
© Michael Sonntag 2011

XML signing and encryption
With Java examples

Mag. iur. Dr. techn. Michael Sonntag

Institute for Information Processing and
Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at
http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Michael Sonntag 2XML signing and encryption



XML security consists of two independent parts:


XML Signature: Allows signing XML documents (non-repudiation)



XML Encryption: Allows encrypting XML documents (secrecy)



Both trivially accomplished by existing technologies/standards


But only for the complete file!

» This prevents e.g. writing the signature into the XML file itself!
» Locating parts is no longer possible in encrypted files
» Tags are also encrypted  known plaintext attack possible
» No schema validation while encrypted



Solution: Standards for encrypting/signing parts of XML files



Problem: XML content may differ binary but be logically the same


E.g. linefeeds, blanks, entity style/replacement, CDATA sections,…



Solution: Canonical XML

» Specific "formatting" which always produces the same binary result

XML Security

Michael Sonntag 3XML signing and encryption



Produce a unique physical representation of an XML fragment


Not foolproof: Even more strict is "Exclusive XML Canonicalization"



Works not really well for parts which are not well-formed



Unifies:


Character set: Always UTF-8 in NFC (=Normalization Form C)



Linebreaks: Always #x0A



Attribute values: Normalized, double quotes, default attr. added



Content text: CDATA, entities, special characters, …



Superfluous elements: XML declaration, DTD, unneeded NS



Extraneous whitespace: Within tags, outside of document element



Ordering: Attributes within a tag, namespace declarations



Limitations:


Base URIs, notations, external unparsed entity references,
attribute types in DTD

C14N:
XML Canonicalization

Michael Sonntag 4XML signing and encryption



A signature consists of


The actual signature value (Base64 encoded)



Signature information:

» Canonicalization, signature, digest method
» What was actually signed: URI/XPath, …; additional transformations



Information on the key to use for verification

» E.g. certificate (X.509, PGP, …), key name, …


Object information: What is actually signed



Additional properties: E.g. timestamp



Three kinds of signatures exist


Enveloping: Signed data contained within the Object information



Enveloped: An ancestor of the signature is signed

» The signature itself must be excluded from digesting, obviously!


Detached: External content (identified by URI or Transform)

XML Signature

Michael Sonntag 5XML signing and encryption



Describes how to obtain the data object to be digested


Ordered list: Result of first is input for second, …



Each transform consists of an algorithm and appr. attributes



Examples:


Two enveloped signatures required: Each signature must exclude
itself, but it must also exclude the other one!



Enveloped transform: Equivalent to the following XPath transform


<XPath xmlns:dsig="&dsig;">
 count(ancestor-or-self::dsig:Signature

| here()/ancestor::dsig:Signature[1]) >

 count(ancestor-or-self::dsig:Signature)</XPath>
» If the direct parent signature is in the set of all outer signatures, this

element is excluded from signing

XML Signature
Transformations

Michael Sonntag 6XML signing and encryption



Algorithms are identified by URIs


Some of them must be implemented (not used!), some are optional



Digest: SHA1



Encoding: Base64



MAC: HMAC-SHA1


MAC=Message Authentication Code (=crypt. hash algorithm)



Signature: DSAwithSHA1, RSAwithSHA1



Canonicalization: Canonical XML 1.0 omitting comment/with
comments, Canonical XML 1.1 omitting comment/with comments



Transform: Enveloped signature, XPath, XSLT

XML Signature
Algorithms

Required Recommended Optional

Michael Sonntag 7XML signing and encryption



An API specification was created in JSR 105


We use the version from Apache (“Santuario”  Java and C++)

» Requires external library for the actual signature, digest, … algorithms!
– Here: BouncyCastle (Free implementation)



Example:


Please note that the verification checks only the cryptographic
quality of the signature!

» I.e. verification will succeed for ANY signature with ANY key!
– Real application should check whether the certificate is something

trusted/expected or use their own certificates


The resulting signed document is no longer valid!

» The signature (or any other extensions) is not specified in the schema

Sign.java, Verify.java
Order.xml, Order_signed.xml

XML Signature
Java

Michael Sonntag 8XML signing and encryption



Encrypted can be:


The whole XML document



A single XML element



XML element content: several (sub-)elements



XML element content: character data



Encrypted data can again be encrypted without problem



Encrypted data is represented by the following information


Encryption method: The algorithm used



Key information: How to find the key for decryption or the key itself

» Symmetric encryption: The key itself (encrypted!)
» Asymmetric encryption: The public key used
» General: Name or pointer to the key to be used



The enciphered data: Value or pointer to it



Additional properties

XML Encryption
Structure

<elem><sub/>Text</elem>

<elem><sub/>Text</elem>

<elem><sub/>Text</elem>

Michael Sonntag 9XML signing and encryption



Algorithms are identified by URIs


Some of them must be implemented (not used!), some are optional



Block encryption: TripleDES, AES-128, AES-256, AES-192



Stream encryption: None specified!



Key transport: RSA-v1.5, RSA-OAEP



Key agreement: Diffie-Hellman



Symmetric key wrap: TripleDES, AES-128, AES-256, AES-192



Message digest: SHA1, SHA256, SHA512, RIPEMD-160



Message authentication: XML digital signature



Canonicalization: (Exclusive) canonical; with(-out) comments



Encoding: Base64


The encoded result is for almost all algorithms binary data!

XML Encryption
Algorithms

Required Recommended Optional

Michael Sonntag 10XML signing and encryption



Currently there exists no API specification


One was under development by Sun in JSR 106 (Withdrawn 2010)



Implementation available from Apache (Java and C++; “Santuario”)

» Requires external library for the actual encryption, … algorithms!


Very simple to use


But take care of the problems (see next slide!)

» E.g. the encrypted order has some new namespace declarations!


The real problem is often somewhere else: Key management!


Where to (securely!) store encryption/signature keys?



How to identify the key to use (certificates, public registries, …)?

Encrypt.java, Decrypt.java
Order.xml, Order_encrypted.xml, Order_decrypted.xml

XML Encryption
Java

Michael Sonntag 11XML signing and encryption



When namespaces are used, these may be inherited by the
element which is to be encrypted


Or explicitly removed by specifying ' xmlns:ns="" '



When this is encrypted and later decrypted and put into a different
context, the result might be invalid!


With empty namespace even in the same context

» On canonicalization this might be stripped away, so after decryption
the default namespace is inherited instead of removed!



xml:base, xml:lang, xml:space attributes: May cause problems


These are also inherited!

The application must take care to specify these things explicitly or
know exactly into which context to put the result of decryption!

XML Encryption
Problems

Michael Sonntag 12XML signing and encryption



Both do not specify new algorithms


These must be acquired separately (patent problems, …)!



Combining both can lead to problems


Signing encrypted data: How to know what is really signed?

» Should be avoided; task of the application!


Encrypting signed data: How to know whether signature verification
should be done before decryption or afterwards?

» If complete structure is encrypted  no problem
» When only subparts are encrypted, this gets important!
» Example: Signing the payment information and later on encrypting the

creditcard number, but leaving the name in cleartext
» There exists a separate specification for this!

– Introduces "exception" elements to the transformation

XML Signature + Encryption

© Michael Sonntag 2011

Questions?Questions?
Please ask immediately!

? ?

??

??

Michael Sonntag 14XML signing and encryption

Literature
Security



W3C XML Security Working Group
http://www.w3.org/2008/xmlsec/



XML Signature
http://www.w3.org/Signature/



XML Encryption
http://www.w3.org/Encryption/2001/



XML Canonicalization
http://www.w3.org/TR/2001/REC-xml-c14n-20010315



Exclusive XML Canonicalization
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718



Apache Santuario
http://santuario.apache.org/download.html

	XML signing and encryption
	XML Security
	C14N:�XML Canonicalization
	XML Signature
	XML Signature�Transformations
	XML Signature�Algorithms
	XML Signature�Java
	XML Encryption�Structure
	XML Encryption�Algorithms
	XML Encryption�Java
	XML Encryption�Problems
	XML Signature + Encryption
	Questions?
	Literature�Security

