
Forensic and Anti-Forensic on modern
Computer Systems

Alexander Krenhuber1 and Andreas Niederschick1

Johannes Kepler Universität Linz,
Institut für Informationsverarbeitung und Mikroprozessortechnik

alex.krenhuber@liwest.at, andi_niederschick@gmx.at

Abstract. The intention of this paper is to show, how data can be
hidden on modern computer systems.
There exist many possible places, starting at the hardware itself and
ending up using different places in the file system used.

1 Introduction

This paper shows which possibilities exist to hide data on modern computer
systems. First field to be observed is hardware and how manufacturers design
certain hidden places. Afterwards operating system properties concerning data
management will be discussed. Next step is the analysis of file systems. Last
topic is how to securely delete data.

2 Hardware

Storing data on hard disk, independent from running operating systems, seems
to be a nice spot to hide data. Since hard disk manufacturers try to keep these
options confidental, it is especially important for forensic analysts to know about
the existence of these features, how to detect them and how commonly available
forensic software treats them. It is important to note that not every forensic
tool supports these areas, and so a generated forensic image may not contain
them.[1]

2.1 HPA

The Host Protected Area (HPA), also known as Hidden Protected Area, is de-
fined as a reserved protected area on modern hard disks. HPA was introduced
as an optional feature in the ATA-4 standard[2] in 1998, making all currently
available hard disks support this feature. The protected area is used to store
data and configuration files, which neither the user nor the operating system
can display or change. However there are certain tools available, like hdat2[3],
that are able to modify an existing HPA.

The original goal of HPA was to store recovery images on the hard drive,
to put them back into the regular field of the hard disk if necessary. Especially

II

notebook manufacturers often used them to save important system tools and an
initial state of the system to save the costs of included recovery DVDs.

The central command in HPA is SET MAX ADDRESS, which is used to tell
the hard disk where the user available space ends and where the protected area
starts. For hard disks larger than 137GB (268.435.454 sectors), that use 48bit
logical block addressing[4] the appropriate command is SET MAX ADDRESS
EXTEND. To determine the size of a hard disk, the operation system examines
the ATA- commando IDENTIFIY-DEVICE. This commando will no longer re-
turn the actual size of the disk, but instead the address set by the SET MAX
ADDRESS command.

However each hard drive that is HPA capable must also support the ATA
command READ NATIVE MAX ADDRESS, and respectively READ NATIVE
ADDRESS EXTEND, and so it is possible to detect that a HPA is being used
by comparing the output from IDENTIFIY DEVICE and the READ NATIVE
MAX ADDRESS commands. If the two commands show different sizes, it is
highly likely that there exists a protected area on the hard disk. [5]

A simple rerun of the SETMAX ADDRESS command will restore the factory
default size of the hard drive. Newer versions of the Linux kernel will display a
detected HPA at boot time, or even reset it until the next reboot, to gain access
to the whole disk.

2.2 DCO

Device Configuration Overlay (DCO) is another available optional feature set
to hide a data area from the user and reduce the available user space. It was
introduced as an optional feature in the ATA-6 standard in 2002[2]. Device
Configuration Overlay is much more powerful than HPA and also less well-known
and thus an interesting opportunity to hide data.

The primary goal of DCO was to allow pc manufacturres to purchase differ-
ently sized hard disks and then make every drive have exactly the same number
of sectors. It can also be used to enable or disable features of the hard disk, for
example the SMART feature set.[1]

With the DEVICE CONFIGURATION SET command, the capacity of the
disk can be reduced. Using this method, modifying the disk size is more pow-
erful than doing it with HPA, because now even the earlier mentioned READ
NATIVE MAX ADDRESS command returns the size defined by the DEVICE
CONFIGURATION SET and not the original size of the hard disk. Now an
access behind the set maximum size ends with an Identify Drive Command Ad-
dress Not Found Error. If there is already a HPA before activating the DEVICE
CONFIGURATION SET, it fails to prevent possible loss of data of the HPA.[1]

To use both ATA features (HPA and DCO), DCO must be defined first. Then
in addition an HPA can be generated, whereas the maximum address of the HPA
must always be less than the DCO configuration.

III

[6]

The only way to detect a DCO, is to use the command DEVICE CONFIGU-
RATION IDENTIFY, which shows the true size of the hard disk. The detection
of the hidden data is relatively easy by comparing the output of the commands
DEVICE CONFIGURATION IDENTIFY and READ NATIVE MAX. To re-
store the original configuration, the command DEVICE CONFIGURATION
RESTORE needs to be invoked, which restores the logical size of the hard disk
to its original state. In existence of an additional HPA, this must be reset before
the DCO, because a reverse execution leads to an error. During a forensic anal-
ysis of a hard disk, it is highly recommended to compare the printed size on the
hard disk with the size returned from the DCO and HPA commands to identify
possible hidden areas.

3 Operation system

3.1 Slack Space

Not every single bit on a hard disk is accessible due to the logical structure of
data. These areas which are not accessible are called slack space. Several differ-
ent reasons lead to slack space. For example, a file normally does not fit exactly
into a sector on the platter. The unused space of the sector can not be addressed
by the operating system system and is known as RAM slack. Not every file ends
within the last sector of a cluster or block, which is the smallest unit an oper-
ating system has access to. So the sectors within a cluster which are unused are
not ready to use. This is referred to as drive slack.[7]

Another form of slack is volume slack. A partition does not need to use all
space designated to it. The unused space can not be accessed by the operating
system and is therefore slack space.[8] In other words, "‘volume slack is the un-
used space between the end of the file system and the end of the partition where
the file system resides."[9]

4 NTFS

The NTFS (New Technology File System), introduced in 1993 with Windows NT
3.1, became the standard file system for Microsoft’s operating systems. There
are many ways of hiding data in the NTFS file system. In this section we try to

IV

explain various methods to hide data and show how hidden data can be detected.
Methods easy detectable or with storage capacities of only a few bytes are not
part of this paper.

4.1 Faked bad clusters

A defect sector has a physical error and thus it is no longer usable. Although the
hard disk and the operating system can handle it, any data in this sector is lost.
Older hard disks did not have the possibility to detect defective sectors, and so
this was done by the operating system.[9] NTFS identifies defect clusters in the
metadata file $BadClus, which is stored in the Master File Table (MFT). Now
in order to hide files, it is sufficient to mark some clusters as defect and use them
to hide data. To accomplish this, the clusters are added to the $Bad attribute of
the $BadClus metadata file. In addition the size of the $Bad attribute and the
size of the MFT file record need to be modified. The size of the data that can
be hidden with this method is unlimited.[9]

Modern hard disks manage the defective sectors by themselves and divide
them into several categories.

– Primary defect list (PLIST). Here all sectors are listed that are already defect
after manufacture. The PLIST is located inside a reserved area, and once
created it should not be changed.[3]

– The grown defect list (GLIST) contains all sectors that get defect during
operation. If a defect sector is detected it is remapped to a different part of
the medium. In the usual case, a defect that has been reassigned no longer
has an LBA, and thus can‘t be accessed again.[3]

Thus it is unlikely that the operating system detects bad sectors before the
disk does. So if there are any clusters marked as bad in the $Badclus file, one
should be suspicious and further analysis of the content in the bad marked sectors
or a surface scan of the hard disk to verify the existence of bad sectors should
be done.

4.2 Additional clusters allocated to a file

This method uses additionally added clusters to a file, although they are not
needed for size reasons. For example, a file needs to allocate 3 clusters to store
its content, but there are 5 clusters allocated. There are now 2 clusters that can
be used to store information and can‘t be overwritten by other files, since these
sectors are already allocated to a file. Because there is no limit of additionally
allocated clusters the available space for hidden information is only bound to the
available disk space. But a quite serious disadvantage of this method is that if
the original file grows in space, the hidden information will be overwritten and so
no longer usable. To prevent this, the use of files that do not change is preferred.
Program executables or operating system files are a good point to start.[9]

V

4.3 File slack

When a file is created, its actual size depends on the content to store and some
additional metadata information. Since the file system, due to simplifying the
administration of available sectors, combines sectors to a larger logical unit called
cluster most of the time, a file does not fill the entire last cluster of its allocated
space. Due to the general use of a cluster size of 4 sectors, every file generates
a usable space from 0 to 3 sectors to hide information. This type of file slack is
called drive slack, it spans from the first unused sector of the last allocated cluster
to the end of this cluster. Since Microsoft Windows ignores the information stored
in the drive slack, stored information won‘t be detected by the operating system
itself.

Another type of file slack is the so-called RAM slack. RAM slack spans from
the end of the file to the end of the sector. It depends on the operating system
how ram slack is handled. For example, Linux and Microsoft Windows write a
series of 0 into RAM slack.[8]

[8]

So RAM slack can also be used to store secret information, but since the
available space is not that big and any 0Bit under Windows operating system
would be suspicious to an investigator, it is not an ideal place. Since the hidden
information gets overwritten when the original file grows in space, stable files
are a preferred target.

4.4 Alternate data streams

The data content of a file is usually stored in the $Data attribute. By default, all
data from a file is stored in a single $Data attribute, even if it is a large file and
the $Data attribute must be split into many parts. A file may have more than
one $Data attribute, as Alternate data stream uses them, and even a directory,
although unnecessary, may have one or more.[9]

Whenever a file or folder has more than one $Data attribute, the additional
attribute is a so-called Alternate Data Stream (ADS). The main purpose of this
feature was to develop a compatibility with the former Apple file system HFS and
their Resource Forks[10]. During a data transfer from a Mac to a Windows PC
with NTFS file system in use, this additional information from Resource Forks
is stored in ADS.[11] Although ADS has been available since Windows 2000 ,
few know about this feature and its function. For example each, with Internet
Explorer 6 and above, downloaded file has an ADS containing the region from
where it was downloaded.

VI

G:\>dir
04.05.2008 11:05 40.319 kusss.ics

1 Datei(en) 40.319 Bytes
0 Verzeichnis(se), 4.088.881.152 Bytes frei

With the dir command or Windows Explorer, only the file itself is visible.
Even the original file size does not change, no matter how much space the ad-
ditional ADS need. Still there exist some free programs like ADS-Locator[12],
or even from Microsoft itself, the so called Streams[13], that can search for and
display if there exists any ADS.

G:\>streams -s g:
G:\kusss.ics:

:Zone.Identifier:$DATA 26

In addition to the original file, a 26Byte Alternate Data Stream is added.
Now that we know the exact name of the ADS we can extract it to a file or
simply display its content.

G:\>more < kusss.ics:Zone.Identifier
[ZoneTransfer]
ZoneId=3

ZoneID 3 means that this file was downloaded from the Internet. A list auf
possible values is posted on the Windows Power Shell Blog[14]. Even the Win-
dows Indexing service uses ADS to add a thumbnail to a picture for previewing
in Windows Explorer. Creating an ADS is relatively simple, and the only need
are existing Windows programs.

type kusss.gif > g:\kusss.ics:kusss.gif

The above command generates an Alternate Data Stream in the kusss.ics
file, containing an image. Now without knowing the specific name of the ADS,
it can*t be discovered. The only telltale sign is that timestamp, when the file
was the last time edited, changed to the time the ADS was created. As you can
see through ADS it is very simple to effectively hide data from the users view.
Even a comparison of the hashes (MD5, SHA1) of the file before and after the
ADS adding reveals no difference.

Unfortunately to delete an Alternate Data Stream without deleting the orig-
inal file is pretty difficult. Only, moving the file to a FAT formatted partition
would destroy the ADS. However special NTFS access rights added to file will
be lost too.

5 Linux

Many different file systems are out there, when using Linux as operating system.
Therefore, in this paper we will describe some general ways of hiding data on
Linux systems, regardless of the file system used.

VII

5.1 Mounting on non-empty directories

Probably the easiest and a quite effective method of hiding data is mounting
a file system on a non-empty directory. After successful mounting, no further
access to the underlying, now hidden, data is possible. To make the data visible
again, it is enough to unmount the file system. The resulting maximum storage
capacity for hidden file depends only on the remaining space. To recognize this
method of hiding data, it requires the continuous control of which file systems are
currently mounted on the system. This can be achieved by the use of tools like
mount or df. Likewise frequent mount and unmount operations should appear
suspicious. To prevent the abuse from users, user mountable file systems should
be avoided.[15]

5.2 Slack Space

Similar to NTFS, the existing storage space is divided into logical blocks (like
NTFS clusters). A data structure may not use an entire logical disk block, this
leads to some available free space for hiding data.[8] There exist some free tools
like bmap or slacker that access this free space and hide data in it. However, to
use this tools administrator privileges are needed. The drawbacks are similar to
those using NTFS and so stable files are preferred.

5.3 Extended file attributes

Similar to the Alternate Data Streams in NTFS, Linux supports a feature called
Extended Attributes (xattr) in various file systems (extX, ReiserFS, JFS, XFS).
To use this function, the libattr feature must be activated in the kernel configu-
ration. Each file can now have a list of extend attributes. Each of these attributes
has a distinguished name and related data. The name must be prefixed with a
special namespace identifier (user, root and security namespace are available)
and a following point. Extended Attributes are easy to create, but for a person
who is aware of this feature they are easy to detect.

5.4 Removal of open files

Deleting a file, even if it is opened by a program, will immediately remove the
file name from the directory containing the file. The data itself won‘t be deleted
until the last program (last opened file descriptor) that has access to the file, was
closed. In the past this was a common way to hide data, since for this method of
hiding data no special rights are needed. However, to access the deleted content
after the last file descriptor was closed, requires direct access to the file system.
To detect deleted files that are still opened, a Linux tool called lsof (List open
files) can be used. The available space for hiding data is only limited to the free
space on the hard disk.[16]

VIII

6 Secure Deletion

Nowadays computers hold a large amount of data. Parts of this data are not
stored intentionally by the user. Access to deleted files and files created by the
operating system or applications lead to unwanted information which can be
abused. The following pages show which kinds of unwanted data exist and how
to delete it safely.

6.1 Sources of unintentionally created data

Microsoft Windows uses a swap or page file to store data which does not fit into
the main memory. This file can include every piece of information that can exist
on the computer, e.g. databases or internet settings. As page files can get quite
big (up to 200 million bytes) and there happen to be more than one page file
on the computer, a large amount of data can be found on the hard disk without
the user noticing it. [17]

Applications often create temporary files to improve their performance. These
files are normally deleted after the program is closed, but can be accessed be-
cause they remain on the hard disk until other data overwrites it.[17]

To describe the characteristics of data files contain metadata. This metadata
can hold crucial information like names of users, organizations, computers or
networks. Hackers might use this information, so metadata needs to be safely
removed as well. [17]

Deleted files normally remain on the hard drive in their original form. The mem-
ory addresses are just made available for overwriting by the file system. So the
operating system and therefore normal users cannot access these files anymore,
but with adequate tools they can be restored. To safely remove data its location
must be overwritten several times. Therefore removing data completely takes
much time.[7]

6.2 Methods of secure deletion

As mentioned above, normally deleted files are still accessible with special tools
because the file content remains on the hard disk. In order to truly remove data,
its memory has to be overwritten. It can be simply overwritten once with ones,
zeros or random data, called Single Pass. But there are some sophisticated meth-
ods to ensure secure deletion as well.[17]
The Department of Defense (DoD) of the USA invented a method which first
overwrites everything with zeros, then with ones and afterwards with a pseudo-
random pattern. This process can take place as many times as you like, always
repeating these three steps.[17]

IX

The RCMP TSSIT OPS-II method alternately overwrites the addressable mem-
ory locations first with ones and then with zeros. After repeating this for three or
more times random data is written to the disk. Another method is to overwrite
memory with a specific data pattern and then with that patterns complement.
Afterwards a random pattern is written. The overwriting process has to cover
allocation tables, directories, block maps and file space.[17]

The Guttman method overwrites data 35 times. It uses bit patterns which seem
to efficiently cover old data encoded with different coding methods like FM or
RLL (will be addressed later on).[17]

It has to be said that these methods only reduce the likelihood of data recovery,
but will not fully sanitize harddrives. But: the better the overwriting method,
the more time will be needed to recover data. So an attacker or forensic worker
will have to relate their spent effort to the importance of recovering files.[18]
Only the destruction of the harddrive through disintegration, incineration or
pulverization will ensure sanitation of a disk.[17]

6.3 Methods of recovering deleted Data

On magnetic media ones and zeros are represented by different small magnetic
fields. Ones are coded with a higher magnetic force then zeros. If you overwrite
a zero with a one, the magnetic force should be equal to the level that indi-
cates a one. But the real effect will be about 0.95 of the level of a one. So with
a proper technique old data can be retrieved keeping in mind this inaccuracy.[18]

Another source of inaccuracy is the drive head. Its exact position varies within
small but perceivable borders. With drive heads which work more precisely these
divergences and therefore the previous bits can be identified.[17]

Two methods to retrieve the bit information from the hard drive are magnetic
force microscopy (MFM) and scanning tunneling microscopy (STM). MFM uses
a sharp magnetic tip which interacts with the magnetic fields of the platter. The
tip is moved over the tracks of the platter and measures the magnetic force of
every bit. STM is a new variant of MFM. The tip in this case has a small electri-
cal potential to tunnel electrons form the surface of the platter to the probe on
which the tip is mounted. The variation in current is transformed into a image
of the disk.[18]

With these methods old layers of data can often be recovered. But how effi-
cient they work and how often the old data has to be overwritten depends on
encoding techniques. Stored data shall be coded so that minimal overhead is
needed and synchronisation can be achieved.[18]

Frequency modulation (FM) and modified frequency modulation (MFM) are

X

encoding methods which are quite straight forward. As drive heads do not mea-
sure absolute magnetic strength FM and MFM code reversals in the magnetic
fields of two adjacent bits. FM represents a one as two transitions and a zero
as one transition. After a bit a transition is added for synchronisation. MFM
enhances this technique by reducing the number of addes clock transitions. Only
if a zero is followed by another zero synchronisation has to be considered.[18]
These two methods overwrite old layers of bits with new patterns, so the prob-
lem mentioned above that a zero overwritten with one will be about 0.95 occurs.
Therefore some old layers will be possible to be recovered.

Another way of encoding data are run-length-limited methods (RLL). Instead of
coding every single bit RLL encodes patterns of bits. For example, 11 is encoded
with TNNN, where T is a transition and N is no transition. These patterns are
designed to bring along synchronisation. RLL is a family of encoding methods,
where the difference shows up in the minimum and maximum number of bits
without transitions between 2 transitions.[18]

A newer version of RLL is partial-response maximum-likelihood (PRML). In
contrast to other methods which read the peaks of analog signals taken from the
platter through the drive head, PRML samples the signal and chooses the most
likely pattern matching the retrieved samples.[18] Nowadays in use is extended
PRML, which is a method similar to PRML but with more efficient algorithms.

The usage of patterns offers to pack data with a higher density on the plat-
ter. Therefore it is harder to recover the data due to the need of very precise
hardware. Overwriting old data with a random pattern should be enough to
remove files safely due to the lack of good enough signal processing.[18]

7 Conclusion

As this paper showed there are many different spots where data can be hidden
on a computer. These places cover the whole range from hardware up to logical
file systems. Allthough this data cannot be addressed through normal computer
usage, there are many ways and programs to hide and seek it. Therefore computer
forensics is important to avoid or detect abuse of hidden data areas.

XI

References

1. Mayank R. Gupta, Michael D. Hoeschele, M.K.R.: Hidden disk areas: Hpa and
dco. International Journal of Digital Evidence 5 Issue 1 (2006)

2. http://www.t13.org/
3. Cabla, L.: hdat2 user‘s manual. http://www.hdat2.com/
4. http://www.48bitlba.com/
5. Vidström, A.: Computer forensics and the ata interface. Swedish Defence Research

Agency Command and Control Systems (2005)
6. Tennert, O.: Post-mortem-analyse von filesystemen unter linux. iX (3 2006)
7. Dillon, S.: Hide and seek: Concealing and recovering hard disk data. (2006)
8. Hal Berghel, David Hoelzer, M.S.: Data hiding tactics for windows and unix file

systems. Identity Theft and Financial Fraud Research and Operation Center (2006)
9. Ewa Huebner, Derek Bem, C.K.W.: Analysis of hidden data in ntfs file system.

Digital Investigation The International Journal of Digital Forensics Incident Re-
sponse 3 Issue 4 (2006) 211–226

10. Apple Computer, I.: The data fork and the resource fork.
http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-
11.html

11. Berghel, H., Brajkovska, N.: Wading into alternate data streams. Commun. ACM
47(4) (2004) 21–27

12. ADS-Locator. http://www.safer-networking.org/de/paragraphs/tools_ads.html
13. Russinovich, M. http://www.microsoft.com/technet/sysinternals/FileAndDisk/Streams.mspx

(2007)
14. Windows-PowerShell-team: How does the remotesigned execution pol-

icy work? http://blogs.msdn.com/powershell/archive/2007/03/07/how-does-the-
remotesigned-execution-policy-work.aspx

15. Knut Eckstein, M.J.: Data hiding in journaling file systems. In: Digital Forensic
Research Workshop. (2005)

16. Chuvakin, A.: Linux data hiding and recovery. (2002)
17. Mallery, J.R.: Secure file deletion: Fact or fiction? (2006)
18. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory.

(1996)

