately

» More trust than a self-signed certificate

+ Browser interoperability (creating a "good" one is not easy!)

+ Key length issues, etc. are taken care of

+ Provides reliable directory servers and CRL/OCSP services

- Costs money (and expires regularly, requiring a new one!)

At least one free provider now available (http://cert.startcom.org/)!

- May take some time to obtain (depending on CA/location)

- Guarantees for content are small or non-existing

 Result:

 Public website: Indispensable (browser warning)

 Private/internal use: Very few reasons

» Except: Large companies, where managing secure and

available directories and CRLs are difficult (rare combination!)

Michael Sonntag 52 Introduction to Cryptography

"Official" certificates:

Obtaining one

 Fill in form for certificate (or local software)

 Creates a "Certificate Signing Request" (CSR)

» Contains the certificate data, but not the private key!

 Pay the price

 CA verifies the content

 Usually through notarized/official documents

» Perhaps also personally (depending on application)

 CA creates the certificate

 Signed by its own private key

 CA makes the certificate available

 To the customer

 Usually also in the directory

» Everyone can download it

Michael Sonntag 53 Introduction to Cryptography

VPNs

 VPN = Virtual Private Network

 A private network across a public medium

 Replacement of leased lines by encrypted/authenticated

communication using the "ordinary" and common internet

» In the generic case, it can also be any kind of other communi-

cation system, but the internet is by far the most important one!

 Especially important for mobile workers

 Always "virtually" located in the home network

» Telephone (VoIP): Same number same functionality, …

» Server access: E-Mail, file servers etc.

» Internal applications available

 Can move from place to place freely

 Other application: Branch offices

 The internet serves as the company backbone

Michael Sonntag 54 Introduction to Cryptography

VPNs: Advantages

 Transparent for users (apart from establishing perhaps)

 User virtually sits on the other end of the tunnel

 Obviates the need for a firewall

 Everything is encrypted and authenticated

» Filtering would be impossible anyway

 But does NOT secure against "internal" attacks

» Internet is protected against, Intranet must be secure itself!

– Especially important for mobile workers: The laptop is virtually

inside the company, but may have been connected also to other

networks and is therefore possible infected, insecure, …

 Does NOT apply in "split" configurations

» Some traffic is sent through the tunnel (e.g. file server access)

» Some traffic is sent to the Internet directly (e.g. webbrowser)

 Practice: VPN connections are in a kind of "DMZ"

 Easy to set up if basic configuration exists (i.e. 2nd, 3rd, …)

Michael Sonntag 55 Introduction to Cryptography

VPNs: Problems

 Traffic can no longer be compressed

 Must happen before or at the tunnel endpoint

» Modern devices support this

 No QoS (as often available with leased lines)

 The Internet only does what it can

 But possible regarding what is sent through the VPN!

 Sometimes difficult to set up; interoperability difficult

 Becomes better with IPSec

 Easier with TLS-based VPNs

 Powerful hardware needed for encrypting larger bandwidth

 Dedicated devices/daughtercards, "VPN concentrators", …

 Overhead; more bandwidth required

 This is today usually only a small problem!

 Data is physically outside: Not necessarily secured as well!

Michael Sonntag 65 Introduction to Cryptography

 Consists of two independent parts:

 XML Signature: Providing non-repudiation

 XML Encryption: Providing secrecy

 Both trivially possible by existing technologies/standards

 But only for the complete file!

» This prevents e.g. writing the signature into the XML file itself!

» Locating parts is no longer possible in encrypted files

» Tags are also encrypted  known plaintext attack possible

» No schema validation while encrypted

 Solution: Standards for encrypting/signing parts of XML files

 Problem: XML may differ binary, but be logically the same

 E.g. LF, blanks, entity style/replacement, CDATA sections,…

 Solution: Canonical XML

» Specific "formatting" always producing the same binary result

XML Security

Michael Sonntag 66 Introduction to Cryptography

 Produce unique physical representation of an XML fragment

 Not foolproof: Even more strict is "Exclusive XML Canonic."

 Works not really well for parts which are not well-formed

 Unifies:

 Character set: Always UTF-8 in NFC (=Normalization Form C)

 Linebreaks: Always #xA

 Attribute values: Normalized, double quotes, default

attributes added

 Content text: CDATA, entities, special characters, …

 Superfluous elements: XML declaration, DTD, unneeded NS

 Extraneous whitespace: Within tags, outside of document el.

 Ordering: Attributes within a tag, namespace declarations

 Limitations:

 Base URIs, notations, external unparsed entity references,

attribute types in DTD

C14N:

XML Canonicalization

Michael Sonntag 67 Introduction to Cryptography

 Encrypted can be:

 The whole XML documents

 A single XML element

 XML element content: several (sub-)elements

 XML element content: character data

 Encrypted data can again be encrypted without problem

 Encrypted data is represented by the following information

 Encryption method: The algorithm used

 Key information: How to find the decryption key

» Symmetric encryption: The key itself (encrypted!)

» Asymmetric encryption: The public key used

» General: Name or pointer to the key to be used

 The enciphered data: Value or pointer to it

 Additional properties

XML Encryption

Structure

Michael Sonntag 68 Introduction to Cryptography

 Algorithms are identified by URIs

 Some must be implemented (not used!), some are optional

 Block encryption: TripleDES, AES-128, AES-256, AES-192

 Stream encryption: None specified!

 Key transport: RSA-v1.5, RSA-OAEP

 Key agreement: Diffie-Hellman

 Symmetric key wrap (encrypting keys): TripleDES, AES-

128, AES-256, AES-192

 Message digest: SHA1, SHA256, SHA512, RIPEMD-160

 Message authentication: XML digital signature

 Canonicalization: (Exclus.) canonical; with(-out) comments

 Encoding: Base64

 The encoded result is for almost all algorithms binary data!

XML Encryption

Algorithms

Required Recommended Optional

Michael Sonntag 69 Introduction to Cryptography

 When namespaces are used, these may be inherited by the

element which is to be encrypted

 Or explicitly removed by specifying ' xmlns:ns="" '

 When this is encrypted and later decrypted and put into a

different context, the result might be invalid!

 With empty namespace even in the same context

» On canonicalization this might be stripped away, so after de-

cryption the default namespace is inherited instead of removed!

 xml:base, xml:lang, xml:space attributes may cause problems

 These are also inherited!

The application must take care to specify these things

explicitly or know exactly into which context to put the result

of decryption!

XML Encryption

Problems

Michael Sonntag 70 Introduction to Cryptography

 A signature consists of

 The actual signature value (base64 encoded)

 Signature information:

» Canonicalization, signature, digest method

» What was signed: URI/XPath, …; additional transformations

 Information on the key to use for verification

» E.g. certificate (X.509, PGP, …), key name, …

 Object information: What is actually signed

 Additional properties: E.g. timestamp

 Three kinds of signatures exist

 Enveloping: Signed data contained within Object information

 Enveloped: An ancestor of the signature is signed

» The signature itself must be excluded from digesting, obviously!

 Detached: External content (identified by URI or Transform)

XML Signature

Michael Sonntag 71 Introduction to Cryptography

 Describe how to obtain the data object to be digested

 Ordered list: Result of first is input for second, …

 Each transform consists of an algorithm and appr. Attributes

 Examples:

 Two enveloped signatures required: Each signature must

exclude itself, but it must also exclude the other signature

 Enveloped transform: Equivalent to the following XPath

transform
 <XPath xmlns:dsig="&dsig;">

count(ancestor-or-self::dsig:Signature | here()/ancestor::dsig:Signature[1]) >

count(ancestor-or-self::dsig:Signature)</XPath>

» If the direct parent signature is in the set of all outer signatures,

this element is excluded from signing

XML Signature

Transformations

Michael Sonntag 72 Introduction to Cryptography

 Algorithms are identified by URIs

 Some must be implemented (not used!), some are optional

 Digest: SHA1

 Encoding: Base64

 MAC: HMAC-SHA1

 MAC=Message Authentication Code (=crypt. hash algorithm)

 Signature: DSAwithSHA1, RSAwithSHA1

 Canonicalization: Canonical XML omitting comment, with

comm.

 Transform: Enveloped signature, XPath, XSLT

XML Signature

Algorithms

Required Recommended Optional

Michael Sonntag 73 Introduction to Cryptography

 Both do not specify new algorithms

 These must be acquired separately (patent problems, …)!

 Combining both can lead to problems

 Signing encrypted data: How to know what is really signed?

» Should be avoided; task of the application!

 Encrypting signed data: How to know whether signature

verification should be done before decryption or afterwards?

» If complete structure is encrypted  no problem

» When only subparts are encrypted, this gets important!

» Example: Signing the payment information and later on en-

crypting the creditcard number, but leaving the name in cleartext

» There exists a separate specification for this!

– Introduces "exception" elements to the transformation

XML Signature + Encryption

Michael Sonntag 74 Introduction to Cryptography

Conclusions

 Using VPNs, SSL, digital signatures is nice (and necessary!),

but does not solve all problems:

 Denial of Service

 Endpoint security (storing those credit card numbers)

 Users: Security is cumbersome and therefore circumvented

 Cryptography is only as secure as the key storage

» Who uses really good passwords/passphrases?

» How is the "backup" of the password organized (bank safe)?

 Physical security? Social engineering? Internal attacks?

 But security is also not self-serving:

 Value of goods to be secured vs. cost of protection

A holistic view is required for encompassing security!

© Michael Sonntag 2012

Questions?

Thank you for your attention!

? ?

? ?

?
?

