
© Christian Praher, Michael Sonntag 2013

Windows Forensics

– Exercises

Institute for Information Processing and

Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at

http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Christian Praher, Michael Sonntag

Michael Sonntag, Christian Praher 2 Windows Forensics

Overview/Schedule

 Introduction to the tools and the (Cygwin) environment

 Recycle bin forensics

 Case study I – Thumbs.db

 Case study II – Prefetch and event log

 Case study III – WLAN forensics

 Case study IV – Timeline forensics

Michael Sonntag, Christian Praher 3 Windows Forensics

Start

 The system is a virtual machine

 Windows XP is installed, but not activated

 This is not necessary for the tasks we are doing here!

 Please just cancel the reminder upon logging in

 Administrator account login:

 User: “Administrator”; password: “admin”

 Useful tools are installed and icons on the desktop

Michael Sonntag, Christian Praher 4 Windows Forensics

Environment

 More incident response than forensics
 No clear separation between the suspect system and the investigation

environment
» Windows system is host of the forensics analysis tools
» At the same time the very same Windows system is also the subject of the

investigation
 Real world scenarios could be e.g.:

» System administrator or boss asks about an incident that happened at the
company

» Examination of the own system regarding a suspected malware infection

 Uses free and/or open source tools for the analysis
 Tools are mostly simple applications or scripts written in C, Perl, and/or Python

 Cygwin environment for running Linux/Unix tools on Windows
 Simple applications can be compiled directly as Windows binaries due to the

Windows POSIX 1003.1 subsystem
 For more sophisticated applications Cygwin offers the most important

Linux/Unix APIs on Windows in form of a shared library (.dll), which
applications can link against

 Additionally, Cygwin provides a tool chain and most important a powerful shell
(bash) for Linux/Unix look and feel on Windows

» Attention: in the Cygwin shell the Windows paths are modelled as Unix paths
(incl. the drive letters!) and are translated: /cygdrive/<drive_letter>

» E.g. C:\ becomes /cygdrive/c/)

Michael Sonntag, Christian Praher 5 Windows Forensics

Sidetrack: Date/time formats

 Filetime: Number of ticks since 1.1.1601

 8 byte structure that stores time in UTC with 100 ns resolution

 Usually stored as 8 hexadecimal numbers

 MSDN: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms724284(v=vs.85).aspx

 Windows System Time

 32 byte structure that specifies a date and time, using individual members for the

month, day, year, weekday, hour, minute, second, and millisecond.

 Either in coordinated universal time (UTC) or local time, depending on the function

that is being called.

 MSDN: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms724950(v=vs.85).aspx

 Unix time: Number of ticks since 1.1.1970

 4 byte structure that stores time in UTC with 1s resolution

 May appear as hexadecimal or decimal value (take care!)

» Hex: 9940F039

» Dec: 971815414

 MSDN: http://msdn.microsoft.com/en-us/library/1f4c8f33(v=vs.71).aspx

 Unix Time and Windows Time:

http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/1f4c8f33(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/1f4c8f33(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/1f4c8f33(v=vs.71).aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx
http://blogs.msdn.com/b/mikekelly/archive/2009/01/17/unix-time-and-windows-time.aspx

Michael Sonntag, Christian Praher 6 Windows Forensics

Sidetrack: Date/time formats

 Attention

 Big endian or little endian?

 UTC or a different time zone? Which?
» Windows NT stores everything as GMT (according to its own time zone

as configured)

 Difference of system time to actual time

 Tools / Useful Links

 Linux date command
Timestamps can be converted with the @ sign,
e.g. date -s @1321877486

 Only Unix timestamp converter
» http://www.gaijin.at/olsutc.php

 Time converter tool
» http://www.digital-detective.co.uk/freetools/decode.asp

 FileTimeConverter
» http://www.silisoftware.com/tools/date.php

http://www.gaijin.at/olsutc.php
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.silisoftware.com/tools/date.php

Michael Sonntag, Christian Praher 7 Windows Forensics

Recycle Bin

 To get started we will examine the contents of the recycle

bin that are stored in Windows XP under
C:\RECYCLER\<USER_SID>\INFO2

 Since we are working with SIDs in the recycler directory,

identify all users and their SIDs via the Windows registry
 Open the graphical registry editor regedt32.exe and

navigate to
»HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\ProfileList

 What users can be found there?

» Hint: For the meaning of special SIDs, have a quick look at

http://support.microsoft.com/kb/243330

 Which users have (already) recycled items at least once on

the system at some previous time?

http://support.microsoft.com/kb/243330

Michael Sonntag, Christian Praher 8 Windows Forensics

Recycle bin

 The INFO2 file structure

 Binary file

 Contains the file name twice: ASCII and Unicode

 20 Byte file header; Bytes 12-13 (-15?) are record size

» Record size is usually 2003 = 0x0320 = 800 Bytes

 Record structure

 260 Bytes: Original file name (ASCII), including path

 4 Bytes: Record number (starting at 0)

 4 Bytes: Drive number (00 = A, 01 = B, 02 = C, …)

 8 Bytes: Deletion time (FILETIME format, UTC)

 4 Bytes: Physical file size (=Bytes on disk!)

» Therefore always multiples of cluster size

» Actual file size: See directory entry of the file itself

 520 Bytes: Original file name (Unicode), including path

Michael Sonntag, Christian Praher 9 Windows Forensics

Recycle Bin

 To be able to view the hidden INFO2 files, we have to list
them with either cygwin with ls, or in the normal windows

command shell with
dir /a

 Have a look at one of the INFO2 files with the HxD hex

editor, either from within Cygwin or the standard windows

command shell

 HxD.exe C:\RECYCLER\<SID>\INFO2

 Analyse file manually

 Analyse recycler files with rifiuti tool
 rifiuti.exe C:\RECYCLER\<SID>\INFO2

Michael Sonntag, Christian Praher 10 Windows Forensics

Case Study I: Thumbs.db

 Some of the users of the machine under investigation are

suspected of having viewed illegal images

 You as an investigator have the original illegal images

(or at least hashes thereof!)

 Usually it should be enough to compare the hashes of the

illegal contents with hashes produced from all (image) files

found on the suspect machine

 Unfortunately the images may have already been deleted

from the suspects machine (home directories)

 But there still exist preview image database files
(Thumbs.db1) which can help proving that illegal content

was viewed

1) Further infos: http://accessdata.com/media/en_us/print/papers/wp.Thumbs_DB_Files.en_us.pdf

http://accessdata.com/media/en_us/print/papers/wp.Thumbs_DB_Files.en_us.pdf

Michael Sonntag, Christian Praher 11 Windows Forensics

Case Study I: Thumbs.db

 With the help of the still existing Thumbs.db files, it can still
be shown that the illegal contents have been viewed
 With special tools it is possible to extract the thumbnail

images from the Thumbs.db file

 It is of course not possible to create hashes of the extracted
images and compare those hashes directly with the original
forbidden contents
 The images in den Thumbs.db file are completely different

from their originals

 Solution: We have to create a Thumbs.db file of the illegal
images we have, extract those images and compare their
hash values with the hashes of the found Thumbs.db
pictures!

Michael Sonntag, Christian Praher 12 Windows Forensics

Case Study I: Thumbs.db

 In the directory C:\forensics\classified_images (
/cygdrive/c/forensics/classified_images) you find some “illegal”
images

 Create a Thumbs.db file of these images by viewing them as thumbnails
 Use Cygwin and the tools vinetto and md5deep to extract the thumb pictures

of the Thumbs.db and create MD5 hashes for the images
 Open Cygwin shell

» You find the contents of the Windows drives under
/cygdrive/<drive_letter>, so go to
/cygdrive/c/forensics/classified_images

» Create a directory for the extracted images and the created extraction report,
e.g. thumbs_extracted

 Extract the Thumbs.db with vinetto
» vinetto –o thumbs_extracted –H Thumbs.db

– (you must be within the folder where the Thumbs.db file is)
» Have a look at the extracted images and the generated report

 Create md5 hashes of the extracted images with md5deep
» Go to the just created directory thumbs_extracted
» Therein you find a directory .thumbs
» Create a file of hashes for these files with:
md5deep -r .thumbs > hashes.txt

Michael Sonntag, Christian Praher 13 Windows Forensics

Case Study I: Thumbs.db

 Now search through every single system user and identify any
Thumbs.db files
 You can restrict yourself to the files found in C:\Documents and

Settings\<username>\My Documents\My Pictures for
each user

 Extract each Thumbs.db in the same fashion as described before
 vinetto –o thumbs_extracted –H Thumbs.db

» You must be within the folder where the Thumbs.db file is and the
direcotry thumbs_extracted needs to be created before

 Now, the tool md5deep allows you to create hashes of these just
extracted images and compare them on the fly to a file of existing
hashes (which are of course the hashes of the illegal image thumbs)
 md5deep –m

/cygdrive/c/forensics/classified_images/
thumbs_extracted/hashes.txt –r .thumbs

 The output of the md5deep hash comparison is a list of files for which
the hash values match
 Note down the users and the images that matched the search
 Which users were found to have viewed which illegal images?

Michael Sonntag, Christian Praher 15 Windows Forensics

Case Study II: Prefetch File / Event Logs

 In this scenario we need to identify which user most likely

used a certain application found on the suspect machine

 On the machine there is an application named
“Putty.exe”, which employees are forbidden to use during

work time

 Putty allows administering remote machines

 All employees claim that this application was already

installed and was not used by them

 By analyzing the Windows prefetch1 files and the security

event log, try to confirm or invalidate the allegations of one

employee having used the application during work time

1) For more info see, e.g.: http://msdn.microsoft.com/en-us/magazine/cc302206.aspx

http://msdn.microsoft.com/en-us/magazine/cc302206.aspx
http://msdn.microsoft.com/en-us/magazine/cc302206.aspx
http://msdn.microsoft.com/en-us/magazine/cc302206.aspx

Michael Sonntag, Christian Praher 16 Windows Forensics

Case Study II: Event Logs

 On a Windows XP machine three event logs exist by default

 Application
» Logs application specific things, determined by application developer.

 Security
» Logs security related events, e.g. (un)successful logon/logoff, object

access, …

 System
» Logs events concerning the Windows system, like e.g. failed drivers,

etc. Contents are determined by Windows.

 You can view the event logs with the standard Windows event viewer
GUI. (Start -> Control Panel -> Administrative Tools -> Event Viewer)

 However processing large amounts of log data can become quite
cumbersome with this graphical tool.
A non graphical, in terms of query possibilities, very powerful alternative
is the tool Log Parser (LogParser.exe, available as download from
Microsoft)
 http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24659

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24659

Michael Sonntag, Christian Praher 17 Windows Forensics

Case Study II: Event Logs

 Logparser.exe allows fine grained analysis of all kinds of
(event) logs via a SQL like query language
 For more information on log parser, see e.g.

» http://www.stevebunting.org/udpd4n6/forensics/logparser.htm
» http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
» http://www.codinghorror.com/blog/2005/08/microsoft-logparser.html
» http://technet.microsoft.com/en-us/library/bb878032.aspx
» http://support.microsoft.com/kb/910447/de

 Tables that can be queried for Windows event logs
 Application
 Security
 System

 Schema of these tables (columns)
 EventLog EventType
 RecordNumber EventTypeName
 TimeGenerated EventCategory
 TimeWritten EventCategoryName
 EventID SourceName
 Strings ComputerName
 SID Message
 Data

http://www.stevebunting.org/udpd4n6/forensics/logparser.htm
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.msexchange.org/tutorials/using-logparser-utility-analyze-exchangeiis-logs.html
http://www.codinghorror.com/blog/2005/08/microsoft-logparser.html
http://www.codinghorror.com/blog/2005/08/microsoft-logparser.html
http://www.codinghorror.com/blog/2005/08/microsoft-logparser.html
http://technet.microsoft.com/en-us/library/bb878032.aspx
http://technet.microsoft.com/en-us/library/bb878032.aspx
http://technet.microsoft.com/en-us/library/bb878032.aspx
http://support.microsoft.com/kb/910447/de

Michael Sonntag, Christian Praher 18 Windows Forensics

Case Study II: Event Logs

 Installed on the system in the directory C:\Program Files\Log Parser 2.2
 No path entry; needs to be run from there

 Example query
LogParser.exe "SELECT TimeGenerated, EventID, Message FROM Application WHERE
TimeGenerated >= '2011-11-14 11:55:00'"

 Result
 TimeGenerated EventID Message

 ------------------- ------- --

 2011-11-14 11:55:25 1006 Starting logon task.

 2011-11-14 11:55:25 1002 Starting interactive setup.

 2011-11-14 11:55:25 1004 Starting user task.

 2011-11-14 11:55:27 1005 User task exiting. result code = 0x800704c7, message

 = The operation was canceled by the user.

 2011-11-14 11:55:27 1003 Interactive setup exiting. result code = 0x800704c7,

 message = The operation was canceled by the user.

 2011-11-14 11:55:27 1007 Logon task exiting. result code = 0x800704c7, messag

 e = The operation was canceled by the user.

 Statistics:

 Elements processed: 135

 Elements output: 6

 Execution time: 0.07 seconds

Michael Sonntag, Christian Praher 19 Windows Forensics

Case Study II: Event Logs

 Finally, what we need to know to analyze the logon / logoff events of the

users, are the respective event IDs
(Event type IDs are Windows version specific and considerably changed between XP and Vista. For more information see e.g.:

http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/Default.aspx)

 Category Logon/Logoff (EventCategory = 2)

» successful local logon  528

» successful network logon  540

» user logoff  538

» user initiated logoff  551

» Logon Failure - Unknown user name or bad password  529

» …

 There are problems with the logging of the logoff events in various

Windows versions

» Especially, the “user logoff” event 538 will not be captured many times

(e.g. after a restart)

» So, always make sure to also capture 551 “user initiated logoff”

» See e.g. http://support.microsoft.com/kb/828857

http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/Default.aspx
http://support.microsoft.com/kb/828857

Michael Sonntag, Christian Praher 20 Windows Forensics

Case Study II: Prefetch Files

 With the help of the prefetch file, it should now be possible to identify
 Was the application in question run recently?
 If so, which user’s login times fit the time determined from the prefetch file

best? This is then our suspect user!

 The following MAC times contained in a prefetch file are interesting
 Dates of file itself

» Created
– When was the application first run?

» Modified
– When was the application run the last time?

» Accessed

 Inside the prefetch file there is a “last run” timestamp
(Filetime format)

» When was the application run the last time?

 Runs
» How often has the application been called (7-bit)

 We use the graphical tool “Windows File Analyzer” to analyze the prefetch files
tored in C:\WINDOWS\Prefetch
 C:\forensics\tools\WFA\WFA.exe

» Attention: The timestamps of the file (created, modified, accessed) are given in
UTC and the last run timestamp inside the file is given in local time (UTC+1)!

Michael Sonntag, Christian Praher 21 Windows Forensics

Case Study II: Prefetch File / Event Logs

 Now, with the knowledge about the Windows event logs and

the prefetch files, try to identify the user(s) who are likely to
have used the application putty.exe

 First, identify when putty.exe was used by analysing the

Windows prefetch files. From the prefetch files we do at least

know when the application was first run and when the

application was last run

 With the knowledge of the application runs of putty.exe,

try to identify the users which come into consideration for

having run the application, given their logon times

» What is an effective query to nail down the users?

Michael Sonntag, Christian Praher 22 Windows Forensics

Case Study II: Hints

 The Message column for the events with the IDs 528, 538
and 551 contain a very helpful value “Logon ID”
 Logon ID is a number (specified as hex value) that

associates a logon with the respective logoff
» Both share the same logon ID (e.g. “Logon ID: (0x0,0x1D6417)”)

 With the knowledge of this logon ID, it is possible to track
down one specific logon session
 Search for logon events that occurred before the given

timestamp

 Search for logoff events that occurred after the given
timestamp

 Associate logons to logoffs with the unique logon ID, where
the logon occurred before the timestamp and the logoff
occurred afterwards

Michael Sonntag, Christian Praher 23 Windows Forensics

Case Study II: Hints

 Especially the Message column can be a very rich source of information, by searching through with wildcards (like
queries)

 E.g. every logon is associated with a numeric logon-ID which connects both a logon and a logoff and can be queried by like

LogParser.exe "SELECT TimeGenerated, EventID, Message FROM Security WHERE EventCategory = 2
AND TimeGenerated >= '2011-11-14 13:00:00' AND MESSAGE LIKE '%0x11e20%'“

TimeGenerated EventID Message

------------------- ------- --

--

2011-11-14 13:37:58 528 Successful Logon: User Name: Doris Domain: WINXP-FOR

ENSICS Logon ID: (0x0,0x11E20) Logon Type: 2 Logon Process: User32 Authenticatio

n Package: Negotiate Workstation Name: WINXP-FORENSICS Logon GUID: -

2011-11-14 13:47:59 551 User initiated logoff: User Name: Doris Domain: WINX

P-FORENSICS Logon ID: (0x0,0x11e20)

2011-11-14 13:48:03 538 User Logoff: User Name: Doris Domain: WINXP-FORENSIC

S Logon ID: (0x0,0x11E20) Logon Type: 2

Statistics:

Elements processed: 1715

Elements output: 3

Execution time: 0.23 seconds

Michael Sonntag, Christian Praher 24 Windows Forensics

Case Study II: Solution

 Timestamp “Creation” of PUTTY.EXE: 14.11.2011 12:38:21 (GMT)
 Query “All logins before the timestamp”

 C:\Program Files\Log Parser 2.2>LogParser.exe "SELECT
TimeGenerated, EventID, Message FROM Security WHERE
EventID = 528 AND TimeGenerated <= '2011-11-14 13:38:21'"
-o:CSV

» Note down the closest Logon IDs: Doris - 0x11E20
 Query “All logins after the timestamp” with the given Logon ID

 C:\Program Files\Log Parser 2.2>LogParser.exe "SELECT
TimeGenerated, EventID, Message FROM Security WHERE
(EventID = 538 OR EventID = 551) AND TimeGenerated >=
'2011-11-14 13:38:21' AND Message LIKE '%0x11E20%' " -
o:CSV

 Output
TimeGenerated,EventID,Message
2011-11-14 13:47:59,551,"User initiated logoff: User Name:
Doris Domain: WINXP-FORENSICS Logon ID: (0x0,0x11e20) “
2011-11-14 13:48:03,538,"User Logoff: User Name: Doris
Domain: WINXP-FORENSICS Logon ID: (0x0,0x11E20) Logon
Type: 2 “

 Use the script “who_was_logged_in.py”:
 In cygwin /cygdrive/c/forensics/tools:

python who_was_logged_in.py ‘yyyy-mm-dd hh:mm:ss’
» User “Doris”

Michael Sonntag, Christian Praher 25 Windows Forensics

Case Study II: Solution

 Timestamp “Embedded” (=“Written”-10s) of PUTTY.EXE: 14.11.2011 14:07:35 (GMT)
 Query “All logins before the timestamp”

 C:\Program Files\Log Parser 2.2>LogParser.exe "SELECT
TimeGenerated, EventID, Message FROM Security WHERE
EventID = 528 AND TimeGenerated <= '2011-11-14 15:07:35'"
-o:CSV

» Note down the closest Logon IDs: Doris - 0x35688
 Query “All logins after the timestamp” with the given Logon ID

 C:\Program Files\Log Parser 2.2>LogParser.exe "SELECT
TimeGenerated, EventID, Message FROM Security WHERE
(EventID = 538 OR EventID = 551) AND TimeGenerated >=
'2011-11-14 15:07:35' AND Message LIKE '%0x35688%' " -
o:CSV

 Output
TimeGenerated,EventID,Message
2011-11-14 15:09:21,551,"User initiated logoff: User Name:
Doris Domain: WINXP-FORENSICS Logon ID: (0x0,0x35688) “
2011-11-14 15:09:25,538,"User Logoff: User Name: Doris
Domain: WINXP-FORENSICS Logon ID: (0x0,0x35688) Logon
Type: 2 “

 Use the script “who_was_logged_in.py”:
 In cygwin /cygdrive/c/forensics/tools:

python who_was_logged_in.py ‘yyyy-mm-dd hh:mm:ss’
» User “Doris”

Michael Sonntag, Christian Praher 27 Windows Forensics

Case Studies III and IV

 In these case studies we want to identify illegal activities
conducted through attaching USB devices to the computer

 Two USB related incidents should be identified and
investigated on the subject machine
 WLAN USB dongle (case study III)

» Who was probably using the device?

» Which WLAN SSID was used?

» What was done with the WLAN connection?
– Visited web pages

 Mass storage USB thumb drive (case study IV)
» Who was probably using the device?

» Is there evidence that files were illegally copied to the Windows
host via that device?

» Is it possible to identify if sensitive data has been copied from
the Windows host to the USB drive (e.g. theft of company data)?

Michael Sonntag, Christian Praher 28 Windows Forensics

Case Study III: WLAN

 Identify all USB devices that have been attached to the
computer with the tool USBDeview
 Launch the tool graphically from

C:\forensics\tools\usbdeview195\USBDeview.exe

 Which of the users have been using these devices?
 What devices are listed?

 Interesting columns (local time, not GMT!)
» CreatedDate

– Time of first use of this very device. E.g. installation time for a
WLAN adapter

» Last Plug/Unplug Date
– Device currently plugged in: Time of plugin

– Device currently not plugged in: Time when it was removed

» InstanceID
– Unique identifier of the device for mapping connection data to the

dongle in the registry

Michael Sonntag, Christian Praher 29 Windows Forensics

Case Study III: WLAN

 Find the user(s) who have been logged in while the dongle was plugged in
 In Cygwin: /cygdrive/c/forensics/tools $ python

who_was_logged_in.py ‘yyy-mm-dd hh:mm:ss‘

 Identify connection data of the dongle (e.g. SSID, IP-Address, …) and map the
dongle to the one listed by usbdeview
 When accessing a WLAN, its SSID is stored:

HKLM\Software\Microsoft\WZCSVC\Parameters\Interfaces
» Subkeys look like GUIDs with values for "ActiveSettings", "Static#000?", …

» The values for "#Static000?" contain the SSIDs at offset 0x14

 Note down the GUIDs of the interfaces and search for a link between these GUIDs
and the USB device in question (intentified by InstanceID from USBDeview)

» Search in the registry for the “InstanceID” of the USB dongle and match the given GUID

 IP address information for this connection (last only):
HKLM\System\ControlSet00?\Services\Tcpip\Parameters\Interfaces

» Look for the same "GUID" key as of the WLAN!

» Dhcp*: Data on DHCP server, assigned address, netmask, default gateway, domain,
nameservers, …

» LeaseObtainedTime/-TerminatesTime: Unix 23 Bit Timestamp
– When the Address was received and what is the definite last time it could have been used (but not:

was used!)

» See: “What are Control Sets”?

– http://support.microsoft.com/kb/100010

http://support.microsoft.com/kb/100010

Michael Sonntag, Christian Praher 31 Windows Forensics

Case Study III: WLAN

 We now know

 Who used the dongle

 When it was used

 Basic connection settings, like e.g. the SSID used

 What is of interest next is what the user did with the Internet

connection

 In case of this Internet connection, a good starting point is to

investigate artifacts left from web browser usage

 Every browser has its own way of storing files

» In our scenario we restrict ourselves to the Internet Explorer

» In practice the browser(s) actually used would have to be

identified and then all of them investigated

Michael Sonntag, Christian Praher 32 Windows Forensics

Case Study III: WLAN

 The Internet Explorer browser stores the 25 most recently manually typed URLs

in the registry
 HKCU\Software\Microsoft\InternetExplorer\TypedURLs

 We cannot examine this key directly in the regedit.exe tool, because only the

values (=hive) of the currently logged in user is linked in (see next slide)

 We need to use a third party tool to analyse this user’s hive “offline”

 A powerful open source Perl tool to analyse registry hives offline is “RegRipper”

 Extendable framework for adding registry-based forensic analysis as Perl scripts

 List available plugins:

» C:\forensics\tools\carvey_tools>rip.exe –l

 Run certain analysis against one particular hive

» C:\forensics\tools\carvey_tools>rip.exe –r

“Path\To\Registry\Hive” –p “name of plugin”

 Get typed URLs

» rip.exe -r "C:\Documents and

Settings\<username>\NTUSER.DAT" -p typedurls

Michael Sonntag, Christian Praher 33 Windows Forensics

Case Study III: WLAN –

The Windows Registry

 5 root keys exist:

 HKLM: HKEY_LOCAL_MACHINE (Computer-specific data)

 HKU: HKEY_USERS (User-specific data)

 HKCR: HKEY_CLASSES_ROOT (application settings, file associations, class registrations for

COM objects)
» Link to HKLM\Software\Classes

 HKCC: HKEY_CURRENT_CONFIG (Current hardware conf.)
» Link to HKLM\System\CurrentControlSet\Hardware Profiles\Current

 HKCU: HKEY_CURRENT_USER (Current user's data)
» Link to HKU\<SID of current user>

 File locations:

 HKLM\SAM %SYSTEMROOT%\System32\config\SAM

 HKLM\Security %SYSTEMROOT%\System32\config\SECURITY

 HKLM\Software %SYSTEMROOT%\System32\config\software

 HKLM\System %SYSTEMROOT%\System32\config\system

 HKLM\Hardware Stored in memory only – non on disk!

 HKU\.Default %SYSTEMROOT%\System32\config\default

 HKU\SID %USERPROFILE%\NTUSER.DAT

 HKU\SID_Classes %USERPROFILE%\Local Settings\

 Application Data\Microsoft\Windows\UsrClass.dat

Michael Sonntag, Christian Praher 34 Windows Forensics

Case Study III: WLAN – Regripper

 Some interesting RegRipper modules
 > rip.exe -l "list plugins"

 > rip.exe -r "C:\Documents and

Settings\<username>\NTUSER.DAT" -p typedurls

 > rip.exe -r "C:\Documents and

Settings\<username>\NTUSER.DAT" -p regtime

 > rip.exe -r "C:\Documents and

Settings\<username>\NTUSER.DAT" -p ie_main

 > rip.exe -r "C:\Documents and

Settings\<username>\NTUSER.DAT" -p

ie_settings

 > rip.exe -r "C:\Documents and

Settings\<username>\NTUSER.DAT" -p

logonusername

Michael Sonntag, Christian Praher 35 Windows Forensics

Case Study III: WLAN

 With the typed URLs we now know what the user actively

typed into the progress bar of the browser, but we do not

know exactly when this happened

 We only know the time the most recent entry was written,

through the write time of the registry key

 To get more information about the browsing activities we

need to get information from the browsing history

Michael Sonntag, Christian Praher 36 Windows Forensics

Case Study III: WLAN –

The elements of web-browsing history

 History

 The list of URLs visited (at which time, …)

 Provides general information on time and location of activity

» URL's may also contain information: GET requests

– Example: Google searches

 Cookies

 Which websites were visited when + additional information

 May allow determining whether the user was logged in

 Can survive much longer than the history

» Depends on the expiry date of the Cookie and the configuration

 Cache

 The content of the pages visited

» Incomplete: E.g. ad's will rarely be cached (No-cache headers)

 Provides the full content of what was seen, e.g. Webmail

» More exactly: What was delivered by the server

Michael Sonntag, Christian Praher 37 Windows Forensics

Case Study III: WLAN –

Web-browsing history

 Did the user visit the webpage intentionally?

 In general: If it's in the cache/history/cookie file: Yes

 See also: Bookmarks!

 BUT:

 What about e.g. pop-ups?

» E.g.: Pornography advertisements!

 Investigation of other files, trying it out, content inspection …

needed to verify, whether a page that was visited,

was actually intended to be visited (“intentionality”)

 Usually this should not be a problem:

» Logging in to the mail

» Visiting a website after entering log-ins

» Downloading files

Michael Sonntag, Christian Praher 38 Windows Forensics

Case Study III: WLAN – Internet Explorer:

Interesting files/locations

 Where can we find information on what users did with IE?
» Att.: Locations change slightly with OS version/language!

 <User profile>\Local Settings\Temporary Internet Files\

Content.IE5

» Cache (webpages, images, applets, flash-files, …)

 <User profile>\Local Settings\History.IE5\

» Where the user had been (URLs);

» Subdirectories for various time spans

 <User profile>\Cookies

» Cookies

 Note: Data is deleted from these locations independently!

 What is (was) present in one, is not necessarily available any

more in the other locations

» We must search all three locations and assemble the results

Also later versions of IE
(This is the version of the file format, not of the software)!

Michael Sonntag, Christian Praher 39 Windows Forensics

Case Study III: WLAN – Internet Explorer:

index.dat structure (1)

 This structure is the same for cookies, cache, and history

 Overall structure:
» Remember: File has bytes in reverse order (little endian)!

 Header: Magic number (text), file size, hash table offset,

subdirectory names (cache only)

» Subdirectory names are referred to by index (0 = first)

 Hash table: Length of table, pointer to next hash table,

8-byte hash entries

» Entries: 4 bytes flags, 4 bytes record offset

 Activity records: Type, length, data (dependent on type)

» Type can be REDR, URL, or LEAK

– URL: Website visit

– REDR: Redirection to another URL

– LEAK: Purpose unknown (Possibly: Cache entry deleted, but file

couldn't be deleted)

» Each record is a multiple of 128 bytes long
Source: http://odessa.sourceforge.net/

Michael Sonntag, Christian Praher 40 Windows Forensics

Case Study III: WLAN – Internet Explorer:

index.dat structure (2)

 URL records

 Last modified time: When the information was modified on

the web server

» Filetime format; All zero if unknown

 Last access time: When the URL was visited

» Filetime format!

 URL offset

» URL itself is Null-terminated; no Unicode – ASCII only!

 Filename offset

» The name in the cache directory

 Cache directory index

» In which cache directory the file is stored (index; 0 = first dir)

 HTTP header offset

» The response headers only; not always present

 Hit count: How often visited

Michael Sonntag, Christian Praher 41 Windows Forensics

Case Study III: WLAN – Internet Explorer:

index.dat structure (3)

 REDR records

 Flags: Exact meaning unknown

 URL offset

» Null-terminated

 LEAK records

 Structure similar to URL record; purpose unknown

» See above: file couldn't be deleted (open in browser/editor)

 Not all records are necessarily present in the hash table

 When deleted, sometimes a record remains and only the

hash entry is removed

» "Delete history"  Mark as deleted in hashtable

 As all records are block-sized (see before), "undelete" is

possible without too many problems!
– A kind of file system within a file  !

» Especially as each record starts with the type, and destroyed

records are filled with well-known values (0x0BADF00D)

Michael Sonntag, Christian Praher 42 Windows Forensics

Case Study III: WLAN – Pasco

 The open source tool “pasco” (/cygdrive/c/forensics/tools/
pasco/bin) can be used to parse index.dat files
 Pasco is a Unix command linked against cygwin.dll, so you

can run it again from within the Cygwin shell
 $./pasco.exe -t ';' /cygdrive/c/Documents\

and\ Settings/Brian/Local\

Settings/Temporary\ Internet\

Files/Content.IE5/index.dat

 $./pasco.exe -t ';' /cygdrive/c/Documents\

and\ Settings/Brian/Local\

Settings/History/History.IE5/index.dat

 $./pasco.exe -t ';' /cygdrive/c/Documents\

and\ Settings/Brian/Cookies/index.dat

 After the analysis with Pasco, we have a pretty good
understanding of what the user did and when this was
 Here with CSVed, but normally with a spreadsheet or DB

Michael Sonntag, Christian Praher 43 Windows Forensics

Case Study III: WLAN – Pasco

 Sample Output from Pasco:

 Type: URL

 URL: http://www.amazon.de/Computer-Forensics-Library-

Boxed-Set/dp/0321525647/ref=sr_1_14/302-3061595-

9808016?ie=UTF8&s=books-intl-de&qid=1191921357&sr=8-14

 Modified time:

 Last accessed time: 10/09/2007 11:18:48

 Filename: 302-3061595-9808016[2].htm

 Directory: BRNONATM

 HTTP headers:

HTTP/1.1 200 OK

Content-Length: 120986

Content-Type: text/html

 Other data:

 Record length: 3 (=3*128 = 384 bytes = 0x180)

» From 0x035800 to 0x35980

9.10.2007, 9:18:48 UTC (!!!)

<Not present in file>

Michael Sonntag, Christian Praher 44 Windows Forensics

Case Study IV: Timeline Forensics

 Based on an example of Harlan Carvey

 Author of the books (amongst others)

» Digital Forensics With Open Source Tools

» Windows Registry Forensics: Advanced Digital Forensic

Analysis of the Windows Registry

» Windows Forensic Analysis DVD Toolkit

» Perl Scripting for Windows Security: Live Response, Forensic

Analysis, and Monitoring

 Slides and tools accompanying the books freely available

» http://code.google.com/p/winforensicaanalysis/

 Filesystem tool added by us

http://code.google.com/p/winforensicaanalysis/

Michael Sonntag, Christian Praher 45 Windows Forensics

Case Study IV: Timeline Forensics

 Timelines may provide a more comprehensive and more holistic view of

the actions on a suspect’s machine than simple single timestamps

 The goal of a timeline is to aggregate events from different sources and

arrange them in a chronological order

 The type of considered inputs depends amongst others heavily on the

goal of the examiner and the available resources, but typically include

 Registry key writes

 File system changes (MAC)

 Event logs

 Other logs (web server, DHCP, applications etc.)

 …

 Finally, the aggregated events of a timeline analysis have to be

formatted nicely

 Textual as a list of chronological events

 Graphical as a time line

Michael Sonntag, Christian Praher 46 Windows Forensics

Case Study IV: Timeline Forensics

 We will aggregate the following sources into our timeline

 Event log

 Prefetch files

 Recycle bin INFO2 structures

 Registry

» Key write times

» User settings (NTUSER.DAT)

 Filesystem information

» Files that have been created, modified, or accessed in a

particular period of time

 This output file will then be parsed to represent a

chronological timeline of actions

Michael Sonntag, Christian Praher 47 Windows Forensics

Case Study IV: Timeline Forensics

 First, create a directory where the output contents are stored
 E.g. C:\forensics>mkdir tln

 Event Log data
 C:\forensics\tools\carvey_tools>evtparse.exe

-d "C:\WINDOWS\system32\config" –t >>

..\..\tln\tln_raw.txt

 Prefetch data
 C:\forensics\tools\carvey_tools>pref.exe -d

"C:\WINDOWS\Prefetch" -s localhost -t >>

..\..\tln\tln_raw.txt

Michael Sonntag, Christian Praher 48 Windows Forensics

Case Study IV: Timeline Forensics

 All user’s personal registry information
 C:\forensics\tools\carvey_tools>rip.exe -r

"c:\Documents and Settings\Anna\NTUSER.DAT" -u Anna -s
localhost -p userassist_tln >> ..\..\tln\tln_raw.txt

 C:\forensics\tools\carvey_tools>rip.exe -r
"C:\Documents and Settings\Brian\NTUSER.DAT" -u Brian -
s localhost -p userassist_tln >> ..\..\tln\tln_raw.txt

 C:\forensics\tools\carvey_tools>rip.exe -r
"C:\Documents and Settings\Charly\NTUSER.DAT" -u Charly
-s localhost -p userassist_tln >> ..\..\tln\tln_raw.txt

 C:\forensics\tools\carvey_tools>rip.exe -r
"C:\Documents and Settings\Doris\NTUSER.DAT" -u Doris -
s localhost -p userassist_tln >> ..\..\tln\tln_raw.txt

 C:\forensics\tools\carvey_tools>rip.exe -r
"C:\Documents and Settings\Edgar\NTUSER.DAT" -u Edgar -
s localhost -p userassist_tln >> ..\..\tln\tln_raw.txt

Michael Sonntag, Christian Praher 49 Windows Forensics

Case Study IV: Timeline Forensics

 Times of most recent registry changes

 regtime.exe -r "C:\forensics\registry_backup\system" -m

HKLM/System -s localhost >> "..\..\tln\tln_raw.txt"

 regtime.exe -r "C:\forensics\registry_backup\software"

-m HKLM/Software -s localhost >> ..\..\tln\tln_raw.txt

 Recycle bin information for all users

 recbin.pl -i C:\RECYCLER\S-1-5-21-1409082233-746137067-

1060284298-1003\INFO2 -s localhost -u Anna -t >>

..\..\tln\tln_raw.txt

 recbin.pl -i C:\RECYCLER\S-1-5-21-1409082233-746137067-

1060284298-1005\INFO2 -s localhost -u Charly -t >>

..\..\tln\tln_raw.txt

 recbin.pl -i C:\RECYCLER\S-1-5-21-1409082233-746137067-

1060284298-1007\INFO2 -s localhost -u Edgar -t >>

..\..\tln\tln_raw.txt

Michael Sonntag, Christian Praher 50 Windows Forensics

Case Study IV: Timeline Forensics

 All file system changes (takes a long time!)
 Administrator@winxp-forensics

/cygdrive/c/forensics/tools

$ python files_changed.py -a -m -c

'/cygdrive/c/' '2011-11-21 10:15:00' '2011-

11-21 10:25:00' >> ../tln/tln_raw.txt

 Date: 21.11.2011 10:17  USB thumb drive plugged in

» Will be shown in timeline a 09:17 Z (Z = GMT!)

 Finally, parse the aggregated event file into a chronological

timeline and analyze it with a text editor
 C:\forensics\tools\carvey_tools>parse.pl -f

..\..\tln\tln_raw.txt

>..\..\tln\tln_formated.txt

