SPP-ICS

KryPict

A software environment for copyrighting, authenticating, archiving and retrieving pictorial documents in multimedia databases

J. O’Ruanaidh, C. Rauber, J.-F. Buisson, T. Pun (project leader), Univ. of Geneva
P. Tschudin, R. Gschwind, Basler Papiermuseum

October 1997
1. KryPict: Project goals

2. Summary of achievements
 2.1 Pictorial database
 2.2 Digital watermarks
 2.3 Security architecture

3. Technology transfer

4. KryPict 2
 4.1 Goals of the project continuation
 4.2 Subtasks and calendar

5. References
1. **KryPict: Project goals**

Context: distribution of documents over Internet.

Goal: development of copyright enforcement and authentication methods for image databases, based on image watermarking methods.

Tasks:

- 1) database: image and text collection of historical documents (UniGe, Paper Museum);
- 2) digital watermarks: invisible signatures resistant to image modification (UniGe, r³);
- 3) secure copyright protection environ.: registration of legal ownership proof (r³, UniGe).

End-users:

- Basel Paper Museum;
- information providers;
- content providers: digital libraries, publishers, news agencies, etc.;
- copyright offices and intellectual property agencies.

Objectives and milestones were met.

Proposed continuation, tasks 2) and 3): KryPict2.
2. Summary of achievements

2.1 Pictorial database

Content-based image retrieval system of fragile historical documents (ancient watermarks):

Current status:

- client-server architecture;
- client access through WWW interface;
- server:
 - Illustra database (over 4’000 documents);
 - retrieval engines;
- retrieval:
 - textual queries;
 - global features;
 - shape characteristics;
- end-user evaluation.

Possible continuation as an independant European project.
2.2 Digital watermarks

Insertion of hidden signatures in images (grey-level, color), resistant to various types of processing:

Principles:
• information hiding: perceptually adaptive spread spectrum;
• resistance to distortion: Fourier space, log-polar mapping.

Current status:
• watermark perceptually invisible;
• watermark resistant to e.g.:
 - photometric transformations, scanning;
 - geometric transformations: cropping, translation, rotation, scaling;
 - JPEG compression (5%);
• public and private watermark;
• oblivious watermarking;
• European patent application.

Proposed continuation: KryPict 2.
2.3 Security architecture

Secure copyright protection environment, allowing to obtain and securely register watermarks over Internet (legal binding of copyrights).

Identified parties:

Status:

- comprehensive threat analysis;
- registration by cryptographic techniques;
- secure copyright transmission protocols btw. Copyright Holder and Copyright Office;
- persistent copyright registration and storage at the Copyright Office;
- Java-based prototype, integrating the watermarking engine.

Proposed continuation: KryPict 2.
3. **Technology transfer**

Academic:
- articles;
- courses;
- diploma (eg. with EPFL, Prof. A. Schipper).

European patent.

Demonstrator.

Commercial:
- business plan;
- market analysis:
 - content providers: digital libraries, publishers, museums, news agencies;
 - copyright & intellectual property agencies;
 - Internet providers;
- direct contacts with potential end-users.
4. **KryPict 2**

4.1 **Goals of the project continuation**

Goals:

- digital document watermarking algorithms:
 - invariant perceptually adaptive spread spectrum watermarking;
 - distance-based document authentication;
 - binary images watermarking;
- copyright protection environment:
 - different public key schemes;
 - X500 distributed database for CH, CO, B;
 - Web crawler to detect copyright violations;
 - secure payment protocols.

Deliverables:

- basic algorithms;
- complete security architecture for legal binding of copyrights.

Remarks:

- fast moving technology;
- hard scientific research;
- pursue R&D to remain competitive.

Need to move fast → (slight) budget increase.
4.2 Subtasks and calendar

(A) Document watermarking algorithms (UniGe):
(A.1) Invariant watermarking and authentication
(A.2) Multi-dim. spread-spectrum techniques
(A.3) Watermarking of binary documents
(A.4) Evaluation
(A.5) Audio and video
(A.6) MPEG-7
(A.7) Integration

(B) Copyright protection environment (r³):
(B.1) X500 distributed DB with Web gateway
(B.2) Security architecture
(B.3) Transactional, persistent, fault tolerant CO
(B.4) Extensions: Web crawler, payment
(B.5) Integration

Planning (task (A), 42 MM; task (B), 21 MM):

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Month (1..21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>(A): responsible: G;</td>
<td></td>
</tr>
<tr>
<td>(A.1)</td>
<td>G G G G G G G G</td>
</tr>
<tr>
<td>(A.2)</td>
<td>g g g g g g g g</td>
</tr>
<tr>
<td>(A.3)</td>
<td>G G G G G G G G</td>
</tr>
<tr>
<td>(A.4)</td>
<td>Gg G g g g g g g</td>
</tr>
<tr>
<td>(A.5)</td>
<td>G G G G G G G</td>
</tr>
<tr>
<td>(A.6)</td>
<td>GR GR GR GR GR</td>
</tr>
<tr>
<td>(A.7)</td>
<td>g g g</td>
</tr>
<tr>
<td></td>
<td>m m m m m</td>
</tr>
<tr>
<td>(B): responsible: R;</td>
<td></td>
</tr>
<tr>
<td>(B.1)</td>
<td>R R R R R R R R</td>
</tr>
<tr>
<td>(B.2)</td>
<td>R R R R R R R R</td>
</tr>
<tr>
<td>(B.3)</td>
<td>R R R R</td>
</tr>
<tr>
<td>(B.4)</td>
<td>GR GR GR</td>
</tr>
<tr>
<td>(B.5)</td>
<td>m m m m m</td>
</tr>
</tbody>
</table>
5. References

Articles, reports, diploma work:

Patent application: