

Password retrieval

Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria

E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Source files

- → shadow1, shadow2, shadow3
 - » Linux password files
- → passwords.txt
 - » A file with passwords extracted from Windows

Requirements:

- → Administrative rights
 - » For installing software
- → Installed software (see CD)

Software:

- → John the Ripper
- → Cain&Abel
- → Ophcrack

- We are not going to attack anyone here!
- We are trying to indentify problems for later fixing it
- Permission is always required for trying to break passwords
 - → Which system(s) (source of encrypted files/passwords)
 - → At what time
 - → What passwords

John the Ripper

- Password cracking tool
 - → Uses word lists as well as brute-force
 - » Word "multiplication" by mangling rules (reverse, I33t…)
 - Note: Long lists take longer, but provide better chances!
 - » Brute force: Define character set and set password length limit
 - → Can also be used as a password-strength checking module
 - → "Reconstructs" the password from its hash
 - » Therefore requires access to the password file!
 - Can be interrupted and restarted (may take a long time!)
- Supported are the following password hash types
 - → crypt(3) hash types: traditional & double-length DES-based, BSDI extended DES-based, FreeBSD MD5-based (also used on Linux, Cisco IOS), OpenBSD Blowfish-based (also used on some Linux distr.), Kerberos/AFS, Windows NT/2000/XP LM DES-based
 - » More with additional patches!

Your tasks:

- → Run John the Ripper against the provided shadow files
 - » "Scenarios/shadow1": Try wordlist
 - » "Scenarios/shadow2":
 - Try wordlist
 - Try incremental (=brute force) search, profile "alpha"
 - » "Scenarios/shadow3": Try in your spare time!
- → Press "space" to get statistics
- → Interpret the results/success probabilities
- Note: Several other programs for windows exist too, but these do not recover the password, they merely reset it
 - → You can get access to the computer, but the password itself remains secret!

Expected result: John the Ripper

- shadow1: The password is in the wordlist: "network"
 - » "john shadow1"
 - → Will be found very fast
- shadow2: The password is not in the wordlist
 - "john shadow2"
 - → Will not be found at all!
 - Try the brute-force search: Takes considerably longer
 - » But also finds such words!
 - » "john –i=Custom shadow2"; and modify (=add) john.local.conf:
 - [Incremental:Custom]File = \$JOHN/alpha.chrMinLen = 4MaxLen = 4CharCount = 26

- shadow3: Has a very complex and long password
 - → It is not in the word list
 - → It cannot be found by brute force
 - » Unless you have extremely powerful hardware and much time!
 - » Note: John the Ripper does not support parallelization!
 - Other such tools do (10 characters MIGHT be possible!)...

- Password cracking tool for Windows
 - → Has lots of other functions as well, e.g.
 - » Unmasking password entry boxes (pre-filled old passwords!)
 - » Network sniffer
 - » Base64 decoder
 - → Supports a large number of different passwords
- Contains a program for creating rainbow tables
- Your task: Install and start Cain&Abel
 - → Decrypt the VNC server password as stored in the registry extract "Scenarios/VNC.reg"
 - » This is trivial ... once you have found how/where to enter it!
 - » Give an estimate on the quality of this password based on ...
 - How/where it is stored
 - How long cracking it takes

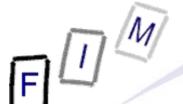
- Password cracking tool for Windows
 - → LAN Manager/NT LAN Manager hashes (i.e. Win passwords)
 - » LM / NTLM hashes (not stored in cleartext, but as hash only)
 - » Windows Vista has the (easier) LM hashes disabled by default
 - Older versions still store the weak LM for backwards compatibility
 - → Can import the hashes from various formats or read it directly
- Based on Rainbow tables and brute force
 - → Some are freely available, others cost money
 - » You could theoretically create them yourself, but this is an extremely time- and resource-intensive activity!
 - → Free tables: About 99.9 % coverage for alphanumeric passwords of up to 14 characters (LM), 99% for NTLM
 - » All printable chars/symbols/space (NT/Vista); German →á US\$ 99

Sidenote: Extracting the LM Hashes

- They are stored in the SAM registry part
 - → C:\WINDOWS\System32\config\SAM
 - » Encrypted and locked when Windows is running
 - » Shutdown, decrypt, read
- Easier: Special tools also work when WIN is running
 - → Difficulty: Needs high permissions (SYSTEM account, ...)
- Exemplary software: PWDump/fgdump
 - → Needs Administrator privileges
 - » Why then the need for password cracking? You can get access to everything if you're Administrator?!?
 - Passwords might be reused somewhere else, ...
 - → Numerous versions exist, which use different approaches (e.g. DLL injection, work over network, ...)
 - → Problems on Windows 7 (even "Run as Administrator")!
 - » Must be the real Administrator account (this is different!)

- Reducing time by investing memory
 - → "Pre-computed passwords"
- Simplest form: Generate all passwords + their hashes and store them for later lookup (immediate cracking!)
 - → Drawback: Gigantic table!
- Rainbow tables: Compute all passwords, but store only a small part of them → After finding the hash, some time is required to obtain the actual password
 - → Time is reduced by the square of the available memory
- Countermeasure: Use "salting"
 - → A random value is generated, prepended to the password, and stored
 - → Rainbow table would have to be enlarged for the salt
 - » 4 char salt + 14 char password → 18 char rainbow table!
 - Plus: Salt is typically binary, so 256⁴ instead of ≈70⁴!

13


Your tasks:

- → Run Ophcrack against the provided passwords
 - » File: "Scenarios/Passwords.txt"
- → Discuss the results:
 - » Why are some found quickly, but the same password takes much longer in another instance?
 - » Why is this working in Windows, but not for other systems?

Expected result: Ophcrack

- Can be found very fast with the XP free tables
- JDoe2: Can be found with the Vista free tables
- JDoe3:
 - → Cannot be found with the XP free tables
 - These work only for LM hashes; this account only has NTLM!
 - Cannot be found with the Vista free tables
 - » This seems to be one of the "missing" passwords!
 - » Based on a dictionary with variations; Success rate 99%
 - Better: Commercial: 8GB instead of 461 MB
- Note: The second account takes much longer
 - → NTLM hashes are much stronger than the NT hashes
 - → As both are the same word, once the NT hash is known, only the capitalization must be tried out!

Expected result: Ophcrack

- Windows password hashes have several problems
 - → LM are effectively 2 passwords of 7 characters
 - → LM passwords are converted to uppercase
 - » NTLM doesn't do this: Upper- and lowercase are important!
 - → LM and NTLM do not employ any "salting"
 - This is why rainbow tables are feasible here!
- How to disable at least the especially weak LM hashes:
 - » Attention: Will not allow connecting from Windows ME/98/... computers any more!
 - » Disabled by default from Windows Vista onwards
 - → Set the registry key HKLM\SYSTEM\CurrentControlSet\Lsa\NoLMHash to 1

