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

 
XML security consists of two independent parts:


 
XML Signature: Allows signing XML documents (non-repudiation)



 
XML Encryption: Allows encrypting XML documents (secrecy)



 
Both trivially accomplished by existing technologies/standards


 
But only for the complete file!

» This prevents e.g. writing the signature into the XML file itself!
» Locating parts is no longer possible in encrypted files
» Tags are also encrypted  known plaintext attack possible
» No schema validation while encrypted



 
Solution: Standards for encrypting/signing parts of XML files



 
Problem: XML content may differ binary but be logically the same


 
E.g. linefeeds, blanks, entity style/replacement, CDATA sections,…



 
Solution: Canonical XML

» Specific "formatting" which always produces the same binary result

XML Security
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

 
Produce a unique physical representation of an XML fragment


 
Not foolproof: Even more strict is "Exclusive XML Canonicalization"



 
Works not really well for parts which are not well-formed



 
Unifies:


 
Character set: Always UTF-8 in NFC (=Normalization Form C)



 
Linebreaks: Always #x0A



 
Attribute values: Normalized, double quotes, default attr. added



 
Content text: CDATA, entities, special characters, …



 
Superfluous elements: XML declaration, DTD, unneeded NS



 
Extraneous whitespace: Within tags, outside of document element



 
Ordering: Attributes within a tag, namespace declarations



 
Limitations:


 
Base URIs, notations, external unparsed entity references, 
attribute types in DTD

C14N: 
XML Canonicalization
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

 
A signature consists of


 
The actual signature value (Base64 encoded)



 
Signature information:

» Canonicalization, signature, digest method
» What was actually signed: URI/XPath, …; additional transformations



 
Information on the key to use for verification

» E.g. certificate (X.509, PGP, …), key name, …


 
Object information: What is actually signed



 
Additional properties: E.g. timestamp



 
Three kinds of signatures exist


 
Enveloping: Signed data contained within the Object information



 
Enveloped: An ancestor of the signature is signed

» The signature itself must be excluded from digesting, obviously!


 
Detached: External content (identified by URI or Transform)

XML Signature
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

 
Describes how to obtain the data object to be digested


 
Ordered list: Result of first is input for second, …



 
Each transform consists of an algorithm and appr. attributes



 
Examples:


 
Two enveloped signatures required: Each signature must exclude 
itself, but it must also exclude the other one!



 
Enveloped transform: Equivalent to the following XPath transform


 

<XPath xmlns:dsig="&dsig;">
 count(ancestor-or-self::dsig:Signature

 
| here()/ancestor::dsig:Signature[1]) >

 count(ancestor-or-self::dsig:Signature)</XPath>
» If the direct parent signature is in the set of all outer signatures, this 

element is excluded from signing

XML Signature 
Transformations
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

 
Algorithms are identified by URIs


 
Some of them must be implemented (not used!), some are optional



 
Digest: SHA1



 
Encoding: Base64



 
MAC: HMAC-SHA1


 
MAC=Message Authentication Code (=crypt. hash algorithm)



 
Signature: DSAwithSHA1, RSAwithSHA1



 
Canonicalization: Canonical XML 1.0 omitting comment/with 
comments, Canonical XML 1.1 omitting comment/with comments



 
Transform: Enveloped signature, XPath, XSLT

XML Signature 
Algorithms

Required  Recommended  Optional
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

 
An API specification was created in JSR 105


 
We use the version from Apache (“Santuario”  Java and C++)

» Requires external library for the actual signature, digest, … algorithms!
– Here: BouncyCastle (Free implementation)



 
Example:


 
Please note that the verification checks only the cryptographic 
quality of the signature!

» I.e. verification will succeed for ANY signature with ANY key!
– Real application should check whether the certificate is something 

trusted/expected or use their own certificates


 
The resulting signed document is no longer valid!

» The signature (or any other extensions) is not specified in the schema

Sign.java, Verify.java 
Order.xml, Order_signed.xml

XML Signature 
Java
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

 
Encrypted can be:


 
The whole XML document



 
A single XML element



 
XML element content: several (sub-)elements



 
XML element content: character data



 
Encrypted data can again be encrypted without problem



 
Encrypted data is represented by the following information


 
Encryption method: The algorithm used



 
Key information: How to find the key for decryption or the key itself

» Symmetric encryption: The key itself (encrypted!)
» Asymmetric encryption: The public key used
» General: Name or pointer to the key to be used



 
The enciphered data: Value or pointer to it



 
Additional properties

XML Encryption 
Structure

<elem><sub/>Text</elem>

<elem><sub/>Text</elem>

<elem><sub/>Text</elem>
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

 
Algorithms are identified by URIs


 
Some of them must be implemented (not used!), some are optional



 
Block encryption: TripleDES, AES-128, AES-256, AES-192



 
Stream encryption: None specified!



 
Key transport: RSA-v1.5, RSA-OAEP



 
Key agreement: Diffie-Hellman



 
Symmetric key wrap: TripleDES, AES-128, AES-256, AES-192



 
Message digest: SHA1, SHA256, SHA512, RIPEMD-160



 
Message authentication: XML digital signature



 
Canonicalization: (Exclusive) canonical; with(-out) comments



 
Encoding: Base64


 
The encoded result is for almost all algorithms binary data!

XML Encryption 
Algorithms

Required  Recommended  Optional
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

 
Currently there exists no API specification


 
One was under development by Sun in JSR 106 (Withdrawn 2010)



 
Implementation available from Apache (Java and C++; “Santuario”)

» Requires external library for the actual encryption, … algorithms!


 
Very simple to use


 
But take care of the problems (see next slide!)

» E.g. the encrypted order has some new namespace declarations!


 
The real problem is often somewhere else: Key management!


 
Where to (securely!) store encryption/signature keys?



 
How to identify the key to use (certificates, public registries, …)?

Encrypt.java, Decrypt.java 
Order.xml, Order_encrypted.xml, Order_decrypted.xml

XML Encryption 
Java
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

 
When namespaces are used, these may be inherited by the 
element which is to be encrypted


 
Or explicitly removed by specifying ' xmlns:ns="" '



 
When this is encrypted and later decrypted and put into a different 
context, the result might be invalid!


 
With empty namespace even in the same context

» On canonicalization this might be stripped away, so after decryption 
the default namespace is inherited instead of removed!



 
xml:base, xml:lang, xml:space attributes: May cause problems


 
These are also inherited!

The application must take care to specify these things explicitly or 
know exactly into which context to put the result of decryption!

XML Encryption 
Problems
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

 
Both do not specify new algorithms


 
These must be acquired separately (patent problems, …)!



 
Combining both can lead to problems


 
Signing encrypted data: How to know what is really signed?

» Should be avoided; task of the application!


 
Encrypting signed data: How to know whether signature verification 
should be done before decryption or afterwards?

» If complete structure is encrypted  no problem
» When only subparts are encrypted, this gets important!
» Example: Signing the payment information and later on encrypting the 

creditcard number, but leaving the name in cleartext
» There exists a separate specification for this!

– Introduces "exception" elements to the transformation

XML Signature + Encryption
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Questions?Questions?
Please ask immediately!

? ?

??

??
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Literature 
Security



 
W3C XML Security Working Group 
http://www.w3.org/2008/xmlsec/



 
XML Signature 
http://www.w3.org/Signature/



 
XML Encryption 
http://www.w3.org/Encryption/2001/



 
XML Canonicalization 
http://www.w3.org/TR/2001/REC-xml-c14n-20010315



 
Exclusive XML Canonicalization 
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718



 
Apache Santuario 
http://santuario.apache.org/download.html
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