
Spezielle Kapitel aus
Betriebssysteme:

Secure Code
LVA 353.013

Fundamentals

secure: [si-'kyur]
1: free from danger
2: free from risk of loss
3: affording safety

Introductions

Andreas Schabus

Resources

• Textbooks
– Michael Howard et.al., The 19 Deadly Sins

of Software Security, Osborne McGraw-Hill

– Michael Howard and David LeBlanc, Writing
Secure Code, 2nd Ed.,Microsoft Press.

– Franz Swiderski and Window Snyder, Threat
Modeling, Microsoft Press.

What is the course all
about?

Security Terms

Vulnerability

Threat

loot

Asset

Security Terms

Mitigation
techniques

Patrolled!
loot ggrr!

Security Terms

Hacker, Cracker, Shellcoder, …

Common Types of Attack

Connection Fails

Organizational
Attacks

Restricted Data

Accidental
Breaches
in Security

Automated
Attacks

Cracker

Viruses,
Trojan Horses,

and Worms

Denial of
Service (DoS)

DoS

What is Application Security?
AuthorizationAuthentication

Password storing

Cry
pto

 alg
orit

hms

SSL

Firewalls

Data protection
Privacy

Where are we?

Security Breaches
Affecting Businesses and Consumers

Britain warns of
major e-mail attack

Hackers seen aiming at
government, corporate networks
The Associated Press
Updated: 1:42 p.m. ET June 16, 2005

40M credit

cards hacked

Breach at third party

payment processor

affects 22 million Visa

cards and 14 million

MasterCards.

June 20, 2005: 3:18 PM EDT

By Jeanne Sahadi, CNN/Money senior writer

In 2004, 78% of enterprises hit
by viruses, 49% had laptops
stolen, 37% reported
unauthorized access to
information

--2004 CSI and FBI Computer Crime and Security Survey

How did we get to this state?
1989
• NT project is 1 year old
• There was no World Wide Web
• TCP/IP was not the default communications protocol
• Virology 101 published, Morris Worm is one year old
• Authentication meant passwords
• DES too heavyweight for most users

2004
• NT project is 16 years old (We call it Windows now)

• Everyone is on the World Wide Web

• TCP/IP is the default communications protocol

• Threats: Viruses, Worms, Trojans, DOSs

• File Swapping popular

• DES too insecure

• Authentication means PK scheme

• Patches proliferating

• Time to exploit decreasing

• Exploits more sophisticated

• Customer frustration

151180

331

BlasterBlasterWelchiaWelchia/ /
NachiNachi

NimdaNimda

25

SQL SQL
SlammerSlammer

Days between patch & exploitDays between patch & exploit

The ChallengeThe Challenge

Time To Apply Patch - OpenSSL

25,539, 49%

14,116, 28%

5,877, 12%

4,003, 8%

1,356, 3%
0.9.6d and earlier

0.9.6e-h and 0.9.7

0.9.6i and 0.9.7a

0.9.6j and 0.9.7b

0.9.6k and 0.9.7c

Source: Source: ““Vulnerable versions of Vulnerable versions of OpenSSLOpenSSL apparently still apparently still
widely deployed on commerce siteswidely deployed on commerce sites”” netcraft.comnetcraft.com 11/0311/03

Secure
Version

49% have not applied
a patch in 1 ½ years

The Attacker‘s Advantage
and the Defender‘s Dilemma

Principle #1:

The defender must defend all points;
the attacker can choose the weakest point.

The Attacker‘s Advantage
and the Defender‘s Dilemma

Principle #2:

The defender can defend only against known
attacks; the attacker can probe for unknown
vulnerabilities.

The Attacker‘s Advantage
and the Defender‘s Dilemma

Principle #3:

The defender must be constantly vigilant;
the attacker can strike at will.

The Attacker‘s Advantage
and the Defender‘s Dilemma

Principle #4:

The defender must play by the rules;
the attacker can play dirty.

Was hat das nun mit
Developern zu tun?

DOS SampleDOS Sample

demodemo

BufferBuffer--Overflow SampleOverflow Sample

demodemo

Developer Security Data Points
“75 percent of hacks happen at the application” - Gartner

“Security at the Application Level”

“Over 70 percent of security vulnerabilities exist at the
application layer, not the network layer” – Gartner

"The conclusion is unavoidable: any notion that security is a
matter of simply protecting the network perimeter is
hopelessly out of date” - IDC and Symantec, 2004

“11 of CERT’s 13 major security advisories for 2003 are bugs
arising from programming errors in applications [not the OS]”
- Carnegie Mellon University

“If only 50 percent of software vulnerabilities were removed
prior to production … costs would be reduced by 75 percent”
- Gartner “Security at the Application Level”

Developer Security Data Points
“The battle between hackers and security professionals has

moved from the network layer to the Web applications
themselves" - Network World

“64 percent of developers are not confident in their ability to
write secure applications” - Microsoft Developer Research

“The Economic Impacts of Inadequate Infrastructure for
Software Testing 2002” put the cost of fixing a bug in the field
at $30,000 vs. $5,000 during coding - NIST

Developer Security Data Points
“By 2006, 80 percent of application development teams will have

a person or team responsible for application security.” -
Gartner

“If only 50 percent of software vulnerabilities were removed
prior to production … costs would be reduced by 75 percent”
- Gartner “Security at the Application Level”

“Through 2009, enterprises that do not treat application security
as a unified part of a comprehensive development and QA
plan are 75 percent more likely to suffer a security-related
catastrophic event.“ - Gartner “Security at the Application Level”

“The most damaging targeted attacks — those against specific
businesses — have focused on vulnerabilities in Web
applications and custom-developed software.“ - Gartner
“Security at the Application Level”

Developer Security Data Points
“64 percent of developers are not confident in their ability to

write secure applications.” - Microsoft Developer Research

"The Economic Impacts of Insufficient Infrastructure for
Software Testing, removing a software defect after a system
is operational can cost two to five times more than if the
defect was fixed during final QA testing.” - National Institute of
Standards and Technology

“The cost of fixing vulnerabilities and regression testing the
repaired code can be reduced by a factor of at least three by
detecting security errors during code and unit tests,
compared to finding errors during integration tests. Detecting
commonly made coding errors during this phase can also
provide feedback to other modules still in design and early
coding to avoid repeating the same mistakes.” - National
Institute of Standards and Technology

www.sans.org – 9.5.2005

SQL Injection, Command SQL Injection, Command
Injection, CrossInjection, Cross--Site ScriptingSite Scripting

A1 A1 UnvalidatedUnvalidated InputInput

The 10 Most Critical Web
Application Security Vulnerabilities

Improper File AccessImproper File AccessA2 Broken Access ControlA2 Broken Access Control

Use of Magic URLs and Hidden Use of Magic URLs and Hidden
Form FieldsForm Fields

A3 Broken Authentication and A3 Broken Authentication and
Session ManagementSession Management

CrossCross--Site ScriptingSite ScriptingA4 Cross Site Scripting (XSS) A4 Cross Site Scripting (XSS)
FlawsFlaws

Buffer Overruns, Format String Buffer Overruns, Format String
Problems, Integer OverflowsProblems, Integer Overflows

A5 Buffer OverflowsA5 Buffer Overflows

http://www.owasp.org/documentation/topten.html

SQL Injection, SQL Injection,
Command InjectionCommand Injection

A6 Injection FlawsA6 Injection Flaws

The 10 Most Critical Web
Application Security Vulnerabilities

Failing to Handle ErrorsFailing to Handle ErrorsA7 Improper Error HandlingA7 Improper Error Handling

Failing to Store and Protect Data Failing to Store and Protect Data
SecurelySecurely

A8 Insecure StorageA8 Insecure Storage

This is the outcome of an attack, This is the outcome of an attack,
not a coding defect. not a coding defect.

A9 Denial of ServiceA9 Denial of Service

This is an infrastructure issueThis is an infrastructure issueA10 Insecure Configuration A10 Insecure Configuration
ManagementManagement

http://www.owasp.org/documentation/topten.html

Ridiculous Excuses
We‘ve Heard

Excuse:
No one will do that!

Excuse:
Why would anyone do that?

Excuse:
We‘ve never been attacked

Excuse: We‘re secure –
we use cryptography

Random NumbersRandom Numbers

demodemo

EncryptionEncryption

demodemo

Hide & Seek Stored Keys

Excuse: We‘re secure –
we use ACLs

Excuse: We‘re secure –
we use a firewall

SQL InjectionSQL Injection

demodemo

Anatomy of SQL Injections

• Problem: string concatenation
strSql = "SELECT * FROM titles " & _

"WHERE id LIKE '" & textName.Text & "'"

Dim cmd As New SqlCommand(strSql, "server=...")

myReader = cmd.ExecuteReader()

Good Guy

ID: 1001
SELECT *
FROM titles
WHERE id = ‘1001'

Not so Good Guy

ID: 1001' or 1=1 --
SELECT *
FROM titles
WHERE id=‘1001' or 1=1 -- '

Really Bad Guy

ID: 1001’; drop table orders --
SELECT *
FROM titles
WHERE id=‘1001‘; drop table orders -- '

Downright Evil Guy

ID: 1001’; exec xp_cmdshell(‘fdisk.exe’) --
SELECT *
FROM titles
WHERE id=‘1001‘; exec xp_cmdshell(‘fdisk.exe’) --'

CrossCross--Site ScriptingSite Scripting

demodemo

Anatomy of Cross-Site
Scripting

• Web based applications
– Redirect info via <form>

– E-Mail platforms & discussion boards

• Allows hackers to:
– Execute script in client’s browser
– <script>, <object>, <applet>, <form>, <embed>

• Arising threats
– Steal session / AuthN cookies

– Access to client computer

Excuse:
We‘ve reviewed the code, and

there are no security bugs

“Many Eyeballs Makes all Bugs
Shallow”

EBay EBay

demodemo

char dest[50], src[100];
int x, y;

if (x=1)
{

strcpy(dest,src);
dest[50] = '\0';

}

return y;

Returning uninitialized variable

src is larger than dest

buffer overrun

should be using ==

Is there a Security Vulnerability?

Example: “Evils” of strn…

// code prior to this verifies pszSrc

// is <= 50 chars

#define MAX (50)

char *pszDest = malloc(sizeof(pszSrc));

strncpy(pszDest,pszSrc,MAX);

The code is allocating the size of a pointer, 4-bytes on
a 32-bit CPU, and then trying to copy e.g. 40 bytes.

#define MAX (50)

char szDest[MAX];

strncpy(szDest,pszSrc,MAX);

Example: “Evils” of strn…

If the length of the string pointed to by pszSrc is exactly
MAX, then strncpy does NOT null- terminate szDest.

CultureCulture--Safe CodeSafe Code

demodemo

static bool IsFileURI(string path) {
return (String.Compare(path, 0, "file:", 0, 5, true) == 0);

}

Scrubbing Secrets in Memory

void Function() {
char pwd[32];
GetPwdFromUser(pwd,32);
UsePwd(pwd,32);
memset(pwd,0,32);

}

What’s wrong with this code?

void Function() {
char pwd[32];
GetPwdFromUser(pwd,32);
UsePwd(pwd,32);
SecureZeroMemory(pwd,32);

}

Victim of
“dead store removal”
by optimizing compilers

Excuse:
We know it‘s the default, but

the administrator can turn it off

Excuse:
If we don‘t run as

administrator, stuff breaks

Excuse:
But we‘ll slip the schedule!

Excuse:
It‘s not exploitable!

Excuse:
But that‘s the way we‘ve

always done it

Excuse:
If only we had better tools …

