
Spezielle Kapitel aus Betriebssysteme:

Secure Code - LVA 353.013

Part 3

secure: [si-'kyur]
1: free from danger
2: free from risk of loss
3: affording safety

What happens till now?

Design Best Practices

Security Training

Security Kickoff

& Register with

SWI

Security

Design

Best

Practices

Use Security

Development

Tools &

Security Best

Dev & Test

Practices

Create

Security

Docs

and Tools

For Product

Prepare

Security

Response

Plan

Security

Push

Pen

Testing

Final

Security

Review

Security

Servicing &

Response

Execution

Feature Lists

Quality Guidelines

Arch Docs

Schedules

Design

Specifications Testing and Verification

Development

of New Code
Bug Fixes

Code

Signing A

Checkpoint

Express

Signoff

R

T

M
Product Support

Service Packs/

QFEs Security

Updates

Requirements Design Implementation Verification Release
Support
&
Servicing

Functional

Specifications

Traditional Microsoft Software Product Development Lifecycle Tasks and Processes

Security Arch &

Attack Surface

Review

Threat

Modeling

Security Challenges

Challenges Reasons

 Hacker needs to understand one

vulnerability; defender needs to secure all

entry points

 Hackers outnumber defenders

 Hackers have unlimited time

 Secure systems become harder to use

 Complex and strong passwords are

difficult to remember

 Users prefer simple passwords

 Developers and management think that

security does not add any business value

 Managers do not build time for security

implementation into the schedule

Hackers

Defenders

vs.

Security

vs.

Usability

Security as an

Afterthought

Do I need

security

…

Why Security in the Design Phase?

• Saves you Money later

• If the design is not secure, the application cannot

be secure

• A secure design is the starting point for all

security in the application

Common Secure-Design Principles

• Economy of Mechanism

• Fail-Safe defaults

• Complete Mediation

• Open Design

• Separation of Privilege

• Least Privilege

• Least Common Mechanism

• Psychological Acceptability

(Saltzer and Schroeder 1975)

Lack of Information

A Designer's Security Checklist

• Education in place for team

• Someone on team signed up to monitor BugTraq
(http://www.securityfocus.com/archive/1) and NTBugtraq
(http://www.securitytrap.org/ntbugtraq.html)

• Competitor’s vulnerabilities analyzed to determine if the issues
exist in this product

• Past vulnerabilities in previous versions of product analyzed for
root cause

• Application attack surface is as small as possible

• If creating new user accounts, they are low privilege and have
strong passwords

• Safe-for-scripting ActiveX controls thoroughly reviewed

• Sample code reviewed for security issues. You must treat
sample code as production code

http://www.securitytrap.org/ntbugtraq.html

A Designer's Security Checklist

• Default install is secure

• Threat models complete for design phase

• Product has layered defenses

• Security failures logged for later analysis

• Privacy implications understood and documented

• Plans in place to migrate appropriate code to managed code

• “End-of-life” plans in place for features that will eventually be
deprecated

• Security response process in place

• Documentation reflects good security practice

Product Risk Assessment

Security Training

Security Kickoff

& Register with

SWI

Security

Design

Best

Practices

Use Security

Development

Tools &

Security Best

Dev & Test

Practices

Create

Security

Docs

and Tools

For Product

Prepare

Security

Response

Plan

Security

Push

Pen

Testing

Final

Security

Review

Security

Servicing &

Response

Execution

Feature Lists

Quality Guidelines

Arch Docs

Schedules

Design

Specifications Testing and Verification

Development

of New Code
Bug Fixes

Code

Signing A

Checkpoint

Express

Signoff

R

T

M
Product Support

Service Packs/

QFEs Security

Updates

Requirements Design Implementation Verification Release
Support
&
Servicing

Functional

Specifications

Traditional Microsoft Software Product Development Lifecycle Tasks and Processes

Security Arch &

Attack Surface

Review

Threat

Modeling

Activities

• Security Risk Assessment

• Privacy Impact Rating

Threat Modeling (Risk Analysis)

Security Training

Security Kickoff

& Register with

SWI

Security

Design

Best

Practices

Use Security

Development

Tools &

Security Best

Dev & Test

Practices

Create

Security

Docs

and Tools

For Product

Prepare

Security

Response

Plan

Security

Push

Pen

Testing

Final

Security

Review

Security

Servicing &

Response

Execution

Feature Lists

Quality Guidelines

Arch Docs

Schedules

Design

Specifications Testing and Verification

Development

of New Code
Bug Fixes

Code

Signing A

Checkpoint

Express

Signoff

R

T

M

Product Support

Service Packs/

QFEs Security

Updates

Requirements Design Implementation Verification Release
Support

&
Servicing

Functional

Specifications

Traditional Microsoft Software Product Development Lifecycle Tasks and Processes

Security Arch &

Attack Surface

Review

Threat

Modeling

Threat Modeling Process

Prepare

Use Scenarios

External

Dependencies

Security

Assumptions

External

Security

Notes

Analyze

DFDs

Thread Types

Identify Threats

Determine

Mitigations

Determine Risk

Plan

Mitigations

Create the DFD’s

• Most ―whiteboard architectures‖ are DFD-like

External

Entity

Process Multi-Process

Data Store Dataflow Privilege

Boundary

87

75

Categorize Threats

Types of threats Examples

Spoofing
Forging e-mail messages

Replaying authentication packets

Tampering
Altering data during transmission

Changing data in files

Repudiation
Deleting a critical file and deny it

Purchasing a product and deny it

Information disclosure
Exposing information in error messages

Exposing code on Web sites

Denial of service

Flooding a network with SYN packets

Flooding a network with forged ICMP
packets

Elevation of privilege

Exploiting buffer overruns to gain system
privileges

Obtaining administrator privileges
illegitimately

Mapping STRIDE to DFD Elements

Types of threats Examples

Spoofing
Forging e-mail messages

Replaying authentication packets

Tampering
Altering data during transmission

Changing data in files

Repudiation
Deleting a critical file and deny it

Purchasing a product and deny it

Information disclosure
Exposing information in error messages

Exposing code on Web sites

Denial of service
Flooding a network with SYN packets

Flooding a network with forged ICMP Packets

Elevation of privilege
Exploiting buffer overruns to gain system privileges

Obtaining administrator privileges illegitimately

Coding Best Practices

Security Training

Security Kickoff

& Register with

SWI

Security

Design

Best

Practices

Use Security

Development

Tools &

Security Best

Dev & Test

Practices

Create

Security

Docs

and Tools

For Product

Prepare

Security

Response

Plan

Security

Push

Pen

Testing

Final

Security

Review

Security

Servicing &

Response

Execution

Feature Lists

Quality Guidelines

Arch Docs

Schedules

Design

Specifications Testing and Verification

Development

of New Code
Bug Fixes

Code

Signing A

Checkpoint

Express

Signoff

R

T

M
Product Support

Service Packs/

QFEs Security

Updates

Requirements Design Implementation Verification Release
Support
&
Servicing

Functional

Specifications

Traditional Microsoft Software Product Development Lifecycle Tasks and Processes

Security Arch &

Attack Surface

Review

Threat

Modeling

Why Security During Development?

• Even if the design is solid, if the implementation is

weak then the system fails

• Developers introduce the majority of security bugs

– Buffer Overruns, Integer Overflows, SQL injection, etc.

Common Language Flaws

Buffer
Overrun

Int
Overflow

XSS SQL
Injection

Lousy
Crypto

C/C++

Java †

C# †

VB.NET

Perl

PHP

† - Not as severe as C/C++

Secure Coding Policies

• Use the latest compiler and supporting tool versions

• Use defenses added by the compiler

Use Defenses Added by the Compiler

• Buffer security checks: /GS

• Safe exception handling: /SAFESEH

• Compatibility with Data Execution Prevention:

/NXCOMPAT

Secure Coding Policies

• Use the latest compiler and supporting tool versions

• Use defenses added by the compiler

• Use source-code analysis tools

• Do not use banned functions

banned.h (Howard and Lipner 2006)

#ifdef _MSC_VER

// Some of these functions are Windows specific

pragma once

pragma deprecated (strcpy, strcpyA, strcpyW, wcscpy, _tcscpy, _mbscpy, StrCpy,

StrCpyA, StrCpyW, lstrcpy, lstrcpyA, lstrcpyW, _tccpy, _mbccpy)

pragma deprecated (strcat, strcatA, strcatW, wcscat, _tcscat, _mbscat, StrCat,

StrCatA, StrCatW, lstrcat, lstrcatA, lstrcatW, StrCatBuff, StrCatBuffA, StrCatBuffW,

StrCatChainW, _tccat, _mbccat)

pragma deprecated (wnsprintf, wnsprintfA, wnsprintfW, sprintfW, sprintfA,

wsprintf, wsprintfW, wsprintfA, sprintf, swprintf, _stprintf, _snwprintf, _snprintf,

_sntprintf)

pragma deprecated (wvsprintf, wvsprintfA, wvsprintfW, vsprintf, _vstprintf,

vswprintf)

pragma deprecated (_vsnprintf, _vsnwprintf, _vsntprintf, wvnsprintf, wvnsprintfA,

wvnsprintfW)

pragma deprecated (strncpy, wcsncpy, _tcsncpy, _mbsncpy, _mbsnbcpy,

StrCpyN, StrCpyNA, StrCpyNW, StrNCpy, strcpynA, StrNCpyA, StrNCpyW,

lstrcpyn, lstrcpynA, lstrcpynW)

pragma deprecated (strncat, wcsncat, _tcsncat, _mbsncat, _mbsnbcat, StrCatN,

StrCatNA, StrCatNW, StrNCat, StrNCatA, StrNCatW, lstrncat, lstrcatnA, lstrcatnW,

lstrcatn)

Secure Coding Policies

• Use the latest compiler and supporting tool versions

• Use defenses added by the compiler

• Use source-code analysis tools

• Do not use banned functions

• Reduce potentially exploitable coding or design

constructs

SQL STATISTICAL ATTACKS

(Viega and McGraw 2002)

SQL aggregate functions

• AVG(col) - the average of the values in a column

• COUNT(col) - the number of values in a column

• MAX(col) - the maximum value in a column

• MIN(col) - the minimum value in a column

• SUM(col) - the sum of data in the column

Aggregate Query

SELECT AVG(income)

FROM customers

WHERE city = "reno";

SELECT AVG(income)

FROM customers

WHERE city = "reno"

AND state = "nv―

AND age = 72;

Sample

SELECT COUNT(*)

FROM customers

WHERE city = "reno"

AND state = "nv―

AND age = 72;

Sample

SELECT AVG(income)

FROM customers

WHERE NOT(city = "reno"

AND state = "nv―

AND age = 72);

Sample

SELECT COUNT(*)

FROM customers

WHERE state = ―va―;

Result: 10000

Sample

SELECT AVG(income)

FROM customers

WHERE state = ―va"
OR (city = "reno"

AND state = "nv―

AND age = 72);

Result: $60,001

Sample

SELECT AVG(income)

FROM customers

WHERE state = "nv―;

Result: $60,000

Sample

The sum of Virginia salaries + the target salary = 60,001

The sum of Virginia salaries = 10,000 * 60,000 =

600,000,000

The target salary = 60,001 * 10,001 - 600,000,000 =

$70,001

Never echo unfiltered input back as HTML

• Known as ―cross site scripting‖

• The basic problem

– one can submit HTML that is then served to another

– HTML can contain scripts

• What can happen to a victim

– cookies can be stolen

– COM objects can instantiated and scripted with untrusted data

– user input can be intercepted

• How to avoid cross site scripting

– all user input should be filtered, as usual

– all output that may contain user data should be escaped

• HttpServerUtility.HtmlEncode is your friend!

Don’t rely on client side validation

• Know what client side validation is for

– gives clients a better user experience

– reduces load on your server from accidental bad input

• Client side validation provides no real security

– clients don’t have to use your form to submit requests

– always validate input when it arrives at the server

– think about Perl’s ―taint checking‖ and try to apply the same ideas to

your own code

• ASP.NET validation controls are a great utility

– provides client with immediate feedback on errors via Jscript

– provides server protection by validating input on server side

Beware storing secrets

• Storing secret data on a machine is tricky

– how do you protect it?

– how do you read it?

– what stops someone else from reading it as well?

• Can encryption help?

– where do you store the encryption key?

• Avoid storing sensitive data in config files

<configuration>

<system.web>

<identity userName='Bob' password='HereIsMySecret'/>

</system.web>

</configuration>

Data protection API

• DPAPI consists of two functions that simplify secret storage

– CryptProtectData, CryptUnprotectData

– Supported on Windows 2000, XP, .NET Server

• Protection derived from up to three sources

raw

data

protected

data

user login

credential

application

secret

user provided

password

Use good ACLs

• What should you pass for lpMutexAttributes?

• Most sample code passes NULL

• Who will have access to the mutex if you do this?

HANDLE CreateMutex(

LPSECURITY_ATTRIBUTES lpMutexAttributes,

BOOL bInitialOwner,

LPCTSTR lpName

);

Watch for race conditions

• Timing bugs can lead to compromises

– Thread one loads plaintext into a buffer

– Thread one begins to encrypt the buffer

– Thread two begins to read the buffer before encryption is finished

• Howard suggests using separate buffers for plaintext and

ciphertext

– Thread two would be reading from a ciphertext only buffer

– Race condition is still a bug, but doesn’t compromise security

Keep attackers guessing

• Security errors should lead to two distinct outputs

– vague message to user, with instructions on how to proceed

– detailed error message to internal log

– give user an identifier so tech support can find the detailed message

• Avoid giving away free information

– one of the first stages of an attack is reconnaissance

– banners or headers that give away system information should be

omitted or changed wherever possible

– you must still assume an attacker knows what you’re running

• TCP/IP fingerprinting is pretty effective

• see http://uptime.netcraft.com/up/graph/ for an example

http://uptime.netcraft.com/up/graph/

Secure Coding Policies

• Use the latest compiler and supporting tool versions

• Use defenses added by the compiler

• Use source-code analysis tools

• Do not use banned functions

• Reduce potentially exploitable coding or design

constructs

• Use a secure coding checklist

Dev Checklist - General

• Code compiled with –GS (if using Visual C++ .NET)

• Debug builds compiled with –RTC1 (if using Visual C++
.NET)

• Check all untrusted input is verified prior to being used or
stored

• All buffer management functions are safe from buffer
overruns

• Review Strsafe.h for potential use in your code

• Review the latest update of dangerous or outlawed
functions

• All DACLs well formed and ―good‖—not NULL or Everyone
(Full Control)

• No hard-coded 14-character password fields (should be at
least PWLEN + 1 for NULL, PWLEN is defined in LMCons.h,
and is 256

Dev Checklist - General

• No references to any internal resources (server names, user
names) in code

• Security support provider calls not hard-coded to NTLM (use
Negotiate)

• Temporary file names are unpredictable

• Calls to CreateProcess[AsUser] do not have NULL as first argument
if you know the full path name to the .EXE

• Unauthenticated connections cannot consume large resources

• Error messages do no give too much info to an attacker

• Highly privileged processes are scrutinized by more than one
person—does the process require elevated privileges?

• Security sensitive code is commented appropriately

• No decisions made on the name of files

• Check that file requests are not for devices (i.e., COM1, PRN, etc.)

Dev Checklist - General

• No shared or writable PE segments

• No user data written to HKLM in the registry

• No user data written to c:\program files

• No resources opened for GENERIC_ALL, when lesser
permissions will suffice

• Application allows binding to appropriate IP address, rather
than 0 or INADDR_ANY

• Exported APIs with byte count vs. word count documented

• Impersonation function return values checked

• For every impersonation, there is a revert

• Service code does not create windows and is not marked
Interactive

Dev Checklist - Web/Db

• No web page issues output based on unfiltered output

• No string concatenation for SQL statements

• No connections to SQL Server as sa

• No ISAPI applications running in process with IIS 5

• Force a codepage in all Web pages

• No use of eval function with untrusted input in server pages

• No reliance on REFERER header

• Any client-side access and validity checks are performed on the

server also

Dev Checklist – Crypto/Secret

• No embedded secret data (EXE, DLL, registry, files, etc.)

• Secret data is secured appropriately

• Calls to memset/ZeroMemory on private data are not
optimized away. If they are, replace with SecureZeroMemory.

• No home-developed crypto code—use CryptoAPI or
System.Security.Cryptography

• Random number generation reviewed

• Password generation is random

• RC4 code does not re-use an encryption key

• RC4-encrypted data has integrity checking

• No weak crypto (128-bit vs. 40-bit)

Dev Checklist - Managed Code

• FXCop has no security complaints

• No sensitive data in XML or configuration files

• Classes are marked final, if appropriate

• Inheritance demands on classes, if appropriate

• All assemblies are strong-named

• Assemblies use RequireMinimum to define the must-have grant set

• Assemblies use RequestRefuse to reject specific permissions

• Assemblies use RequestOptional to outline optional permissions
that may be required

• Assemblies that allow partial trust are thoroughly reviewed and
have a valid partial-trust scenario

Dev Checklist - Managed Code

• Demand appropriate permissions

• Assert is followed by RevertAssert to keep time of asserted
permission small

• Code that denies access based on a filename is carefully checked

• Assert trumps calls to PermitOnly and Deny further up the stack.
Check code that attempts to operate otherwise.

• LinkDemand thoroughly audited for correctness. Are link demands
really required?

• No stack trace provided to untrusted users

• SuppressUnmanagedCodeSecurityAttribute used with caution

• Managed wrappers to unmaged code checked for correctness

.NET FRAMEWORK SECURITY

Managed Execution Security

• .NET Framework security features

– Helps writing secure applications

• Fundamental Components

– Type Checker

– Exception Manager

– Security Engine (CAS & Roles)

• Complement Windows Security

A Type-Safe System

• Type-safe code:

– Prevents buffer overruns

– Only access to authorized memory

– Multiple assemblies in one process

• App Domains provide:

– Increased performance

– Increased code security

Buffer Overrun Protection

• CLR Type-verification

– prevents arbitrary memory overwrites

• System.String immutable

– StringBuilder performance

• Bound Checking

– Arrays and StringBuilder

void CopyString (string src)

{

stringDest = src;

}

Arithmetic Error Trapping

• Arithmetic error trapping

– Use checked keyword

– Project settings

byte b=0;

while (true){

Console.WriteLine (b);

checked{

b++;
}

}

CODE ACCESS SECURITY

Securing mobile code

What is mobile code?

Web Server

Client

1
Request Page

3
Return Page

4
Page needs code

5
Download code

Another one: start app via URL

Issues with mobile code

Web Server

Client

1
Request Page

3
Return Page

5
Download code

Crash

Mobile Code nowadays

• Common Technologies

– ActiveX Controls / Documents

– Java Applets

– .NET Framework Assemblies

• Secure mobile code

– ActiveX User decides

– Java Applets Sandbox

• .NET Code Access Security

– Digitally Sign Code

– Granular Permissions

Strong-Named Assemblies

• Strong names

– Digitally sign assemblies

– Unique identifiers Public Key

• Strong-named assemblies

– Prevent tampering

– Confirm identity of publisher

– Allow side-by-side components

sn –k MyFullKey.snk

Isolated Storage

• Virtual file system

– Isolate Mobile Code

– Allows quotas

• File system isolation based on:

– Application identity

– User identity

IsolatedStorageFile isoStore =

IsolatedStorageFile.GetUserStoreForAssembly();

Evidence-Based Security

• Evidence

– Assessed assembly loading

– Determine permissions for assembly

Evidence

Url: http://www.develop.com/asm/foo.dll

Zone: Internet

Site: www.develop.com

Hash: 624a88fd26c510ba5…

Strong Name: “foo, version=1.0.0.0,

culture=neutral,

publicKeyToken=2d537cad3c7e22c9”

foo.dll

Security Policies

• Security Policy

– Set up by admins

– Enforced at runtime

• Code Group

– Evidence based

– Group similar components

• Permission Set

– Granted

permissions

PolicyEvidence Permissions

Assembly

The four policy levels

• Four sources for policy

• All must agree before grant

default
unrestricted
permissions

intersection
is granted

Only local
code full
trusted

Security Check Stack Walks

Call Stack

Security System

YourAssembly

SomeAssembly

.NET Framework
Assembly

Call to ReadFile

Call to ReadFile

Grant: Execute

1. Assembly requests access

2. Request pass to
.NET Framework assembly

3. Security System
ensure required permission

4. Security system grants access

Grant: ReadFile

Grant: ReadFile

Permission Demand

Grant access

Security Check Stack Walks

Call Stack

Security System

YourAssembly

SomeAssembly

.NET Framework
Assembly

Call to ReadFile

Call to ReadFile

1. Assembly requests access

2. Request pass to
.NET Framework assembly

3. Security System
ensure required permission

4. Security system denies access

Deny: ReadFile

SecurityException

Permission Demand

Deny Access

Exceptio

n

Types of Security Checks

• Imperative checks

– Create Permission objects

– Call Permission methods

• Declarative checks

– Permission attributes

– Apply to methods / classes

• Overriding security checks

– Use Assert() method

– Prevent stack walk

Permission Requests

• Used by developers to state required

permissions

• Implemented by attributes

• Prevents an assembly from loading when

minimum permissions are not available

// I will only run if I can call unmanaged code

[assembly:SecurityPermission

(SecurityAction.RequestMinimum,

UnmanagedCode=true)]

Sandboxing Privileged Code

Partial Trust Web
Application

Wrapper Assembly
Secured

Resource

Sandboxed Code
<trust level_”Medium”

originUri_--/>

Permissions Demanded then Asserted

AllowPartiallyTrustedCallers attribute added

Assembly installed into the global assembly cache

Resource
Access

Readings

(Viega and McGraw 2002) Viega, John, and Gary McGraw. Building Secure Software. Addison-

Wesley, 2002.

(Green 2006) Green, Roedy. “unmaintainable code : Java Glossary,”

http://mindprod.com/jgloss/unmain.html. 2006.

(Howard 2006) Howard, Michael. “A Look Inside the Security Development Lifecycle at

Microsoft,” http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/. 2006.

(Howard and Lipner 2006) Howard, Michael, and Steve Lipner. The Security Development

LIFECYCLE. Redmond, WA: Microsoft Press, 2006.

http://mindprod.com/jgloss/unmain.html
http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/

