
Security Testing Strategies
Overview

Andreas Schabus
http://thespoke.net/blogs/aschabus/default.aspx

Developer and Platform Group

Microsoft Österreich GmbH

secure: [si-'kyur]
1: free from danger
2: free from risk of loss
3: affording safety

http://thespoke.net/blogs/aschabus/default.aspx

"Software testing is the process used

to help identify the correctness,

completeness, security and quality of

developed computer software"

WikipediA

The project team must address all

solution quality issues for a release

Functional testing concentrates

on normal circumstances

Intended
functionality

Traditional
faults

Security testing probes a system

like an attacker might do

Intended
functionality

Traditional
faults

Actual
software
functionality

Unintended,
undocumented
or unknown
functionality

Missing
Defenses

Poor
Defenses Extra

‘functionality’
BOs, XSS, etc

No authn

Weak authn

BO in authn

We need a testing process to

determine our solutions security

Determine

Threats

Identify

Update/Review Threat Models

Assets

Entry Points

Trust Levels

Understand

Security

Use Scenarios

System Model

Dependencies

Identify Threats

Analyze Threats

Think about the Mitigation

Techniques

Client Server

Persistent
data

Authentication
Data

Configuration
data STRIDE

STRIDE

STRIDE

STRIDE

 SSL/TLS

 IPSec

 RPC/DCO with

Privacy

 Firewall

 Limiting

resource

utilization for

anonymous

connections

 Strong access

control

 Digital signatures

 Auditing

Insecure
Network

Evaluate the Attack Surface

of the Software

Service: Autostart SYSTEM

TCP/UDP

TCP/UDP

TCP/UDP

Create Security testing plans

Key areas that an attacker

examine to find vulnerabilities
Functions that do improper (or no) bounds
checking

Functions that pass through or consume user-
supplied data in a format string

Functions meant to enforce bounds checking in
a format string (such as %20s)

Routines that get user input using a loop

Low-level byte copy operations

Routines that use pointer arithmetic on user-
supplied buffers

„Trusted“ system calls that take dynamic input

Greg Hoglund, Gary McGraw. Exploiting Software. Addison Wesley. 2004

Identify owners for every

deliverable of our product

Develop a test strategy for

every deliverable

Different Approaches

White Box Analysis/Testing

Black Box Analysis/Testing

Gray Box Analysis/Testing

An important Concept
Testing as non-admin

Create a non-admin account

Test!

Do you have access to stuff you should not

have access to?

What error messages do you get?

Remove yourself from the admin group on

your “day-to-day” box

Try to find/create tools which

can help you during the tests

Create project and testing policies

Static Analysis Tools

Code Coverage

Load/Stress Testing

App Verifier

…

App Verifier
Automated Code review

demo

Conduct code reviews for at-risk

components

Sample - Dangerous APIs

strcpy, wcscpy, lstrcpy, _tcscpy, and _mbscpy

strcat, wcscat, lstrcat, _tcscat, and _mbscat

strncpy, wcsncpy, _tcsncpy, lstrcpyn, and

_mbsnbcpy

strncat, wcsncat, _tcsncat, and _mbsnbcat

memcpy and CopyMemory

strlen, _tcslen, _mbslen, and wcslen

scanf("%s",…), _tscanf, and wscanf

CreateProcess(NULL,…), CreateProcessAsUser,

and CreateProcessWithLogon

WinExec and ShellExecute

Impersonation functions

…

Sample - Question List

Input/Data Validation
Does the code validate data from all
sources?

Does the code use a centralized approach
to input and data validation?

Does the code rely on client-side
validation?

Is the code susceptible to canonicalization
attacks?

Is the code susceptible to SQL injection?

Is the code susceptible to cross-site
scripting?

Code Analysis
Automated Code review

demo

0002b510h: 3A 00 00 00 68 00 74 00 74 00 70 00 3A 00 2F 00 ; :...h.t.t.p.:./.

0002b520h: 2F 00 77 00 77 00 77 00 2E 00 77 00 61 00 79 00 ; /.w.w.w...w.a.y.

0002b530h: 6E 00 65 00 67 00 72 00 65 00 74 00 7A 00 6B 00 ; n.e.g.r.e.t.z.k.

0002b540h: 79 00 2E 00 63 00 6F 00 6D 00 2F 00 00 00 1F 00 ; y...c.o.m./.....

0002b550h: 5A 3A 0E 00 00 00 43 00 61 00 6E 00 61 00 64 00 ; Z:....C.a.n.a.d.

0002b560h: 61 00 00 00 1F 00 5C 3A 10 00 00 00 4F 00 6E 00 ; a.....\:....O.n.

0002b570h: 74 00 61 00 72 00 69 00 6F 00 00 00 1F 00 5B 3A ; t.a.r.i.o.....[:

0002b580h: 10 00 00 00 57 00 39 00 47 00 20 00 39 00 57 00 ;W.9.G. .9.W.

0002b590h: 39 00 00 00 1F 00 59 3A 14 00 00 00 42 00 72 00 ; 9.....Y:....B.r.

0002b5a0h: 61 00 6E 00 74 00 66 00 6F 00 72 00 64 00 00 00 ; a.n.t.f.o.r.d...

0002b5b0h: 1F 00 5D 3A 20 00 00 00 31 00 32 00 33 00 20 00 ; ..]: ...1.2.3. .

0002b5c0h: 4D 00 61 00 69 00 6E 00 20 00 53 00 74 00 72 00 ; M.a.i.n. .S.t.r.

0002b5d0h: 65 00 65 00 74 00 00 00 03 00 71 3A 04 00 00 00 ; e.e.t.....q:....

0002b5e0h: 00 00 10 00 03 00 55 3A 04 00 00 00 00 00 00 00 ;U:........

0002b5f0h: 1F 00 02 30 0A 00 00 00 53 00 4D 00 54 00 50 00 ; ...0....S.M.T.P.

0002b600h: 00 00 1F 00 03 30 24 00 00 00 77 00 61 00 79 00 ;0$...w.a.y.

0002b610h: 6E 00 65 00 40 00 67 00 72 00 65 00 74 00 7A 00 ; n.e.@.g.r.e.t.z.

0002b620h: 6B 00 79 00 2E 00 63 00 6F 00 6D 00 00 00 1F 10 ; k.y...c.o.m.....

0002b630h: 54 3A 01 00 00 00 0E 00 00 00 0A 00 00 00 53 00 ; T:............S.

0002b640h: 4D 00 54 00 50 00 00 00 1F 10 56 3A 01 00 00 00 ; M.T.P.....V:....

Fuzz Testing

What is Fuzzing?

The methodical application of malformed

data in a search for vulnerabilities

Find security & reliability issues efficiently

~20% of the bugs we find in-house are from

fuzzing

Recent example: code reviews found 6

security defects

Fuzzing same code for 2 days found 2 more!

Fuzz Testing Benefits

Easily automated

Doubles as robustness testing

Exercise more failure cases in code

Finds LOTS of bugs

More information

Blackhat paper: “The Art of File Format

Fuzzing”

http://www.blackhat.com/presentations/bh-

usa-05/bh-us-05-sutton.pdf

How to Fuzz

Determine all the entry points to your code

Network ports and protocols

Files and file types

Rank them by privilege level and

accessibility

Anonymous, user, admin

Remote, local

Run your app under AppVerifier

How to Fuzz

For ALL file formats you consume

Build a collection of valid files

Tweak a file at random using a tool

Load the file into your application

Observe!

Crash? Memory spike?

For all network ports

Use a rogue client/server

How to Fuzz

Examples of „tweaking‟ a file

Write a random series of bytes

Flip two adjacent bytes

Look for ASCII/Unicode text and then set the

trailing NULL to non-NULL

Set size values to random numbers

Set integer to negative number

Etc…

Data Mutation Example

<?xml version="1.0" encoding=“utf-8"?>

<items>

<item name="Foo" readonly="true">

<cost>13.50</cost>

<lastpurch>20020903</lastpurch>

<fullname>Big Foo Thing</fullname>

</item>

...

</items>

OnHand.xml

•Filename too long

•Link to another file

•Deny access to file

•Lock file

•No data

•Full of junk

•Different encoding

•No encoding

•Junk

•Different version

•No version

Data Mutation Example

<?xml version="1.0" ?>

<items>

<item name="Foo" readonly="true">

<cost>13.50</cost>

<lastpurch>20020903</lastpurch>

<fullname>Big Foo Thing</fullname>

</item>

...

</items>

OnHand.xml

•Many <items>

•Zero <items>

•No attributes

•Add random attribute

•Long attribute name

•Attribute value too long

•No attribute value

•Special characters

Data Mutation Example

<?xml version="1.0" ?>

<items>

<item name="Foo" readonly="true">

<cost>13.50</cost>

<lastpurch>20020903</lastpurch>

<fullname>Big Foo Thing</fullname>

</item>

...

</items>

OnHand.xml
•False

•0 or -1

•Non-existent

•Too long

•Missing <cost>

•Non-numeric value

•0.00

•Large value

•Large # of digits

•Negative
•Missing <lastpurch>

•Multiple <lastpurch>

•Invalid date

•Non-date value

•Ancient date

•In the future

•Leap year

•Big string

•Valid date followed by junk

•Special characters

•Missing <fullname>

•Long string

•Zero length

Fuzz Testing
HTML Client

demo

How to Fuzz

Network fuzzing

Build a rogue front-end to your app (client

and server)

Tweak bits at random

ClientServer

„p
u

re
 e

v
il

‟

Sample – Fuzz A Protocol
C: GET /results.aspx?q=fuzzing HTTP/1.0

C: Accept: image/gif, image/x-xbitmap, */*

C: User-Agent: Mozilla/4.0

C: Host: msn.com

S: HTTP/1.1 200 OK

S: Connection: Keep-Alive

S: Content-Length: 11358

S: Date: Tue, 06 Sep 2005 12:38:05 GMT

S: Content-Type: text/html; charset=utf-8

S: X-Powered-By: ASP.NET

S: Cache-Control: private

S: <HTML>

S:

S: </HTML>

Modeling the data

1. Which part of the data we would like to fuzz?

2. Who is the fuzzer – the client or the server?

3. What are the basic types that the data

contains?

4. What are the allowed values for each field?

5. How is the output passed to the target

application?

Separate Data

GET /results.aspx?q=fuzzing HTTP/1.0<CR><LF>

Method:

constant ASCII

string

path: should be

defined later

Parameters: should

be defined later

Protocol: constant

ASCII string

Version: numeric

ASCII string

Carriage return

/ Line feed

Penetration Testing
Testing like an Attacker

Δ

What is Penetration Testing?

Generally speaking, testing security from

the standpoint of a given attacker

Trying to gain access to restricted assets,

violate security assumptions, etc.

A critical weapon in the tester‟s arsenal

It is not a grab bag for any test pertaining

to security

Penetration testing is a specific pursuit

Often outsourced to a specialist

Penetration Testing Benefits

Penetration testing will find bugs that other

kinds of testing won‟t

This is the most like the way an attacker

will break the code, since the idea here is

to test from the attacker‟s perspective

Highlights application-level security issues

to development teams and management

It‟s a great opportunity to break out of

running the same old tests

Who is a “Penetration Tester”?

Good penetration tester is a good tester…

Expert in their area

Knowledgeable about the system in general

Knowledgeable as to exploit types, surfaces

Motivated

Creative

Diligent

…armed with security techniques and

methods, not some special kind of hacker.

Targeting Penetration Tests

We should cover every feature, right?

Theoretically, but we can prioritize

High-risk features (as identified in threat

model reviews, design reviews, code

reviews)

New or significantly changed features

Features with low test coverage

Features with previous exploits

If you find a hole, mine it for others!

Difference between types of

assessments

Penetration test

Read teaming

System test

System Test Process

Attack Surface Enumeration (Footprinting)

Footprinting the Application Installation

Footprinting Normal Use

Footprinting Uninstallation

System Test Process

Focused Exploitation

Exploiting Files

Exploiting Registry Keys

Exploiting Named Pipes

Exploiting Weak ACLs

Exploiting via the Network

Why do we need Security in

the Test Phase?

Summary

Security testing probes a system

like an attacker might do

Intended
functionality

Traditional
faults

Actual
software
functionality

Unintended,
undocumented
or unknown
functionality

Missing
Defenses

Poor
Defenses Extra

‘functionality’
BOs, XSS, etc

No authn

Weak authn

BO in authn

We need a testing process to

determine our solutions security

Key Focus Areas in Security

Testing
Think and test like a hacker

Fuzz and Penetration Testing

Attack points derived from:

Threat model

Previous internal and external vulnerabilities

Test everything:

Various user rights – validate least privilege

Default install is as secure as possible

Test sample code & frameworks

Mitigations identified in threat model

Testing is complete when all KNOWN vulnerabilities

have been mitigated

Security testing is important,

but it‟s only a piece of the puzzle

Policies, Procedures, &
Awareness

Physical Security

Perimeter

Internal Network

Host

Application

Data

© 2003-2006 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

