
© Michael Sonntag 2012

Filesystem investigation

Institute for Information Processing and
Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at
http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag



Michael Sonntag 2Filesystem investigation

Agenda


 
Install the software:


 
OSFMount



 
Cygwin



 
Optional (can be run from CD): WinHex, HxD



 
Search for deleted files and reconstruct them


 
WinHex: Deleted file (FAT)



 
Reconstruct: If possible



 
Discovering hidden files: Wrong extension


 
Cygwin: "file" command 



 
Windows ADS


 
LADS – Find the picture hidden in an ADS



 
Timestamps


 
WinHex: Analyze timestamps and convert them



 
Running time of your Windows computer


 
Analyze the event log









Scenario



Michael Sonntag 4Filesystem investigation

Images



 
Source of images: http://dftt.sourceforge.net/


 


 
6-undel-fat.zip

» FAT image


 


 
8-jpeg-search.zip

» NTFS image


 


 
5-fat-daylight.zip

» FAT image


 
Attention: Copy the files to a local disk and remove the 
“Read-only” attribute  Else you cannot mount them RW!



 
Requirements:


 
Operating System: Windows (XP, Vista; NT, 2K, 7: ???)



 
Harddisk space:

» Scenarios: 17 MB
» Cygwin: A lot; approx. 700 MB!
» Other software: A few MB



Michael Sonntag 5Filesystem investigation

Software installation



 
OSFMount: Mounting disk images as drives under Windows


 
Requires Administrator access



 
Install "Winhex"


 
Not really needed; can be run directly from CD!

» Copy to harddisk for faster start if desired
» Need to use "Run as Administrator" (or configure this in 

properties) to fully work on Windows 7 (Vista: Probably too)


 
Install "HxD"


 
Not really needed; can be run directly from CD!



Michael Sonntag 6Filesystem investigation

Software installation



 
Install "Cygwin"


 
Linux-like environment (and programs) under windows



 
Procedure:

» Execute "setup.exe" and choose to install from local path
– Select the subdirectory starting with "ftp…" in it as install source

» E.g.: “E:\Software\Source”
– No spaces in the path of destination directory allowed! 

E.g. not C:\Program Files\...
» Change selection to "install" on the "All" selection

– Click on the "circular arrows" icons repeatedly (once should suffice)


 
Add the binary directory to the path

» XP: Control panel – System – Advanced – Environment 
Variables  Add the complete path to the user variables, e.g. 
add ";C:\Cygwin\bin“ to the end

» Win 7: Control panel – System and Security – System – 
Advanced System Settings – Environment Variables



Michael Sonntag 7Filesystem investigation

Search for deleted files: 
FAT



 
Find and recover the deleted files in image !



 
Your task:


 
Find out, which files did at some time exist in the image

» Investigate through HxD
– Note Windows 7: Normal user  Cannot see mounted disk 

Admin  Sees & opens mounted disk
» Recovery through WinHex!

– Manual recovery in WinHex not possible due to evaluation version 
limitations



 
Recover these files

» Check their MD5 values


 
Document your actions through a log and screen shots!



 
Hints:


 
FAT1 starts at offset 0x1000, FAT2 (=copy) at 0x4000



 
Root directory is at offset 0x7000



Michael Sonntag 8Filesystem investigation

Search for deleted files: 
FAT



 
MD5 table of correctly recovered files


 
Filename File size MD5 value



 
\SING.DAT 780 59B20779F69FF9F0AC5FCD2C38835A79



 
\MULT1.DAT 3801 FFD27BD782BDCE67750B6B9EE069D2EF



 
\FRAG1.DAT 1584 7A3BC5B763BEF201202108F4BA128149



 
\FRAG2.DAT 3873 0E80AB84EF0087E60DFC67B88A1CF13E 



 
\DIR1\



 
MULT2.DAT 1715 59CF0E9CD107BC1E75AFB7374F6E05BB 



 
DIR2\



 
FRAG3.DAT 2027 21121699487F3FBBDB9A4B3391B6D3E0 



Michael Sonntag 9Filesystem investigation

Search for deleted files: 
FAT



 
Mount the image 

 
as readonly (6-fat-undel.dd)



 
Look at the image directly (cmd.exe)


 
There is not a single file there!



 
Examine it using a Hex editor


 
Find the FAT and the root directory (see also later)



 
Root dir: Starts at offset 0x7000 (=sector 56)

» Note: The first directory entry is not a file, but the volume label!


 
Root dir content:


 
?RAG1.DAT, ?RAG2.DAT, ?ING.DAT, ?ULT1.DAT, 
?YSTEM~1 ("System Volume Information"; long filename)

» 0xE5  This file has been deleted


 
?IR1: Deleted directory

» Difference file vs. directory? Byte 0x0B, Bit 4 (here: 0x10)!



Michael Sonntag 10Filesystem investigation

Search for deleted files: 
FAT



 
Manual undelete of ?ING.DAT


 
Overwrite first byte (0xE5) with something else (e.g. 0x53 = S)

» Note: You have to change into edit mode with F6!
» But writing to the disk does not work in the evaluation version!

– Default edit mode gives an error message, but in-place mode just 
silently ignores all changes you make!



 
Right-click on the file and then "Recover/Copy…"



 
Copy the files to your hard disk and calculate their MD5 sum

– Example: "md5sum _ING.DAT"
» Note, that the MD5 for ?ING.DAT and ?ULT1.DAT are correct, 

but those for ?RAG1.DAT and ?RAG2.DAT are not
» Why? Examine the FAT table at offset 0x1000 (or 0x4000)!
» The FAT has been completely cleared, except for the first sector

– This is the sector of the root directory!


 
Automatic undelete has therefore the problem, that it cannot 
know which sectors belong to a file if fragmentation occurs!

» File carving needed!



Michael Sonntag 11Filesystem investigation

Search for deleted files: 
FAT



 
Result: Start at first (=known) sector and copy consecutive 
number of bytes till the file size has been reached



 
Possible chance at detection (but not solution!): 
The sector is marked as "in use" by another directory entry

» However, this is marked as deleted as well, so which one was 
the later one cannot really be determined either!

– MAC dates might help here to some degree



 
Deleted directory: Only the directory is marked as deleted


 
The files/directory inside are only implicitly deleted!



 
Their first character still exists: MULT2.DAT and subdir DIR2



 
\DIR1\DIR2: FRAG3.DAT



 
MULT2.DAT can be recovered, FRAG3.DAT is again a 
fragmented file and cannot be recovered

» Although extracted without any warning or error message!



Michael Sonntag 12Filesystem investigation

Discovering hidden files: 
Wrong extensions



 
Find out, which of all the files in image 

 
are jpg pictures!



 
Your task:


 
Collect all files, except those in archives

» How many are these?


 
Identify their file type

» Do this manually (Winhex/HxD)
– Check first in the internet: How to recognize a JPG file

» Use the command "file"
– Inspect the "magic" file and find the description for JPG files

» Use command "strings" (file1.jpg, file4.jpg, file12.doc, cmd.exe)


 
Identify the file type of the archives



 
Document your actions through a log and screen shots!



Michael Sonntag 13Filesystem investigation

Wrong extensions: 
Exemplary solution – Manual check



 
Mount the image 

 
as readonly (8-jpeg-search.dd)



 
Collect all files


 
alloc\file1.jpg, alloc\file2.dat, \invalid\file3.jpg, \invalid\file4.jpg, 
\invalid\file5.rtf, misc\file11.dat, misc\file12.doc, misc\file13.dll



 
In total 8 files (+3 archives)



 
Search the Internet for recognizing JPEG files


 
E.g. search Google for "JPEG magic number"

» See http://en.wikipedia.org/wiki/Magic_number_(programming)
» JPEG start with 0xFFD8 and end with 0xFFD9

– Most (JPEG/JFIF type) also contain "JFIF\0"!



 
Identify files manually


 
Open alloc\file1.jpg in Winhex

» Both start and end match, and "JFIF" is found at offset 0x06


 
This also applies to alloc\file2.dat Wrong extension!



Michael Sonntag 14Filesystem investigation

Wrong extensions: 
Exemplary solution – Manual check



 
invalid\file3.jpg has a different start (0x4865) and end 
(0x300A)



 
invalid\file4.jpg claims to be a JPEG, but has only a header

» The footer is 0x9F32; additionally there is no "JFIF"
– Only "JF", and that at index 0x02AB90!



 
invalid\file5.rtf has neither header nor footer and no "JFIF"

» But signature occurs several times within, e.g. 0x2CF3, 0x4094!
» Only "JF" at 0x013062 (no "JFI" or "JFIF"!)



 
misc\file11.dat has a wrong header, but a correct footer

» Additionally, "JFIF" occurs at 0x062A
» At 0x0624 there is the correct header signature
» This could be a JPEG with some other data at the beginning

– Extract it with WinHex (in 2 parts, e.g. to 0x31FFF; eval. limit)
– Concatenate with "copy /b part1.bin + part2.bin file11.jpg"

» We have recovered a new picture ("I Am Picture #8")!



Michael Sonntag 15Filesystem investigation

Wrong extensions: 
Exemplary solution – Manual check



 
misc\file12.doc is similar to file11.dat, but the end of the 
picture is not the end of the file

» Do the same as above
» Actually, this is a valid MS Word document with an embedded 

JPEG; these are not necessarily always stored as "plain“ data!
» Extract from 0x1348 until 0x1C26C (inclusive)

– 0x1348-0xFFFF and 0x010000-0x1C26C; Concatenate
» We have recovered "I Am Picture #9"!



 
misc\file13.dll: Header and footer wrong, no "JFIF"

» This is no picture!
» It looks more like random data



Michael Sonntag 16Filesystem investigation

Wrong extensions: 
Exemplary solution – "file" command



 
The file command uses a table of "magic values" to identify 
file types according to their content


 
These rules can be very simple, but also complex



 
Where is the file: %CYGWIN%\usr\share\misc\magic.mgc


 
JPEG now in separate file (here a compiled version!)

» Note: "JFIF" occurs already before, but those are movie files!


 
As can be seen, only the start of the file is checked!

» Starts with 0xFFD8
» At exactly the position 0x06 the string "JFIF" must occur

– The ">" is a continuation marker, not an index modifier!



 
Identify file types:


 
alloc/file1.jpg: JPEG image data, JFIF standard 1.01



 
alloc/file2.dat: JPEG image data, JFIF standard 1.01



 
/invalid/file3.jpg: ASCII English text

» Actually, the file only starts with ASCII English text. But as only 
the start is checked, the rest is ignored!



Michael Sonntag 17Filesystem investigation

Wrong extensions: 
Exemplary solution – "file" command



 
\invalid\file4.jpg: JPEG image data

» Note: No "JFIF" and "version ?.?"!
– Identified, as only the (correct) header is checked, but not the footer
– The missing "JFIF" should be a warning sign here!



 
\invalid\file5.rtf: data

» Could not be identified; actually it is just random data


 
misc\file11.dat: data

» As only the start is checked, the picture later on is not found!


 
misc\file12.doc: CDF V2 Document

» This is a "Microsoft Office Document"
– The type of Microsoft office files is often hard to identify because of 

the complex file format
» Actually a kind of archive with several streams



 
misc\file13.dll: data

» Just random data, correctly identified



Michael Sonntag 18Filesystem investigation

Wrong extensions: 
Exemplary solution – "strings" command



 
Only as an example: The "strings" command


 
More useful for investigating executables

» What text do they contain
» If a debug version  what methods do they call, messages etc.



 
Examine alloc\file1.jpg


 
strings file1.jpg | more

» All strings, first one is "JFIF"


 
strings file1.jpg | grep "JFIF"

» Select only those lines containing the specific string


 
Examine invalid\file4.jpg


 
strings file4.jpg | grep "JFIF"

» Returns nothing  no JPEG
– Actually, just not a JPEG/JFIF!



Michael Sonntag 19Filesystem investigation

Wrong extensions: 
Exemplary solution – "strings" command



 
Examine misc\file12.doc


 
Finds "JFIF" very early, but not as the first string



 
The end is more interesting: The document properties!

» We can find out that some "Brian Carrier" is somehow involved 
with this document

– Detailed investigation: This is the author (of document and image)
» We can also see that it was created by Microsoft Word 10.1

– What version is this really? From when is it?
» MS MacWord 10.1 (=“Office X”) from 2001



 
Examine %SYSTEMROOT%\system32\cmd.exe


 
Lots of Windows functions

» E.g. MessageBeep, CopyFileExW, RegEnumKeyW, _wcslwr


 
At least one message "CMD Internal Error %s"



 
Win XP: Some "ASCII art" (probably icon information)



 
Win 7: Some XML (Assembly/security information)



Michael Sonntag 20Filesystem investigation

Wrong extensions: 
Exemplary solution – Archives



 
Check the file type of the archives with the "file" command


 
file8.zip: Zip archive data, at least v2.0 to extract

» "unzip file8.zip –d C:\temp"
– file8.jpg + random8.dat (some random data)

» file8.jpg is "I Am Picture #5"


 
file9.boo: Zip archive data, at least v2.0 to extract

» Unzip as before  file9.jpg + random9.dat
» file9.jpg is "I Am picture #6"



 
file10.tar.gz: gzip compressed data, from Unix

» "file –z file10.tar.gz"  Identifies a TAR inside a ZIP
» "gzip –d file10.tar.gz –c > C:\temp\file10.tar"



 
file10.tar: POSIX tar archive (GNU)

– A file archive (several files; not compressed!)
» "tar –xvf file10.tar"

– file10.jpg + random10.dat (some random data)
» file10.jpg is "I Am Picture #7"



Michael Sonntag 21Filesystem investigation

Search for deleted files: 
Bonus example - NTFS



 
Search for deleted files in this image 



 
Recover them if possible


 
In del1 a deleted JPEG can be recovered (file6.jpg)



 
In del2 another file could theoretically be recovered 
completely (file7.hmm)

» Not actually because of the WinHex evaluation version size limit!
» Or recover it manually in two parts and combine them



 
Note that this is not a FAT, but a NTFS volume!



Michael Sonntag 22Filesystem investigation

Windows ADS



 
Find the hidden picture!



 
In the image 

 
there is an additional picture hidden



 
This is located within an alternate data stream



 
Your task:


 
Find the location of the hidden picture



 
Extract the picture into a separate "normal" file



 
Add the picture to another file and to a directory

» Not "into" the directory, but to the directory entry itself!
» Name the ADS "new*picture"

– Could you create a normal file with this name?



 
Document your actions through a log and screen shots!



Michael Sonntag 23Filesystem investigation

Windows ADS: 
Exemplary solution



 
Mount the image 

 
as read-write (8-jpeg-search.dd)



 
Run lads for every directory


 
Or use the parameter "/s" on the root directory



 
Look at the result: The file "?:\misc\file13.dll" contains an 
ADS with the name "here"


 
"?:\misc\file13.dll:here"



 
Extract the ADS through "more"


 
"more < ?:\misc\file13.dll:here >here.jpg"



 
Examine the file: Is it really a picture?



 
Check the MD5: It should be 9b787e63e3b64562730c5aecaab1e1f8!

» The result is different! Why?


 
Open the file in Winhex and compare it to another JPEG file 
from the same drive

» It seems, that "more" does some textual translation, outputting 
0x0D0A instead of 0x00 (translation to plain text!)



Michael Sonntag 24Filesystem investigation

Windows ADS: 
Exemplary solution



 
Extract through "cp" (Cygwin!)


 
"cp ?:\misc\file13.dll:here here.jpg“

» NOT WORKING with current cygwin version anymore!


 
Check the file with a hex editor: Is it a picture? Yes!



 
Calculate the MD5 value and check it

» Now it is OK!


 
View the picture: Just open it (double-click) or use Paint


 
It shows a green puzzle tile and the text "I Am Picture #10"



Michael Sonntag 26Filesystem investigation

Timestamps



 
Find out when the two files in image 

 
were actually created



 
Your task:


 
Check the date through the Windows command line

» Would changing the local time zone influence the output?
» Compare this to your OS drive (hint: FAT  NTFS/EXT3!)



 
Find out where the creation time is located on the disk

» Don't use the WinHex UI; first think and calculate, then verify!


 
Manually calculate the creation time from the hex values

» Search the internet for the exact format


 
Use DCode to decode the creation time



 
When were the files created in UTC?



 
Document your actions through a log and screen shots!



Michael Sonntag 27Filesystem investigation

Timestamps: 
Exemplary solution



 
Mount the image 

 
as readonly (daylight.dd)



 
Check dates through command line


 
Result:

» Winter.txt: 1.1.2004 14:00
» Summer.txt: 1.6.2004 15:00



 
Changing the local time zone would not change the output!

» FAT stores date/time according to the local time of the computer 
at the moment the action occurs

» Therefore it is not "recalculated" according to the local time zone
– As for example NTFS dates are: These are stored as UTC!
– File shows 14:26 in TZ Austria (+1), but 13:26 in TZ London (=UTC)!



 
Where is the FAT on a FAT-disk?


 
Offset 0x0e in first sector: Number of reserved sectors (=1)



 
FAT therefore starts immediately after the boot sector

» This is address 0x0200 (1 sector = 512 bytes)



Michael Sonntag 28Filesystem investigation

Timestamps: 
Exemplary solution



 
Root directory starts immediately after the FAT-copy

» Length of FAT: Offset 0x16 = 9
» Boot + FAT1 + FAT2 = 1+9+9 = 19 sectors = 0x2600



 
One directory entry = 32 bytes



 
Creation time: 0x0D-0x11

» Modification: 0x16-0x19 (2s resolution only)
» Access: 0x12-0x13 (date only)



 
Manual calculation from the hex values

» See http://en.wikipedia.org/wiki/File_Allocation_Table for details


 
Value: 0x8600702130

» Fine time: 0x86 = 134*10ms = 1.34 s
» Time: 0x7000 = 14 hours, 0 minutes, 0*2 seconds

– Little endian, therefore to be converted as 0x7000 and not the 
0x0070 as found on the disk!

» Date: 0x3021 = 24+1980 years, month 1 (=January), day 1
» Result: 1.1.2004, 14:00:01.34



Michael Sonntag 29Filesystem investigation

Timestamps: 
Exemplary solution



 
Use DCode to decode the date and time


 
Note: DCode only can convert 4-Byte times!



 
Use "MS-DOS: 32 bit Hex Value"



 
To enter: 00702130 (omit first byte; little endian!)



 
Result: 1/Jan/2004 14:0:0 Local



 
When were the files created in UTC?


 
This we cannot say, as the date/time is always stored in local 
time only. Unless we know the time zone where the file was 
created, we simply cannot determine it!



Michael Sonntag 30Filesystem investigation

Windows Startup/Shutdown time



 
Investigate your own computer:


 
When was it turned on and off during the last week?

» Investigate in the Internet which events are logged when!


 
Draw a timeline to visualize your results!



Michael Sonntag 31Filesystem investigation

Windows Startup/Shutdown time: 
Exemplary solution



 
The Startup/shutdown time is logged in the event log


 
These are part of the "System" log



 
See http://support.microsoft.com/kb/196452



 
Date and time of the event are logged as well

» Note: Local time!


 
Event-IDs:


 
6009: Startup (OS version, …)



 
6005: Event log service started



 
…



 
6006: Clean shutdown/Event log service stopped



 
6008: Dirty shutdown

» Unexpected, e.g. through power failure



Michael Sonntag 32Filesystem investigation

Windows Startup/Shutdown time: 
Exemplary solution



 
To ease the gathering, use "View – Filter…" to only show 
events with specific IDs



 
Exemplary results:


 
No 6008 events!



Michael Sonntag 33Filesystem investigation

Windows Startup/Shutdown time: 
Exemplary solution



 
Result:


 
Monday 7.1.2008: 7:48-17:11



 
Tuesday 8.1.2008: 7:52- 7:51 (next day!)



 
Wednesday 9.1.2008: 7:52-20:11



 
Thursday 10.1.2008: 7:42-17:37



 
Friday 11.1.2008: 7:42-18:00



 
Extraordinary period on night of 8.1. to 9.1.


 
Further investigation: Some updates occurred at 5 o'clock in 
the night, so the computer was actually running



 
It seems, it was just not turned off



 
Whether it was in actual use cannot be decided!

» But as no other events occurred during that time, this is unlikely
– Windows update is automatic  No user needed to be there!



Michael Sonntag 34Filesystem investigation

Windows Startup/Shutdown time: 
Windows 7



 
Control Panel – System and Security - Administrative tools


 
Select System log click under actions “Filter current log…”



 
Enter the ID “6008” in the form, or write the filter manually:

» <QueryList> 
<Query Id="0" Path="System"> 
<Select Path="System">*[System[(EventID=6008)]]</Select> 

</Query> 
</QueryList>



 
Events can also be 
shown as native XML



 
Practical:

» 6006
» 6009



Michael Sonntag 35Filesystem investigation

Conclusions



 
Undelete is quite simple on FAT


 
But complex/impossible on NTFS/EXT3!



 
"Plain text" search will still work unless actually overwritten



 
Hiding files is quite simple: Wrong extensions and ADS


 
Found only with good knowledge and additional tools

» But VERY difficult to REALLY hide information!


 
Even with very simple means a lot of information can be 
extracted, if it is exactly known where to look for it


 
But also its limitations must be known!



 
Timestamps (or timing issues) are an important aspect for 
every forensic investigation


 
The time zone is very important there

» Is the data stored in local or UTC (or …) time?
» What is the difference to UTC now (and what was it then?)



© Michael Sonntag 2012

Questions?Questions?
Thank you for your attention!

? ?

??

??


	Filesystem investigation
	Agenda
	Images
	Software installation
	Software installation
	Search for deleted files:�FAT
	Search for deleted files:�FAT
	Search for deleted files:�FAT
	Search for deleted files:�FAT
	Search for deleted files:�FAT
	Discovering hidden files:�Wrong extensions
	Wrong extensions:�Exemplary solution – Manual check
	Wrong extensions:�Exemplary solution – Manual check
	Wrong extensions:�Exemplary solution – Manual check
	Wrong extensions:�Exemplary solution – "file" command
	Wrong extensions:�Exemplary solution – "file" command
	Wrong extensions:�Exemplary solution – "strings" command
	Wrong extensions:�Exemplary solution – "strings" command
	Wrong extensions:�Exemplary solution – Archives
	Search for deleted files:�Bonus example - NTFS
	Windows ADS
	Windows ADS:�Exemplary solution
	Windows ADS:�Exemplary solution
	Timestamps
	Timestamps:�Exemplary solution
	Timestamps:�Exemplary solution
	Timestamps:�Exemplary solution
	Windows Startup/Shutdown time
	Windows Startup/Shutdown time:�Exemplary solution
	Windows Startup/Shutdown time:�Exemplary solution
	Windows Startup/Shutdown time:�Exemplary solution
	Windows Startup/Shutdown time:�Windows 7
	Conclusions
	Questions?

