
© Michael Sonntag 2011

Code signing

Institute for Information Processing and
Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at
http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Michael Sonntag 2Code signing

Agenda



Code signing overview



Signing .NET code


Strong names



Authenticode



Signing applets


Java Web start

Michael Sonntag 3Code signing

Code signing: Why?


Typically there is only a single incentive for signing code


To get it to run!



Why?


Security precautions prevent unsigned code from running



Other reasons:


Verifying integrity (viruses) etc.  More secure than hashes



Preventing modifications (normal end users / attackers)



Marking ownership of the code



Problem: Signed code is not any more secure!


Signature = Who “authorized” the code



Signature 

Who “checked” the code



Guarantees based on the certificate are very weak

» The company/person it was issued to exists
– Additionally sometimes: And has pledged to not distribute malware

or viruses knowingly or when he should have known

Michael Sonntag 4Code signing

Code signing: Why?


Code signing = Authentication + Integrity



Practice: To make sure the “program” arriving at the client
actually is identical to the one produced by the author


Download secured by hashes: Modify the webpage to in
exactly the same way as the download to get “correct” ones



Download secured by signature: You need to obtain the
(typically stored offline/on other servers) stored private key



What do you not get by code signing?


Security guarantees, insurance, …



Bug-free software



Protection against decompilation



Protection against modifications by user

» Typically the signature can be removed and the program then
runs also (if security is configured appropriately!)

Michael Sonntag 5Code signing

Bruce Schneier on code signing


First, users have no idea how to decide if a particular signer
is trusted or not.



Second, just because a component is signed doesn't mean
that it is safe.



Third, just because two components are individually signed
does not mean that using them together is safe; lots of
accidental harmful interactions can be exploited.



Fourth, "safe" is not an all-or-nothing thing; there are
degrees of safety.



And fifth, the fact that the evidence of attack (the signature
on the code) is stored on the computer under attack is
mostly useless: The attacker could delete or modify the
signature during the attack, or simply reformat the drive
where the signature is stored.

Bruce Schneier: Secrets and Lies - Digital Security in a Networked World, John
Wiley and Sons, 2000

Michael Sonntag 6Code signing

Strong names


Applies to .NET platform: Signing assemblies


There used to uniquely identify each assembly



They are not intended for security

» They can be removed from an executable program, which will
then still be able to run fine!

– But only with additional security configuration


Additional feature: Versioning

» Not directly by the signature, but the associated metadata
– To get out of “DLL hell”: DLLs with same name but different content



When using the Global Assembly Cache (GAC) strong
names are mandatory


For collision protection, not for authentication!



Problem: Revocation of keys is not supported



Advantages:


No official certificates needed



Can run offline: No online checks needed; but see revocation!

Michael Sonntag 7Code signing

Strong Names


Strong name (SN) =


Text name of the assembly



Version number



Culture information (optional)



Public key + signature



Assemblies with SN can only reference SN-assemblies



SN does not involve certificates, only public/private keys


Referencing another assembly  Public key of that assembly
is stored in the calling assembly

» Check at runtime whether this key is the same as the one used
to sign the assembly found on disk

» Check whether the signature on that assembly is correct


Public key distribution needed



Since .NETv4 not really a security measure any more


Integrity is still important

Michael Sonntag 8Code signing

Strong Names
Delay signing



Management problem:


Strong signing must keep the private key absolutely secret



But it must be applied every time the source code is compiled



Solution: Delay signing


Compilation is possible with the public key alone

» This can be distributed to all developers


Must be specified in the assembly information file

» Compiler leaves place empty for the actual signature


Actual signing takes place with another (test) key



Verification must be switched off if using the GAC

» This is necessary on the developer machines only!
» Can be done on a per-assembly basis



Attention: Before shipping signing with the “real” private key
must take place!


This will insert the signature into the place reserved for it

Michael Sonntag 9Code signing

Signing code with SN


Creating a new keypair


sn –k KeyFile.snk

» Note: No certificate, no name, encryption, …
» Protection must be organized by yourself!



Configure Visual Studio to (delay) sign the executable


Take the warning seriously!



Delay signing is more complex


You need a second key pair



Public key from “original”



Signatur from alternative



Security configuration
to accept the alternative key (must be run as administrator!)



Replaying the temporary signature before release



We will skip the intermediate steps here!

Michael Sonntag 10Code signing

Signing code with SN


Run the delay-signed executable


It crashes – Investigate what the real problem is

» The real problem is in the details: Exception Code: e0434f4d
– Very difficult to find out; but when debugging it:



Apply the “real” signature: sn –R SNApp KeyFile.snk



Now it runs!



Verifying the signature (without running it, e.g. DLLs):


sn -v SNApp.exe

Michael Sonntag 11Code signing

Authenticode


Uses a full certificate  As opposed to strong names the
key distribution/verification becomes easier


Also supports revocation checking



Aims of Authenticode:


Identifying the publisher

» Separation between commercial/individual users’ certificates


Ensuring integrity



Signing a file does:


Add the actual signature to the file



Add the certificate



Optionally add a timestamp (should always be done!)

» Requires a timestamping server; can also be added later
» To ensure the software can still be used when the certificate has

expired (valid only for one year – “tax” on SW developers!)
» Revocation check for this is off by default!

Michael Sonntag 12Code signing

Authenticode:
Certificates



Requirements for certificates


Applicants must provide proof for their identity

» Standard certificate practice
» Seems to be much more relaxed regarding individuals



Applicants must pledge that they will not distribute software
that they know, or should have known, contains viruses or
would otherwise harm a user's computer or code



Commercial applicants need additionally:

» Minimal financial standing: DUNS number
– Dun & Bradstreet – a credit rating company



Certificate is special for software publishing


Actually a standard certificate with special usage restrictions



Attention: Microsoft does NOT provide certificates!


Use the “normal” certification authorities

Michael Sonntag 13Code signing

Responsibilities of a CA


As a leading Digital Certificate Authority, Comodo has the
following responsibilities:


Publishing the criteria for granting, revoking, and managing
certificates



Granting certificates to applicants who meet the published criteria


Managing certificates (for example, enrolling, renewing, and
revoking them)



Storing Comodo's root keys in an exceptionally secure manner


Verifying evidence submitted by applicants


Providing tools for enrollment


Accepting the liability associated with these responsibilities


Time stamping a digital signature


Source: http://www.instantssl.com/code-signing/code-
signing-technical.html


Certificates are valid for 1-3 years and cost 

€ 170/year

» Plus cost of official translation of documents!

Michael Sonntag 14Code signing

Creating an Authenticode certificate


Creating a certificate:


makecert -# ! -$ individual -n "CN=Michael
Sonntag,E=sonntag@fim.uni-linz.ac.at" -e 12/31/2015 -sv
cert.pvk -r cert.cer

» Serial number: 1
» For individual SW publisher (alternative: commercial)
» Issuer & Subject: “Michael Sonntag” as Common Name

– And “sonntag@fim.uni-linz.ac.at” as E-Mail address
» End date: 31.12.2015
» Self-signed (“-r”)
» Enter (+ confirm + enter for signing) and remember the

password for the private key (or enter nothing for unprotected!)


Create a PKCS#7 object (=list of all certificates)


cert2spc cert.cer cert.spc

» Here only one, otherwise the whole chain to the root certificate!

Michael Sonntag 15Code signing

Signing code with Authenticode


Combine certificate and private key


pvk2pfx -pvk cert.pvk -spc cert.spc -pfx cert.pfx



Actual signing


signtool sign /d "iWwrite App" /du "http://www.iwrite.app/"
/f cert.pfx /t http://timestamp.verisign.com/scripts/timstamp.dll
SNApp.exe



Additional information (optional!)

» Nice name for software
» URL of the developer
» Not verified, just for displaying



Timestamp it

Michael Sonntag 16Code signing

Verifying Authenticode


Through the Windows Explorer


Once signed, right-click shows new tab “Digital Signatures”



Problem only because the certificate is self-signed and not
imported into the trusted root certificates store!

Michael Sonntag 17Code signing

Verifying Authenticode


Programmatically:


Signtool verify /r "Michael Sonntag" /tw /pa SNApp.exe

» Check the name in the certificate
» Check the timestamp
» Use the default authentication verification policy

– Otherwise it would be verified as a driver!
» Adding “/v” prints the certificate(s) included



Output here:


SignTool Error: A certificate chain processed, but terminated
in a root certificate which is not trusted by the trust provider.
SignTool Error: File not valid: SNApp.exe
Number of errors: 1



Note: The application can be executed perfectly and works!



After importing the certificate as a trusted root certificate:


Successfully verified: SNApp.exe

Michael Sonntag 18Code signing

SmartScreen and code signing


IE 9 has a new application reputation feature


Downloads receive a reputation rating based on:

» Antivirus result, download traffic, download history, URL
reputation, Windows logo (expensive!)

» File identifier (hash) & publisher (dig. signed) are sent to a cloud
service, which stored the data and returns a reputation value



Often downloaded & few complaints  Good reputation



Bad reputation is fed back to the signer’s certificate and from
there to all other programs signed with the same certificate



Problems:


Every new version of a program has its own reputation

» Problem for applications changing (e.g. updated) frequently


Very expensive to “get around”: official certificate + logo



Drawback for smaller companies/free software



Digital signature alone is insufficient for “no warning”

Michael Sonntag 19Code signing

Signing applets


Applets run within a sandbox, prohibiting most interesting
actions because of associated security dangers



Allowing them access requires explicit permission


This is possible “generally”, i.e. for all applets



Or based on the signer of the applet

» Requiring, of course, that the applet is signed


Problems:


Configuration! The browser/applet viewer doesn’t ask, it
merely allows access or blocks it!

» New versions: Improvements (see below)!

Michael Sonntag 20Code signing

“New” applet security model


All unsigned applets run within the sandbox


With all locally defined exceptions



“usePolicy” defined within the local policy file?

» Can be defined according to the source of the code or generally
– grant { permission java.lang.RuntimePermission "usePolicy"; };



Yes: Signed applets receive those permissions specified in
the local policy file without any user intervention

» These can be very fine-grained and be based on the source of
the code and its signer



No: Dialog asking whether to grant all permissions or not

» No restriction possible: Nothing or “AllPermission” only!
» But: For this signer and for this session only, or for all applets

from this signer in the future
» But: Everything in the local policy is applied regardless of the

user’s answer in addition!
– User denied access, but allowed according to local policy Works!

Michael Sonntag 21Code signing

“New” applet security model


Recommendations for configuration:


In companies, add a central policy file

» One line in the local policy file pointing to a central file on a web
server which will be incorporated



Two applets:

» One signed applet (=showing the dialog), which then modifies
the policy file

» Another applet performing the actual function

Michael Sonntag 22Code signing

Signing applets


Example: Trivial applet writing to the file “C:\Temp\temp.txt”
in the applet initialization (=no UI at all)


Writing to a local file  Forbidden within the sandbox



Executing it directly leads to an AccessControlException



Remedy: Sign it!



Generating a keypair/certificate request


keytool –genkey –keystore keystore.jks –alias MyStore
–dname „CN=Michael Sonntag” –validity 365

» Automatically generates a self-signed certificate too


Sign the jar file


jarsigner –keystore keystore.jks file.jar MyStore



Programmatically verifying the signature


jarsigner -verify -verbose -certs WriteFileApplet.jar

» Prints detailed information and certificate as well

Michael Sonntag 23Code signing

Signing applets: Result


Creates signature file within META-INF directory inside jar


Signature-Version: 1.0
SHA1-Digest-Manifest-Main-Attributes:
K1IZiGg6aKM/FiKTQ9VNYsurfKo=
Created-By: 1.6.0_18 (Sun Microsystems Inc.)
SHA1-Digest-Manifest: 3gMOg2eEQl2vQz9/G8yK1fiADRE=

Name: WriteFileApplet.class
SHA1-Digest: lnzY0hcvs8iwXFmIUIW/phbbLmQ=



Adds digest values to the manifest (MYSTORE.SF)


Name: WriteFileApplet.class
SHA1-Digest: 1s95HHStGBJY8tvSqxXQGbjj50c=



Adds binary representation of signature and certificate
(MYSTORE.DSA)

Michael Sonntag 24Code signing

Running a signed applet


This doesn’t help at all at the moment:



What is missing are matching permission


These must be administered locally



There is no real user interface for it

» Only a tool for manipulating the policy files, but not for
“installing” a policy or managing them



This is a text file within the JRE path!

» Or specified explicitly when starting the application/applet

Michael Sonntag 25Code signing

Creating a policy file


Example of a separate policy file allowing only the minimum
needed for this applet: Writing to a single file


keystore "keystore.jks", "jks";
grant SignedBy „MyStore" {

permission java.io.FilePermission "c:\\temp\\temp.txt", "write"; };


Attention: Many pitfalls!


The URL of the keystore must be exactly right (no warning!)

» If a “file://” URL: Must use forward slashes (“/”)


The file permission must use backslashes (=local name)!



“SignedBy” uses the local alias in the keystore, not the name
within the certificate!



May also be added to the system-wide policy file



Example:


appletviewer -J-Djava.security.policy=java.policy Applet.jar

» “java.policy” = Filename of the policy file (see above)

Michael Sonntag 26Code signing

Java Web Start


“Distribution system” for Java applications


They can be started from a web browser (downloaded only
once and cached), but they don’t need one

» They are real applications


Applets can run inside JWS, then they don’t need a browser



JWS apps are cached indefinitely on the client and run
without any network connection

» Automatic update check, iff network connection exists


Can automatically download a specific JRE version if needed



Reference implementation of the JNLP


Java Network Launching Protocol



Defines an XML schema how to start such an application

» Where to find jars, security configuration, update settings, …


Special compression (“Pack200”) to reduce jar size



Doesn’t seem to be widely used

Michael Sonntag 27Code signing

Java Web Start


Security: Unsigned JWS apps runs in a sandbox


Some slight modifications from applet sandbox

» Can import/export files, print, open socket connections:
– After requesting user permission!



Signing is identical to applets



Signed JWS: No sandbox  Can do everything it wants

» Specific security configuration exists, but the only element
currently specified is “all-permissions”!



Implementation considerations:


All jars in a JWS package must be signed with the same
certificate: Unpack + re-sign them or use several JNLP files



Web server must serve JWS apps with MIME type
“application/x-java-jnlp-file”

» Browser must be configured to run this MIME type correctly
» Similar: *.jnlp must be associated to javaws.exe for local files
» Both is done by the JRE installer

Michael Sonntag 28Code signing

Conclusions



Code signing is difficult to get right


Extensive testing needs to ensure that it works and that really
no warning signs pop up



It gives only limited advantages


No warning signs



No modification in transit

» If users can identify the publisher to be the correct one!


Drivers must be signed in newer versions of Windows



But there are shortcomings


Limited to certain file types



Verification is limited to specific circumstances



Full automation in the build process is possible


And highly desirable!

© Michael Sonntag 2011

Questions?Questions?
Thank you for your attention!

? ?

??

??

Michael Sonntag 30Code signing

Literature/Links



Microsoft: Introduction to code signing
http://msdn.microsoft.com/en-
us/library/ms537361%28v=vs.85%29.aspx



IEBlog: SmartScreen Application Reputation – Building
Reputation
http://blogs.msdn.com/b/ie/archive/2011/03/22/smartscreen-
174-application-reputation-building-reputation.aspx



Oracle: Applet Security Basics
http://download.oracle.com/javase/6/docs/technotes/guides/
plugin/developer_guide/security.html

	Code signing
	Agenda
	Code signing: Why?
	Code signing: Why?
	Bruce Schneier on code signing
	Strong names
	Strong Names
	Strong Names�Delay signing
	Signing code with SN
	Signing code with SN
	Authenticode
	Authenticode:�Certificates
	Responsibilities of a CA
	Creating an Authenticode certificate
	Signing code with Authenticode
	Verifying Authenticode
	Verifying Authenticode
	SmartScreen and code signing
	Signing applets
	“New” applet security model
	“New” applet security model
	Signing applets
	Signing applets: Result
	Running a signed applet
	Creating a policy file
	Java Web Start
	Java Web Start
	Conclusions
	Questions?
	Literature/Links

