
© Michael Sonntag 2012

Automating security checks

Institute for Information Processing and

Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at

http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Michael Sonntag 2 Automating security checks

Agenda

 Why automatization?

 What can be automated?

 Example: Skipfish

 How reliable are these tools?

 Practical examples of searching for vulnerabilities:

 Information collection with NMap

 Password cracking (John the Ripper, Ophcrack)

 Exploit scanning with Nessus

Michael Sonntag 3 Automating security checks

Why automatization?

 Ensuring security is not that hard for a single system

 You know it in detail

 When something is discovered, it is implemented and tested

 But: Many sites with many configuration options?

 Do you know them all?

» Are they identical everywhere (versions!)?

 Do you have time to change everything accordingly?

» Or do you depend on automatic updates/roll-out?

 Are you sure you did not miss one option somewhere?

» Testing the same thing several times is tedious

 Solution: Automatic testing whether a problem exists

 Professionals write tests You just apply them

» No need to know exactly how the attack works!

 Regular re-testing is possible

 Ad-hoc & patchy testing Systematic & comprehensive

Michael Sonntag 4 Automating security checks

Overlap with monitoring

 Some overlap with system monitoring exists

 Failures are just a “different kind” of attack

 Some problems may occur accidentally or intentionally

» Example: Blacklisting of mail servers

 Monitoring may uncover exploitation of a problem

» Will not find how the attacker hacked the system, but that, e.g.

through increased load, huge outgoing traffic, …

 But there are some important differences:

 Monitoring knows in advance what to look for, security

requires frequent updates for newly discovered problems

 Monitoring takes place more frequently

 Similar software/integration possible, but not the same!

Michael Sonntag 5 Automating security checks

Overlap with hacking

 Tools are available to search for vulnerabilities

 These can be used for identifying the fact, to fix them (good)

 Or for later exploiting them (bad)

 It depends on the intention and whose system is scanned

 Note: Various tools exist, which do not only search for

vulnerabilities, but also exploit them

 Injecting code, opening shells etc.

 These are legally even more “dangerous”!

 Some tools cannot be assigned a “good” or “bad” class

 E.g. password cracking: The SW does exactly the same, and

only the interpretation of the result/actions differs

 Here special care about the legality of the actions is needed

 Clear (ideally: written) permission by the owner of the system

Michael Sonntag 6 Automating security checks

What can be automated?

 Code tests: Analysis of source code

 For known errors or potentially dangerous patterns

 Or just trying: E.g. fuzzing (random input)

 Web application tests

 Very important, because they are a regular source of

problems and can be exploited from everyone at a distance

» Elevation of privilege Only your employees!

 Examples: DNS hijacking, blacklisting, defacement, malware

injection, suspicious account activity, specific exploits

 Properties of tests:

 Probabilistic: Some tests give no definite answer; e.g. exploits

that only work rarely (depending on memory layout, …)

 Destructive: Some tests will crash the software/system

 Method vs. exploit: Checking for general method of attack

(e.g. SQL injection) or testing a specific problem (typ. bug)?

Michael Sonntag 7 Automating security checks

Source code analysis

 Often external programs run on the source

 Better: Integration in development environment

» Run continually, i.e. after every change/before compilation

 Checking for code problems

 Can do a lot of analysis impossible later (compilation!)

 Quality varies: Always a problem Rarely one

» Still: Every single issue must be investigated in detail!

 Typically static analysis, but need not be

 Adding code for test runs, which identifies runtime problems

 Examples:

 Using unsafe methods (“sprintf” instead of “snprintf”)

 Access to shared variable from multip. threads without locking

 Accessing non-reserved memory; memory not freed

 Uninitialized variables, data tracing, duplicated code, …

Michael Sonntag 8 Automating security checks

Development environments:

Eclipse & Java

 Integrated under Java Compiler Errors/Warnings

 Long list including other aspects

» E.g. code style understanding problems

 Checked whenever a Java file is saved

 Examples:

 Assignment problems: x=x; if (x=y);

 Switch case fall through: case ?: x; case ?: …

 Null pointer access

 Dead code: if (false) …

 Redundant/unnecessary code: unused variables

 Hidden fields/variables

 Overriding/no overriding methods

 Most are not directly security relevant, but hint at bugs

 And bugs sometimes lead to security problems

 Similarly: Validation of HTML/XML/JSP/… files

Michael Sonntag 9 Automating security checks

Web:

Various problems

 DNS Hijacking: Modification of DNS server/responses

 Redirecting requests to other IP addresses

 Requires checking various DNS servers all over the world

» Not a guarantee, however!

 Domain Hijacking (theft): Transfer of the domain name to a

different owner; typ. also to a different server

 Verification of the registrar information/WhoIS

 Defacement: Modification of the website by a third party

 Typically the result of a hack

 Difficult to distinguish automatically from authorized

modifications and for dynamic pages (e.g. blogs)

 Certificates: HTTPS certificate valid, identical, not insecure

 E.g. replaced certificate (hack)

Michael Sonntag 10 Automating security checks

Web:

Blacklisting

 Possible for both websites and E-Mail

 May be based on domain name or IP address

 E-Mail: Spam, phishing

 Sources: SpamHaus, SURBL

 Web: Spam, phishing, virus, exploits, popups, …

 E.g. Norton safe Web, Google Safe browsing, Site Advisor

 Marked as inappropriate for children (minor protection!)

 Possible reasons:

 Someone hacked your site/placed malware on it

 Someone sent spam with you as sender/over your mailserver

 Incorrect message sent to owner of list

 Can be difficult to get off the list!

Michael Sonntag 11 Automating security checks

Web:

Malware injection

 Adding JavaScript to the webpage or code to the source

 Intention: Infecting the computer of the browser

 Will typically not be a (technical!) problem for your server

» But will probably be a legal problem!

 Requires a bug or lacking security on your site

 Example: Hidden iframe (size: 1x1 pixel, hidden)

 Often created through (nested) obfuscated scripts

 Then used for drive-by downloads

 Can be very difficult to detect, as the code can be

obfuscated, randomly modified etc.

 Typical solution: Compare with known-good page/source

 Alternative: Check for suspicious activity/links/frames

 Alternative: Use real browser and monitor actions

Michael Sonntag 12 Automating security checks

Web:

Suspicious account activity

 Checks whether an account has been hijacked

 So typically user-oriented, but also for servers

» Systematic problem allowing hijacking, not trojan on client

» Typical problem: Cross Site Scripting (XSS)

– Steal session ID change password own account

 Other elements may be checked as well: Used for sending

Spam, phishing, illegal activity, credit card fraud etc.

 This is typically very specific for the individual site and

therefore not available in general!

 Typical signs for account hijacking:

 Log ins from different IPs/IPs in different countries

 Log-ins to multiple accounts from the same IP

 Cannot be distinguished from outside; requires software

within or on the server

 Basic vulnerabilities can be discovered in other ways

Michael Sonntag 13 Automating security checks

General:

Specific exploits

 This covers all kinds of vulnerabilities

 Web server, operating system, installed software, etc.

 Can be run from inside or outside; where attackers might be

 Reason: Inside protection is often much more lenient and

when someone managed to get in, there should still be no

obvious security problems

 Signatures are implemented as small scripts

 Each new attack/weakness/bug New script

» Requires continuous updating!

 Note: Will be used by attackers as well!

 Example: Nessus (see later)

 More exploit oriented: Metasploit

 Regularly used by attackers

 Main element is exploitation, less finding a security problem

Michael Sonntag 14 Automating security checks

Example: Skipfish

 Web application security scanner

 Will scan a whole site for various security problems

 Very simple usage

 Scans for various risk levels:

 High: SQL injection, command injection, file upload, …

» Brute force: Huge logs, enormous time!

 Medium: Directory traversal, stored/reflected XSS, script/css

injection, mixed content, MIME- and charset mismatches,

incorrect caching directives, etc.

 Low: Directory listing, stored/reflected redirection, content

embedding, mixed content, credentials in URLs, SSL

certificates, forms without XSRF protection, …

 Allows partial checking (checks take quite long)

 X % of all links followed/problems checked

» Randomly determined Regular scanning Probably checked

everything over some time!

Michael Sonntag 15 Automating security checks

Skipfish:

How to scan

 Note: Skipfish has only a very limited database of known

vulnerabilities

 Based on three-step differential probes

» Uses wordlists to look for extensions and for filling in forms

 Skipfish is provided as source code

 For a Linux-like environment (Mac, Cygwin, …)

 Just run “make” to compile it

 Select a dictionary to use

 Note: The bigger the dictionary, the longer the scan takes!

 Start it on command line with output directory and URL

 Additional parameters allow restricting the depth, percentage

of links followed, specify authentication cookies (to get around

logins), connection rate limiting, …

 Example: ./skipfish -o output_dir http://www.example.com/

Michael Sonntag 16 Automating security checks

Skipfish:

Output interpretation

 Output is produced as an

annotated sitemap

 First line can expand

 Below: Problems found in

decreasing importance

with brief explanation

 Note: Many things not

necessarily a problem!

» E.g. PUT: If file upload

is intended, this is OK

(here it is not !)

 Note: Took 88 hours, but

is not even remotely

complete!

Michael Sonntag 17 Automating security checks

Reliability

 Reliability of automated security checks is very mixed

 Specific exploit code tested Perfect (attack did work)

 General programming style Might sometimes be a problem

 Typical scans always produce a large number of warnings

 Your SSL certificate is not an officially recognized one, users

can upload files, character set mismatches (alone

unimportant, but together with user-contributed content this

may suddenly becomes dangerous!)

 Investigate in detail the first time

 Later on: Check for modifications only!

» Something new, something “enlarged” (more files) etc.

» Therefore they work best for relatively “static” webpages

– Meaning that structure and programming remains the same, not

necessarily the actual content shown on the pages!

Michael Sonntag 18 Automating security checks

NMap

 NMap (Network MAPper) is a network scanner

 It tries to find all computers in a specific network and checks,

what ports are open, what OS they are running, whether

there is a firewall, etc.

 It does not look for specific vulnerabilities!

 But it gives recommendations; e.g. services to disable

 Some scans + vuln. systems Lock-up/crash!

 Used as a tool for inventory generation in a network

 Are there any computers which should not be there?

 Can also be used to gather information for a later attack

» Which OS/software and which version is running

 Stages: 1 = Host discovery, 2 = Port scan, 3 = Service/

version detection, 4 = OS detection, 5 = Scripting

 Scripting may also include vulnerability/malware detection!

Michael Sonntag 19 Automating security checks

NMap

 Usage: Trivial!

 Start program and enter IP address

 Select profile for scanning

» Special options only available in the command line version or

when constructing a new profile!

 More complex options:

 Stealth scans

» Trying to not show up on various statistics

Michael Sonntag 20 Automating security checks

Sample result:

NMap local subnet scan

Michael Sonntag 21 Automating security checks

Sample result:

NMap OS detection

Michael Sonntag 22 Automating security checks

Sample result:

NMap OS detection

Michael Sonntag 23 Automating security checks

Sample result:

NMap OS detection

Michael Sonntag 24 Automating security checks

John the Ripper

 Password cracking tool

 Uses word lists as well as brute-force

» Word lists can be "multiplied" by mangling rules (reverse, …)

– Note: Long lists take longer, but provide better chances!

» Brute force: Define character set and set password length limit

 Can also be used as password-strength checking module

 "Reconstructs" the password from its hash

» Therefore requires access to the password file!

 Can be interrupted and restarted (may take a long time!)

 Supported are the following password hash types

 crypt(3) hash types: traditional & double-length DES-based,

BSDI extended DES-based, FreeBSD MD5-based (also used

on Linux, Cisco IOS), OpenBSD Blowfish-based (also used

on some Linux distr.), Kerberos/AFS, Windows NT/2000/XP

LM DES-based

» More with additional patches!

Michael Sonntag 25 Automating security checks

Ophcrack

 Password cracking tool for Windows

 LAN Manager/NT LAN Manager hashes (i.e. Win passwords)

» LM / NTLM hashes (not stored in cleartext, but as hash only)

» Windows Vista has the (easier) LM hashes disabled by default

– Older versions still store the weak LM for backwards compatibility

 Can import the hashes from various formats or read it directly

 Based on Rainbow tables and brute force

 Some are freely available, others cost money

» You could theoretically create them yourself, but this is an

extremely time- and resource-intensive activity!

 Free tables: About 99.9 % coverage for alphanumeric

passwords of up to 14 characters (LM), 99% for NTLM

» All printable chars/symbols/space (NT/Vista); German á US$ 99

Michael Sonntag 26 Automating security checks

Rainbow tables

 Reducing time by investing memory

 "Pre-computed passwords"

 Simplest form: Generate all passwords + their hashes and

store them for later lookup (immediate cracking!)

 Drawback: Gigantic table!

 Rainbow tables: Compute all passwords, but store only a

small part of them After finding the hash, some time is

required to obtain the actual password

 Time is reduced by the square of the available memory

 Countermeasure: Use "salting"

 A random value is generated, prepended to the password,

and stored

 Rainbow table would have to be enlarged for the salt

» 4 char salt + 14 char password 18 char rainbow table!

Philippe Oechslin: Ophcrack
http://lasecwww.epfl.ch/~oechslin/projects/ophcrack/

Michael Sonntag 27 Automating security checks

Ophcrack:

LM hashes

 Windows password hashes have several problems

 LM are effectively 2 passwords of 7-characters

 LM passwords are converted to uppercase

 LM and NTLM do not employ any "salting"

» This is why rainbow tables are feasible here!

 How to disable at least the especially weak LM hashes:
» Attention: Will not allow connecting from Windows ME/98/…

computers any more!

» Disabled by default on Windows Vista

 Set the registry key

HKLM\SYSTEM\CurrentControlSet\Lsa\NoLMHash to 1

Michael Sonntag 28 Automating security checks

Nessus

 Nessus is a scanner for vulnerabilities

 Based on signatures Finds only known problems!

» Currently about 41500 plugins

– No installation on FAT disks Too many files in a single directory!

 Updating the signatures: Possible/Automatic

 First step: Identify OS Almost all vuln. depend on this

 Registry, SNMP, ICMP, MSRPC, NTP

 Second step: Check which vuln. might apply and test them

 Not by actually exploiting them, only whether it would work!

 From where to run the scan?

 Outside: Probably already safe, best to be sure

 Inside (Critical machines): Defence in depth

 DMZ: One computer was hacked Others still secure?

 Commercial use/additional functionality You have to pay!

 US$ 1200 per scanner per year

Michael Sonntag 29 Automating security checks

Nessus

 Nessus is separated into a daemon and a client

 Scanning is done by the daemon(s); the client is just an UI

 Can do more intensive scanning if provided credentials for

logging on to a computer

 Vulnerabilities are scripted in NASL

 Nessus Attack Scripting Language (see next page)

» You can write your own too!

 Detection is not perfect: False positives my occur

 Attention: Some scans can crash the target!

 Take care before enabling "all" scans!

 Option "Safe checks" disables anything dangerous and

checks through banners only; no actual trying

 Found a vulnerability? Fix it!

 Prioritize the problems detected

 Bugtraq ID or CVE number for obtaining further information

Michael Sonntag 30 Automating security checks

Nessus:

NASL example (phpcms_xss.nasl)

if(description)

{

 script_id(15850);

 script_version("$Revision: 1.5 $");

 script_cve_id("CVE-2004-1202");

 script_bugtraq_id(11765);

 script_name(english:"phpCMS XSS");

 desc["english"] = "

The remote host runs phpCMS, a content management system

written in PHP.

This version is vulnerable to cross-site scripting due to a lack of

sanitization of user-supplied data in parser.php script.

Successful exploitation of this issue may allow an attacker to execute

malicious script code on a vulnerable server.

Solution: Upgrade to version 1.2.1pl1 or newer

Risk factor : Medium";

 script_description(english:desc["english"]);

 script_summary(english:"Checks phpCMS XSS");

 script_category(ACT_GATHER_INFO);

 script_copyright(english:"This script is Copyright (C) 2004 David Maciejak");

 script_family(english:"CGI abuses : XSS");

 script_require_ports("Services/www", 80);

 script_dependencie("http_version.nasl", "cross_site_scripting.nasl");

 exit(0);

}

include("http_func.inc");

include("http_keepalive.inc");

port = get_http_port(default:80);

if (! get_port_state(port))exit(0);

if (! can_host_php(port:port)) exit(0);

if (get_kb_item("www/" + port + "/generic_xss")) exit(0);

buf = http_get(item:"/parser/parser.php?file=<script>foo</script>",

port:port);

r = http_keepalive_send_recv(port:port, data:buf, bodyonly:1);

if(r == NULL)exit(0);

if(egrep(pattern:"<script>foo</script>", string:r))

{

 security_warning(port);

 exit(0);

}

Michael Sonntag 31 Automating security checks

Nessus:

Sample results

Michael Sonntag 32 Automating security checks

Nessus:

Sample results

Michael Sonntag 33 Automating security checks

Nessus:

Sample results

Michael Sonntag 34 Automating security checks

Nessus:

Sample results
CVSSv2 (Base metrics only!):

•Access Vector: Network

•Access Complexity: Medium

•Authentication: None

•Confidentiality: Complete

•Integrity: Complete

•Availability: Complete

Result: Base score 9.3

 Impact Subscore: 10

 Exploitability Subscore: 8.6

CVE-2007-3456:
Integer overflow in Adobe Flash Player 9.0.45.0
and earlier might allow remote attackers to
execute arbitrary code via a large length value
for a (1) Long string or (2) XML variable type in
a crafted (a) FLV or (b) SWF file, related to an
"input validation error," including a signed
comparison of values that are assumed to be
non-negative.

Michael Sonntag 35 Automating security checks

Conclusions

 Automatic checking is very useful, but requires typically a lot

of work for configuring

 Including the first run: Investigate and decide what are false

positives or can be ignored

 Ideally the software can compare it against a “baseline” and

show only the changes

 Only useful if really fully automated

 Can be ignored completely unless something happens

 More security checks become integrated into development

 Later on it becomes expensive

 Big danger: Too many Disable/auto-ignore them

» E.g. Eclipse: Only disabling by type, but must not by instance

– “Here it is intentional/not a problem, but warn me about all others”

If you are not using this software, the attackers will!

© Michael Sonntag 2012

Questions?

Thank you for your attention!

? ?

? ?

?
?

Michael Sonntag 37 Automating security checks

Literature

 Java: FindBugs

http://findbugs.sourceforge.net/index.html

 C/C++: Valrgind

http://valgrind.org/

 Web: Skipfish

http://code.google.com/p/skipfish/

 Ophcrack:

http://ophcrack.sourceforge.net/

 Nessus:

http://www.nessus.org/

 General: Metasploit

http://www.metasploit.com/

