
© Michael Sonntag 2012

Automating security checks

Institute for Information Processing and

Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at

http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Michael Sonntag 2 Automating security checks

Agenda

 Why automatization?

 What can be automated?

 Example: Skipfish

 How reliable are these tools?

 Practical examples of searching for vulnerabilities:

 Information collection with NMap

 Password cracking (John the Ripper, Ophcrack)

 Exploit scanning with Nessus

Michael Sonntag 3 Automating security checks

Why automatization?

 Ensuring security is not that hard for a single system

 You know it in detail

 When something is discovered, it is implemented and tested

 But: Many sites with many configuration options?

 Do you know them all?

» Are they identical everywhere (versions!)?

 Do you have time to change everything accordingly?

» Or do you depend on automatic updates/roll-out?

 Are you sure you did not miss one option somewhere?

» Testing the same thing several times is tedious

 Solution: Automatic testing whether a problem exists

 Professionals write tests  You just apply them

» No need to know exactly how the attack works!

 Regular re-testing is possible

 Ad-hoc & patchy testing  Systematic & comprehensive

Michael Sonntag 4 Automating security checks

Overlap with monitoring

 Some overlap with system monitoring exists

 Failures are just a “different kind” of attack

 Some problems may occur accidentally or intentionally

» Example: Blacklisting of mail servers

 Monitoring may uncover exploitation of a problem

» Will not find how the attacker hacked the system, but that, e.g.

through increased load, huge outgoing traffic, …

 But there are some important differences:

 Monitoring knows in advance what to look for, security

requires frequent updates for newly discovered problems

 Monitoring takes place more frequently

 Similar software/integration possible, but not the same!

Michael Sonntag 5 Automating security checks

Overlap with hacking

 Tools are available to search for vulnerabilities

 These can be used for identifying the fact, to fix them (good)

 Or for later exploiting them (bad)

 It depends on the intention and whose system is scanned

 Note: Various tools exist, which do not only search for

vulnerabilities, but also exploit them

 Injecting code, opening shells etc.

 These are legally even more “dangerous”!

 Some tools cannot be assigned a “good” or “bad” class

 E.g. password cracking: The SW does exactly the same, and

only the interpretation of the result/actions differs

 Here special care about the legality of the actions is needed

 Clear (ideally: written) permission by the owner of the system

Michael Sonntag 6 Automating security checks

What can be automated?

 Code tests: Analysis of source code

 For known errors or potentially dangerous patterns

 Or just trying: E.g. fuzzing (random input)

 Web application tests

 Very important, because they are a regular source of

problems and can be exploited from everyone at a distance

» Elevation of privilege  Only your employees!

 Examples: DNS hijacking, blacklisting, defacement, malware

injection, suspicious account activity, specific exploits

 Properties of tests:

 Probabilistic: Some tests give no definite answer; e.g. exploits

that only work rarely (depending on memory layout, …)

 Destructive: Some tests will crash the software/system

 Method vs. exploit: Checking for general method of attack

(e.g. SQL injection) or testing a specific problem (typ. bug)?

Michael Sonntag 7 Automating security checks

Source code analysis

 Often external programs run on the source

 Better: Integration in development environment

» Run continually, i.e. after every change/before compilation

 Checking for code problems

 Can do a lot of analysis impossible later (compilation!)

 Quality varies: Always a problem  Rarely one

» Still: Every single issue must be investigated in detail!

 Typically static analysis, but need not be

 Adding code for test runs, which identifies runtime problems

 Examples:

 Using unsafe methods (“sprintf” instead of “snprintf”)

 Access to shared variable from multip. threads without locking

 Accessing non-reserved memory; memory not freed

 Uninitialized variables, data tracing, duplicated code, …

Michael Sonntag 8 Automating security checks

Development environments:

Eclipse & Java

 Integrated under Java Compiler Errors/Warnings

 Long list including other aspects

» E.g. code style  understanding problems

 Checked whenever a Java file is saved

 Examples:

 Assignment problems: x=x; if (x=y);

 Switch case fall through: case ?: x; case ?: …

 Null pointer access

 Dead code: if (false) …

 Redundant/unnecessary code: unused variables

 Hidden fields/variables

 Overriding/no overriding methods

 Most are not directly security relevant, but hint at bugs

 And bugs sometimes lead to security problems

 Similarly: Validation of HTML/XML/JSP/… files

Michael Sonntag 9 Automating security checks

Web:

Various problems

 DNS Hijacking: Modification of DNS server/responses

 Redirecting requests to other IP addresses

 Requires checking various DNS servers all over the world

» Not a guarantee, however!

 Domain Hijacking (theft): Transfer of the domain name to a

different owner; typ. also to a different server

 Verification of the registrar information/WhoIS

 Defacement: Modification of the website by a third party

 Typically the result of a hack

 Difficult to distinguish automatically from authorized

modifications and for dynamic pages (e.g. blogs)

 Certificates: HTTPS certificate valid, identical, not insecure

 E.g. replaced certificate ( hack)

Michael Sonntag 10 Automating security checks

Web:

Blacklisting

 Possible for both websites and E-Mail

 May be based on domain name or IP address

 E-Mail: Spam, phishing

 Sources: SpamHaus, SURBL

 Web: Spam, phishing, virus, exploits, popups, …

 E.g. Norton safe Web, Google Safe browsing, Site Advisor

 Marked as inappropriate for children ( minor protection!)

 Possible reasons:

 Someone hacked your site/placed malware on it

 Someone sent spam with you as sender/over your mailserver

 Incorrect message sent to owner of list

 Can be difficult to get off the list!

Michael Sonntag 11 Automating security checks

Web:

Malware injection

 Adding JavaScript to the webpage or code to the source

 Intention: Infecting the computer of the browser

 Will typically not be a (technical!) problem for your server

» But will probably be a legal problem!

 Requires a bug or lacking security on your site

 Example: Hidden iframe (size: 1x1 pixel, hidden)

 Often created through (nested) obfuscated scripts

 Then used for drive-by downloads

 Can be very difficult to detect, as the code can be

obfuscated, randomly modified etc.

 Typical solution: Compare with known-good page/source

 Alternative: Check for suspicious activity/links/frames

 Alternative: Use real browser and monitor actions

Michael Sonntag 12 Automating security checks

Web:

Suspicious account activity

 Checks whether an account has been hijacked

 So typically user-oriented, but also for servers

» Systematic problem allowing hijacking, not trojan on client

» Typical problem: Cross Site Scripting (XSS)

– Steal session ID  change password  own account

 Other elements may be checked as well: Used for sending

Spam, phishing, illegal activity, credit card fraud etc.

 This is typically very specific for the individual site and

therefore not available in general!

 Typical signs for account hijacking:

 Log ins from different IPs/IPs in different countries

 Log-ins to multiple accounts from the same IP

 Cannot be distinguished from outside; requires software

within or on the server

 Basic vulnerabilities can be discovered in other ways

Michael Sonntag 13 Automating security checks

General:

Specific exploits

 This covers all kinds of vulnerabilities

 Web server, operating system, installed software, etc.

 Can be run from inside or outside; where attackers might be

 Reason: Inside protection is often much more lenient and

when someone managed to get in, there should still be no

obvious security problems

 Signatures are implemented as small scripts

 Each new attack/weakness/bug  New script

» Requires continuous updating!

 Note: Will be used by attackers as well!

 Example: Nessus (see later)

 More exploit oriented: Metasploit

 Regularly used by attackers

 Main element is exploitation, less finding a security problem

Michael Sonntag 14 Automating security checks

Example: Skipfish

 Web application security scanner

 Will scan a whole site for various security problems

 Very simple usage

 Scans for various risk levels:

 High: SQL injection, command injection, file upload, …

» Brute force: Huge logs, enormous time!

 Medium: Directory traversal, stored/reflected XSS, script/css

injection, mixed content, MIME- and charset mismatches,

incorrect caching directives, etc.

 Low: Directory listing, stored/reflected redirection, content

embedding, mixed content, credentials in URLs, SSL

certificates, forms without XSRF protection, …

 Allows partial checking (checks take quite long)

 X % of all links followed/problems checked

» Randomly determined  Regular scanning  Probably checked

everything over some time!

Michael Sonntag 15 Automating security checks

Skipfish:

How to scan

 Note: Skipfish has only a very limited database of known

vulnerabilities

 Based on three-step differential probes

» Uses wordlists to look for extensions and for filling in forms

 Skipfish is provided as source code

 For a Linux-like environment (Mac, Cygwin, …)

 Just run “make” to compile it

 Select a dictionary to use

 Note: The bigger the dictionary, the longer the scan takes!

 Start it on command line with output directory and URL

 Additional parameters allow restricting the depth, percentage

of links followed, specify authentication cookies (to get around

logins), connection rate limiting, …

 Example: ./skipfish -o output_dir http://www.example.com/

Michael Sonntag 16 Automating security checks

Skipfish:

Output interpretation

 Output is produced as an

annotated sitemap

 First line can expand

 Below: Problems found in

decreasing importance

with brief explanation

 Note: Many things not

necessarily a problem!

» E.g. PUT: If file upload

is intended, this is OK

(here it is not !)

 Note: Took 88 hours, but

is not even remotely

complete!

Michael Sonntag 17 Automating security checks

Reliability

 Reliability of automated security checks is very mixed

 Specific exploit code tested  Perfect (attack did work)

 General programming style  Might sometimes be a problem

 Typical scans always produce a large number of warnings

 Your SSL certificate is not an officially recognized one, users

can upload files, character set mismatches (alone

unimportant, but together with user-contributed content this

may suddenly becomes dangerous!)

 Investigate in detail the first time

 Later on: Check for modifications only!

» Something new, something “enlarged” (more files) etc.

» Therefore they work best for relatively “static” webpages

– Meaning that structure and programming remains the same, not

necessarily the actual content shown on the pages!

Michael Sonntag 18 Automating security checks

NMap

 NMap (Network MAPper) is a network scanner

 It tries to find all computers in a specific network and checks,

what ports are open, what OS they are running, whether

there is a firewall, etc.

 It does not look for specific vulnerabilities!

 But it gives recommendations; e.g. services to disable

 Some scans + vuln. systems  Lock-up/crash!

 Used as a tool for inventory generation in a network

 Are there any computers which should not be there?

 Can also be used to gather information for a later attack

» Which OS/software and which version is running

 Stages: 1 = Host discovery, 2 = Port scan, 3 = Service/

version detection, 4 = OS detection, 5 = Scripting

 Scripting may also include vulnerability/malware detection!

Michael Sonntag 19 Automating security checks

NMap

 Usage: Trivial!

 Start program and enter IP address

 Select profile for scanning

» Special options only available in the command line version or

when constructing a new profile!

 More complex options:

 Stealth scans

» Trying to not show up on various statistics

Michael Sonntag 20 Automating security checks

Sample result:

NMap local subnet scan

Michael Sonntag 21 Automating security checks

Sample result:

NMap OS detection

Michael Sonntag 22 Automating security checks

Sample result:

NMap OS detection

Michael Sonntag 23 Automating security checks

Sample result:

NMap OS detection

Michael Sonntag 24 Automating security checks

John the Ripper

 Password cracking tool

 Uses word lists as well as brute-force

» Word lists can be "multiplied" by mangling rules (reverse, …)

– Note: Long lists take longer, but provide better chances!

» Brute force: Define character set and set password length limit

 Can also be used as password-strength checking module

 "Reconstructs" the password from its hash

» Therefore requires access to the password file!

 Can be interrupted and restarted (may take a long time!)

 Supported are the following password hash types

 crypt(3) hash types: traditional & double-length DES-based,

BSDI extended DES-based, FreeBSD MD5-based (also used

on Linux, Cisco IOS), OpenBSD Blowfish-based (also used

on some Linux distr.), Kerberos/AFS, Windows NT/2000/XP

LM DES-based

» More with additional patches!

Michael Sonntag 25 Automating security checks

Ophcrack

 Password cracking tool for Windows

 LAN Manager/NT LAN Manager hashes (i.e. Win passwords)

» LM / NTLM hashes (not stored in cleartext, but as hash only)

» Windows Vista has the (easier) LM hashes disabled by default

– Older versions still store the weak LM for backwards compatibility

 Can import the hashes from various formats or read it directly

 Based on Rainbow tables and brute force

 Some are freely available, others cost money

» You could theoretically create them yourself, but this is an

extremely time- and resource-intensive activity!

 Free tables: About 99.9 % coverage for alphanumeric

passwords of up to 14 characters (LM), 99% for NTLM

» All printable chars/symbols/space (NT/Vista); German á US$ 99

Michael Sonntag 26 Automating security checks

Rainbow tables

 Reducing time by investing memory

 "Pre-computed passwords"

 Simplest form: Generate all passwords + their hashes and

store them for later lookup (immediate cracking!)

 Drawback: Gigantic table!

 Rainbow tables: Compute all passwords, but store only a

small part of them  After finding the hash, some time is

required to obtain the actual password

 Time is reduced by the square of the available memory

 Countermeasure: Use "salting"

 A random value is generated, prepended to the password,

and stored

 Rainbow table would have to be enlarged for the salt

» 4 char salt + 14 char password  18 char rainbow table!

Philippe Oechslin: Ophcrack
http://lasecwww.epfl.ch/~oechslin/projects/ophcrack/

Michael Sonntag 27 Automating security checks

Ophcrack:

LM hashes

 Windows password hashes have several problems

 LM are effectively 2 passwords of 7-characters

 LM passwords are converted to uppercase

 LM and NTLM do not employ any "salting"

» This is why rainbow tables are feasible here!

 How to disable at least the especially weak LM hashes:
» Attention: Will not allow connecting from Windows ME/98/…

computers any more!

» Disabled by default on Windows Vista

 Set the registry key

HKLM\SYSTEM\CurrentControlSet\Lsa\NoLMHash to 1

Michael Sonntag 28 Automating security checks

Nessus

 Nessus is a scanner for vulnerabilities

 Based on signatures  Finds only known problems!

» Currently about 41500 plugins

– No installation on FAT disks  Too many files in a single directory!

 Updating the signatures: Possible/Automatic

 First step: Identify OS  Almost all vuln. depend on this

 Registry, SNMP, ICMP, MSRPC, NTP

 Second step: Check which vuln. might apply and test them

 Not by actually exploiting them, only whether it would work!

 From where to run the scan?

 Outside: Probably already safe, best to be sure

 Inside (Critical machines): Defence in depth

 DMZ: One computer was hacked  Others still secure?

 Commercial use/additional functionality  You have to pay!

 US$ 1200 per scanner per year

Michael Sonntag 29 Automating security checks

Nessus

 Nessus is separated into a daemon and a client

 Scanning is done by the daemon(s); the client is just an UI

 Can do more intensive scanning if provided credentials for

logging on to a computer

 Vulnerabilities are scripted in NASL

 Nessus Attack Scripting Language (see next page)

» You can write your own too!

 Detection is not perfect: False positives my occur

 Attention: Some scans can crash the target!

 Take care before enabling "all" scans!

 Option "Safe checks" disables anything dangerous and

checks through banners only; no actual trying

 Found a vulnerability? Fix it!

 Prioritize the problems detected

 Bugtraq ID or CVE number for obtaining further information

Michael Sonntag 30 Automating security checks

Nessus:

NASL example (phpcms_xss.nasl)

if(description)

{

 script_id(15850);

 script_version("$Revision: 1.5 $");

 script_cve_id("CVE-2004-1202");

 script_bugtraq_id(11765);

 script_name(english:"phpCMS XSS");

 desc["english"] = "

The remote host runs phpCMS, a content management system

written in PHP.

This version is vulnerable to cross-site scripting due to a lack of

sanitization of user-supplied data in parser.php script.

Successful exploitation of this issue may allow an attacker to execute

malicious script code on a vulnerable server.

Solution: Upgrade to version 1.2.1pl1 or newer

Risk factor : Medium";

 script_description(english:desc["english"]);

 script_summary(english:"Checks phpCMS XSS");

 script_category(ACT_GATHER_INFO);

 script_copyright(english:"This script is Copyright (C) 2004 David Maciejak");

 script_family(english:"CGI abuses : XSS");

 script_require_ports("Services/www", 80);

 script_dependencie("http_version.nasl", "cross_site_scripting.nasl");

 exit(0);

}

include("http_func.inc");

include("http_keepalive.inc");

port = get_http_port(default:80);

if (! get_port_state(port))exit(0);

if (! can_host_php(port:port)) exit(0);

if (get_kb_item("www/" + port + "/generic_xss")) exit(0);

buf = http_get(item:"/parser/parser.php?file=<script>foo</script>",

port:port);

r = http_keepalive_send_recv(port:port, data:buf, bodyonly:1);

if(r == NULL)exit(0);

if(egrep(pattern:"<script>foo</script>", string:r))

{

 security_warning(port);

 exit(0);

}

Michael Sonntag 31 Automating security checks

Nessus:

Sample results

Michael Sonntag 32 Automating security checks

Nessus:

Sample results

Michael Sonntag 33 Automating security checks

Nessus:

Sample results

Michael Sonntag 34 Automating security checks

Nessus:

Sample results
CVSSv2 (Base metrics only!):

•Access Vector: Network

•Access Complexity: Medium

•Authentication: None

•Confidentiality: Complete

•Integrity: Complete

•Availability: Complete

Result: Base score 9.3

 Impact Subscore: 10

 Exploitability Subscore: 8.6

CVE-2007-3456:
Integer overflow in Adobe Flash Player 9.0.45.0
and earlier might allow remote attackers to
execute arbitrary code via a large length value
for a (1) Long string or (2) XML variable type in
a crafted (a) FLV or (b) SWF file, related to an
"input validation error," including a signed
comparison of values that are assumed to be
non-negative.

Michael Sonntag 35 Automating security checks

Conclusions

 Automatic checking is very useful, but requires typically a lot

of work for configuring

 Including the first run: Investigate and decide what are false

positives or can be ignored

 Ideally the software can compare it against a “baseline” and

show only the changes

 Only useful if really fully automated

 Can be ignored completely unless something happens

 More security checks become integrated into development

 Later on it becomes expensive

 Big danger: Too many  Disable/auto-ignore them

» E.g. Eclipse: Only disabling by type, but must not by instance

– “Here it is intentional/not a problem, but warn me about all others”

If you are not using this software, the attackers will!

© Michael Sonntag 2012

Questions?

Thank you for your attention!

? ?

? ?

?
?

Michael Sonntag 37 Automating security checks

Literature

 Java: FindBugs

http://findbugs.sourceforge.net/index.html

 C/C++: Valrgind

http://valgrind.org/

 Web: Skipfish

http://code.google.com/p/skipfish/

 Ophcrack:

http://ophcrack.sourceforge.net/

 Nessus:

http://www.nessus.org/

 General: Metasploit

http://www.metasploit.com/

