
Michael Sonntag

Institute for Information processing and

microprocessor technology (FIM)

Johannes Kepler University Linz, Austria

sonntag@fim.uni-linz.ac.at

Live-Forensik: Rootkit

1

2

Scenario

 Investigating an image of a Linux system (CentOS 5.5) infected by a rootkit

 We will use live acquisition of data to gather information on this system

— Simulated, i.e. we will produce a local file with the output

• In reality this should be sent by netcat (nc) to a different computer to prevent

modifications of the system under investigation!

 We will use various techniques to identify the problem

 The virtual machine is a VMWare image

— Can also be opened in Virtualbox

 Under /mnt/cdrom there is the script “investigate.sh”

— You can run it (“/mnt/cdrom/investigate.sh >report.txt”)

 But we are going to do the same (and some elements more) manually!

4

ATTENTION!

 This is part of a real rootkit, however it has been slightly modified

 It is part of a very old rootkit, so it is not that good/well hidden and very limited

— Note the differences in output compared to the “real” binaries!

— It has certain limitations which renders in relatively useless on modern systems

 BUT:

— It is still a real rootkit

— The source code is NOT available in the image (often it would have been compiled

there, so it might still exist, perhaps only in parts of deleted files)

— The binaries may NEVER be used anywhere else!

This is SOLELY for EDUCATIONAL USE!

5

Elements of good toolkits for live forensics

 Minimize system impact

— Don’t copy anything to the disk, binaries as small as possible

 Enforce the use of known binaries only

— Make sure that no library from the system investigated is used

 Extensive logging and checksums

— Ensuring that no later modification can occur and that verification is possible

 No drivers needed for installing (CD-ROM better than USB!)

— Can be difficult Depends on the system investigated

• If very well secured, this might be difficult (IDS tries to prevent exactly this!)

 Copies data directly to another system (Network/Share or USB)

Not possible: No statically compiled files (too complicated);

use files on CD-ROM image for investigation

Local file (too complicated)

 (apart from local log file)

6

Basic information on the image

 CentOS 5.5 (=RedHat Enterprise Linux 5.5)

— Basic/minimal installation: Commandline only (no GUI), no special applications installed

 Two users are available:

— Username “user”, Password “user” (Normal user, no special permissions)

— Username “root”, Password “root” (Administrator)

 Keyboard: German, but “\” is “shift-ü”

 Investigative tools: /mnt/cdrom/bin (needs to be mounted first!)

— Perhaps useful: “export PATH=/mnt/cdrom/bin” to ensure to run only “our” programs

• Note: Libraries will still be loaded from system; the tools are not statically compiled!

The image will be distributed in the class on DVDs/memory stick and can be

downloaded from the website (Password for ZIP is disclosed in class)!

7

Importing the image

 Import the image from the DVD / Memory stick / download directory

 This image is the “original” system

 The forensic tools (not statically compiled; see previous slide) are located on an

“external” CD-ROM: CD-ROM.iso

 Necessary process:

— Import the virtual machine

— Configure the virtual machine to use the

CD image as the CD drive (see →)

— Start the virtual machine

— Mount the CD image:

“mount /dev/cdrom /mnt/cdrom”

8

What we are not investigating here

 Copying RAM content

— Difficult to do, investigation is very difficult and out of scope here!

 DNS cache

— Not interesting here; problematic because of fixed file location

 No recovering deleted files still in use

— The rootkit doesn't use such files

9

Basic information

 Generally: Try both commands - from “/mnt/cdrom/bin” as well as from the

system - and compare both results!

 Date & time: “date”, “date –u”

— Documenting the start of the investigation (incl. timezone)

 System: “hostname”, “uname –a”, “whoami”, “id”

— Where are we? What kind of system is this? Who are we? (Last two not on "CD"!)

 Patch level: “rpm –qa”

— Normally very late, as this is unlikely to change during the investigation!

 Uptime, logged in users: “w”, “who”

— Are we alone (logins form network!)?

 Last logged in users: “last –a –i”

— Including from where they logged in (here not interesting, but in general useful!)

10

IP/firewall information

 IP addresses: "ip addr"

— Nothing special: localhost, IPv4 connection

— sit0: Tunnel for IPV6 IPv4

 IP devices: "ip link" and IP tunnels: "ip tunnel" show the same information

— Take note of IP address/subnet Might be necessary for "nc" (not used here)!

 Firewall configuration (iptables = standard on Linux)

— "iptables-save":

• Outgoing: No restrictions

• Input and forwarding: A few default rules

• Allowed: Local connections, ICMP (=pinging+…), ESP/AH: IPSec

connections, UDP/224.0.0.251/5353 (Zeroconf/Multicast DNS),

Port 631 (Internet Printing Protocol) Port 22 (SSH)

11

Network information

 ARP cache: “ip neigh show”

— Useless here, as this system probably hasn’t connected anywhere

• Note: Updates, software installation … might show some other systems

• Depends also on the kind of network integration of the virtualization environment

 Routing table: “ip route show table all”

— Current routes (here not very interesting)

 Routing cache: “ip route show cached”

— Previous routes (here not very interesting)

12

Process information

 Processes: “ps aux”

— Please take care: Which “ps” are your executing?

• “/mnt/cdrom/bin/ps” or “/bin/ps” ?

— Try both and compare them: What is strange?

• Visual differences? Yes!

• Content differences? Difficult because of the visual differences

• We will come back to this later!

• Count lines: “ps aux | wc –l” and “/mnt/cdrom/bin/ps aux | wc –l”

• But: Perhaps the problem is not “ps” but “wc”? We don’t know yet!

• Which wc did you use ?

• Try “/mnt/cdrom/bin/ps aux | /mnt/cdrom/bin/wc –l”

 Anyway, we have found the first strange result!

13

Processes/ports (1)

 Listening: “netstat –an”

— Three ports are open for listening:

• UDP Port 68: BootP/DHCP (Waiting for info from DHCP server)

• Does seem normal (depends on configuration!)

• “cat /etc/sysconfig/network-scripts/ifcfg-eth0” DHCP is really used/on

• TCP Port 22: SSH server Very common to be open on most systems!

• Especially on commandline systems (otherwise: only console or telnet!)

• Is a SSH server running? “ps aux | grep ssh”

• Yes: /usr/sbin/sshd

• Is this a “real” SSH server (or trojaned Logging entered passwords)?

Who knows, we would have to investigate more and in detail!

14

Processes/ports (2)

 Also open: Port 12345

— This is a rather strange port: It is above 1024 and so should be a normal application

• But no such application seems to be running?

— What does Google say about port 12345?

• Legitimate: NetBus remote administration tool for Windows

• Often used for trojans, …

— This looks very suspicious!

 But: We cannot get any more information out of this listing

— So we keep it in memory and try to find out more!

• Or use "netstat –anp"!

http://www.speedguide.net/port.php?port=12345

15

Open files/ports/…

 Showing all kinds of handles: “lsof –nP”

— Attention: Very long output!

 So let’ focus a bit: “lsof –nP | grep 12345”

— So this is the HTTP server running there! That looks a bit strange ….

— Check whether such a server is really installed (init scripts/rpm are good starts!)

 What else is going on there: “lsof –nP | grep httpd”

— It is running from the executable ”/usr/bin/httpd” and uses solely the C library

• Plus the linux loader

— It doesn’t have any other files open (try repeatedly) beside StdIn/StdOut/StdErr

16

Remote shell

 Try telneting there: “telnet localhost 12345” and “GET / HTTP/1.0<Ret><Ret>”

— Doesn’t seem to be a webserver …

— Try “ls –al;”

 This is a remote shell: If you can telnet there (firewalls!), you can issue any

command, which will be executed as root

— Note: Must be terminated by “;”, always returns an error message (low quality SW!)

— Exiting the shell: “exit;”

 This is the first part of the rootkit!

 Try at home: Find out how it is started on boot

— Hint: Check all kinds of init scripts!

 Note: Would this really be a problem here (=reachable from outside?)

— Hint: See slides before ("iptables-save"!)

17

Back to ps

 Does “ps” show this program?

— “ps aux | grep httpd” No, but it should

 Does “/mnt/cdrom/bin/ps” show this program?

— Yes it does!

 Result: “/bin/ps” doesn’t work quite all right, it probably was modified (“trojaned”)

— We cannot trust its output any more

18

Checking file date/time

 We know the file “/bin/ps” has been modified - Can we find out the date/time?

 Date/times of a file: “stat /bin/ps” (Access omitted from output)

— Modify: 31.3.2010 6:53

— Change: 4.11.2011 13:59

 Compare this to the original date/times

• How would we get at this? Install a “new” one in a virtual machine and check!

— Modify: 31.3.2010 6:53

— Change: 4.7.2010 5:42

 Result: The modification date seems to have been copied, but the change date is

incorrect The intrusion probably occurred on 4.11.2011 at about 14 o’clock

— The rootkit installation program doesn’t work correctly regarding this!

19

Other information (OS, file system …)

 Kernel modules: “lsmod” and packages “rpm –qa”

— Not very interesting here

 Mounted file systems: “mount –l”

— Nothing mounted here apart from the system ones

 Free space: “df –k”

— Not interesting here

 Scheduled jobs: “atq” Nothing to show here

 System load: “top –bn 1”

— Note: “httpd” is shown here The rootkit doesn’t modify this commands’ output!

20

Checking the date of the intrusion

 Whet else happened on the system on 4.11.2011 13:59 (change time)?

 One possibility:

“/mnt/cdrom/bin/find / -printf “%p;%Cx;%CT\n” | grep “11/04/2011;13:”

— Why not the exact date? We don’t know whether this was the first or last action!

— Too many results we can still narrow it down!

 Also changed at about that time (apart from the directories they are in):

— /bin/ps, /usr/bin/httpd: We already know them!

— /bin/ls: That’s new! So some files seem to be hidden as well …

— /usr/bin/chsh: That’s new!

— Several other files (prelink-related, mails, yum cache, …)

• Yum might potentially be interesting: Update check or who/what was installed?

21

/bin/ls: Hidden files

 Compare the output from our “find” commando to “ls” for the root directory

— In practice this would be done by producing a full dump and automatic comparison

• “Our” find and the one from the system itself

— Here just use “ls -al /” and “find / -maxdepth 1”

 Result: “ls” has been “hacked” as it hides a directory otherwise existing!

— Compare to previous slide – the suspicion there has been confirmed!

 There exists the directory “/rk” which shows up in “find” but not in “ls”

— Check out its contents!

22

Rootkit files

 Now we find a different date: 3.11.2011 16:40

— This could have been the time of the initial intrusion

 Check out the individual files

— Find out what “fix” is for!

• Try “strings fix” for a first view

— Try to identify the content of the “backup” folder

— What is “ptyp” and “ptyr” there for?

• What can we learn from its content?

• These are extremely important files: They show what is hidden!

23

What is “chsh”?

 Command to change the current/login shell

— SetUID, modifies /etc/passwd Very high permissions anyway

— Main reason for trojans: If you get in as some user, you can become root through this

• Drawback: You need the root password (NOT in trojaned versions!)

 This version has been modified, but how?

— Try “strings chsh |more” Can you see anything interesting?

— No, the interesting parts (i.e. the “secret password”) has been hidden

• Not that well, but good enough for this simple approach

— Try the password (see next slide or the file README) – how is it to be used?

• Enter it instead of a shell name and you receive a root shell

• So to really test it, log in as “user” (check your rights with the command “id”)!

24

Rootkit password – Source code

 /* ROOTKIT_PASSWORD must be 6 letters due to my lame attempts at string hiding... */

#define ROOTKIT_PASSWORD "rkdemo"

 char MAG[6];

strcpy(MAG,"");

MAG[0]=ROOTKIT_PASSWORD[0]; MAG[1]=ROOTKIT_PASSWORD[1];

MAG[2]=ROOTKIT_PASSWORD[2]; MAG[3]=ROOTKIT_PASSWORD[3];

MAG[4]=ROOTKIT_PASSWORD[4]; MAG[5]=ROOTKIT_PASSWORD[5];

MAG[6]='\0';

 Password is stored in executable as separate characters

— If you know this, you can see it clearly in the output of “strings chsh” as well!

 Practice: Deassembly/Decompilation or Debugging

25

Conclusions (1)

 Generally the investigation would be more difficult,

— especially for files:

• Using external tools and producing a log

• Using the internal tools and producing a log

• Comparing those files in a spreadsheet/diff/…

• Find out date/time of files at the time of intrusion (if known …)

— and binaries:

• Install a “new” version in a virtual machine

• Bring it to exactly the same patch level/software

• Compare md5 values of files in both VMs to find out which ones were modified

• Reinstall might be easier!

26

Conclusions (2)

 What we didn’t find out:

— How the intrusion took place

• When it took place We have only some hints, but which are quite good

— What the attacker was after (but: no interesting content here anyway)

— Complete list of changes: Have we really found everything?

• Probably yes, but some parts might also have been hidden better!

Michael Sonntag

Institute for Information processing and

microprocessor technology (FIM)

Johannes Kepler University Linz, Austria

sonntag@fim.uni-linz.ac.at

Thank you for your attention!

27

