
Michael Sonntag
Institute for Information processing and

microprocessor technology (FIM)
Johannes Kepler University Linz, Austria

sonntag@fim.uni-linz.ac.at

Live-Forensics
Using Linux as example

1

Live-Forensics, © 2012 2

What is “Live-Forensics”

Gathering data from running systems

You WILL change the system through this!

— Aims: As little as possible & changes are known

Often used in incident response to determine whether an event occurred

Ideally: Completely scripted Little room for errors, complete, and repeatable

— Consistent and verifiable

Special problem: There’s only one chance

— What you forgot to copy, you won’t get later in the lab

— What you do incorrectly will change the running system

— No possibility of “re-doing” it A second expert has to fully trust what you produced

Live-Forensics, © 2012 3

Why do it?

Analyzing volatile data is only possible as long as the computer is running

— Volatile = Will be lost when cutting the power

But this should not happen on the suspicious system!

— So we need to copy this data somewhere else

• Different disk, so we don’t overwrite non-volatile data!

— Or at least gather as much information as possible (printouts, photographs)

Reasons for doing this:

— Encryption keys might still be in the memory

— Some attacks (esp. rootkits for servers) are not stored on the disk but are purely

RAM-based No trace will remain from them (apart from perhaps the paging file)

— Data not yet written to disk (e.g. drafts of documents)

Live-Forensics, © 2012 4

What data to collect (1)

System information

— System version, patch level, and time + time zone

— Running processes/services

• Including who started them, parent, command-line arguments, directory, …

— Memory content: Individual processes as well as complete RAM

— Open files, current (established) network connections, processes listening on sockets

— Hardware information (partition tables, …)

• Windows: This registry part is dynamic and not stored on disk!

— Loaded kernel modules/DLLs

Live-Forensics, © 2012 5

What data to collect (2)

User activity

— Currently logged on users

— Shell history (might be stored as file too offline)

— Login history (especially failures and date/time; might be stored as file too)

Network data

— Cached names/addresses (DNS, ARP, …)

— Mounted file systems/shares

— Routing table (actual and cache), scheduled jobs, system load

— Firewall configuration

Log data: Only as far as temporary, e.g. on RAM disks

— Everything else is offline forensics!

Live-Forensics, © 2012 6

“But if the system is running, it will still change!”

Yes, leaving the system running means, it will still receive E-Mails, serve files,

swap out to disk, add log entries, …

BUT:

— This would happen even without the investigation

— It will not create new evidence (“illegal” mails will not be created, they might just be

moved from one computer to another)

— Leaving it running might result in data being deleted or overwritten automatically

• If no investigation would take place this would happen anyway, so it is merely

necessary to weigh the increased information because of keeping the system

running against the possibility of losing data if not immediately shutting it down!

Live-Forensics, © 2012 7

Elements of good toolkits for live forensics

Minimize system impact

— Don’t copy anything to the disk; binaries should be as small as possible

Enforce the use of known binaries only – if possible

— Make sure that no library from the system investigated is used

Extensive logging and checksums

— Ensuring that no later modification can occur and that verification is possible

No drivers needed for installing (CD-ROM better than USB!)

— Can be difficult Depends on the system investigated

• If very well secured, this might be difficult (IDS tries to prevent exactly this!)

Copy data directly to another system (Network/Share or USB)

Live-Forensics, © 2012 8

Using netcat for transferring output

If a network connection is available, the investigation system can normally be

connected to it easily (additional switch/plug in on open port/…)

— Note: Preliminary investigation necessary what IP/network address is used, if this

cannot be determined differently (asking, looking at another system)

We can copy all the output from the investigated system directly there

Usage: nc <options>

— Server (investigator system): nc –v –l –p 10000 > log.txt

• -v: Verbose output, -l: Listen, -p: Port number to listen on

— Client (system being investigated): [command] | nc [ip of inv. system] 10000

• Possibly: [command] 2>&1 | …. to capture also StdErr

Live-Forensics, © 2012 9

Preconditions

How to get at your special statically-linked (check: ldd <executable>!) programs

for extracting the information as seen on the following slides?

— First: You must log in!

• How? Do you know a password (changed by attacker?)? Or is the last user still

logged on (computer locked, e.g. through screensaver?)? If you are a “normal”

user, can you do what is requested here (often impossible!)?

— Second: Linux CD-ROM/USB requires mounting

• = running a program, = changing access times on several files

• Example: “mount” will change atime of /etc/ld.so.cache, /lib/libc.so.6,

/etc/fstab, /dev/cdrom, /bin/mount and perhaps several others!

• Documentation is therefore important We can check later what was affected

by the commands we issued!

Live-Forensics, © 2012 10

Tools

What we are using here are “standard” commands

Several special “forensic” versions exist as well, but these have to be specially

prepared (but we have to create statically linked versions anyway!)

— These provide more information

— They might directly access “deeper” information, e.g. the kernel process lists directly,

instead of relying on the “output” of the kernel!

— They might then require configuration/compilation for this specific system/kernel

Live-Forensics, © 2012 11

Linux live response example: Date and time

Note: Here shown as interactive, ideally this is a script file redirected to nc!

— Also split over several slides

Current date and time of system:
— [root@mail ~]# date

Wed Jul 6 14:56:29 CEST 2011

— [root@mail ~]# date –u

Wed Jul 6 12:56:31 UTC 2011

Current local date and time

— Note current real time separately!

Current date and time in UTC

— Timezone/DST corrected

Live-Forensics, © 2012 12

LLRE: System version and patch level

Where are we, who are we, what kind of system is this?

— Patch level: Only for the “main” elements, i.e. the kernel

• For all other “packages” this is distribution-specific!

— Plus: Who are we currently (=which account; are we root?)

General information:
— [root@mail ~]# uname –a

Linux mail.msv.at 2.6.18-238.12.1.el5.centos.plus #1 SMP Wed Jun 1 11:12:52 EDT
2011 i686 i686 i386 GNU/Linux

— [root@mail ~]# whoami
root

Packages (here: RedHat/rpm; only part of long list):
— [root@mail ~]# rpm –qa

basesystem-8.0-5.1.1.el5.centos
bind-chroot-9.3.6-16.P1.el5
httpd-2.2.8-1.el5s2.centos
……

Live-Forensics, © 2012 13

LLRE: Cached ARP addresses

Shows the other (local!) computers this system has been communicating with

— Typically not that interesting because of very short timeout!

• Note: Skipped several lines here!
— [root@mail ~]# arp –vn

Address HWtype HWaddress Flags Mask Iface

192.168.2.47 ether 00:16:76:79:3F:42 C eth0

192.168.2.4 ether 00:01:E6:CE:68:C0 C eth0

62.218.130.126 ether 00:A0:F9:06:97:AD C eth1

192.168.2.1 ether 00:0C:29:91:65:AC C eth0

192.168.2.51 ether 00:13:20:C3:1A:79 C eth0

Entries: 17 Skipped: 0 Found: 17

— Address (=IP), HWaddress (=MAC-address), HWtype (=Kind of interface), Iface

(=Interface over which this device is reachable), Flags (C=Complete, M=Permanent,

P=Published), Mask (=Netmask; only used in Proxy-ARP)

Live-Forensics, © 2012 14

33:33:00:00:00:01 is the “MAC
address” for IPv6 ff02::1

01:00:5e:00:00:01 is for 224.0.0.1

LLRE: IP configuration (1)

List ip addresses
— [root@mail ~]# ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc htb qlen 1000
link/ether 00:0d:9d:97:a0:31 brd ff:ff:ff:ff:ff:ff
inet 192.168.2.240/24 brd 192.168.2.255 scope global eth0

3: gre1@NONE: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1420 qdisc noqueue
link/gre 62.218.130.123 peer 192.168.0.250
inet 10.0.1.1 peer 10.0.0.1/32 scope global gre1

— [root@mail ~]# ip maddr show
1: lo

inet 224.0.0.1
inet6 ff02::1

2: eth0
link 01:00:5e:00:00:01
link 33:33:00:00:00:01
inet 224.0.0.1
inet6 ff02::1

4: gre1
inet 224.0.0.5
inet 224.0.0.1
inet6 ff02::1

„Normal“ addresses

Multicast addresses

OSPF

All hosts (IPv4, IPv6)

GRE tunnel

MAC address

Lower-layer multicast addresses

Live-Forensics, © 2012 15

LLRE: IP configuration (2)

List devices
— [root@mail ~]# ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc htb qlen 1000

link/ether 00:0d:9d:97:a0:30 brd ff:ff:ff:ff:ff:ff

3: gre1@NONE: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1420 qdisc noqueue

link/gre 62.218.130.123 peer 192.168.0.250

List tunnels
— [root@mail ~]# ip tunnel show

gre1: gre/ip remote 192.168.0.250 local 62.218.130.123 ttl 255

ARP cache: ip neigh show (but see arp before: should be the same information!)

Multicast route cache: ip mroute show (very rare to see anything)

Queuing discipline:
When/How to send packets

Lower level (layer) is up
(Ethernet: Cable connected)

Live-Forensics, © 2012 16

LLRE: Routing table

Shows the routing table: Not only static (offline investigation), but also

dynamically added ones (e.g. by routing daemons)
— [root@mail ~]# route –vn

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 gre1

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

0.0.0.0 62.218.130.126 0.0.0.0 UG 0 0 0 eth1

— Destination, Gateway, Genmask, Metric, IFace (=Interface) Standard meaning

— Flags: U (=Up), H (=Host route), G (=Gateway), R/D/M (=dynamic routes),

C (=Cache entry), B (=Blackhole), ! (=Reject route)

— Ref: Number of references to this route, Use: Lookups for this route

• Mostly useful only for cache lookup (with additional parameter “-C”)!

Live-Forensics, © 2012 17

LLRE: Routing table cache

Printing the cache shows also what connection were used recently

— Additional flags:

• i (=Direct source), d (=Direct destination), q (=Masquerade), r (=Redirect),

Ns (=SNAT), Nd (=DNAT), b (=Broadcast), m (=Multicast), # (=Reject), l (=Local)
— [root@mail ~]# route –vnC

Kernel IP routing cache

Source Destination Gateway Flags Metric Ref Use Iface

192.168.2.4 192.168.2.240 192.168.2.240 il 0 0 31 lo

127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 44 lo

192.168.2.15 192.9.200.223 62.200.100.120 i 0 0 22 eth1

192.168.11.205 192.168.10.13 62.200.100.120 0 0 169 eth1

— 192.168.2.240 (=eth0): Local address

62.200.100.120 (using eth1): Next hop

192.168.11.205: Some other address (not in local net, comes from another router)
See Linux source code ONLY (net-tools - src-rpm): lib/inet_gr.c

Live-Forensics, © 2012 18

LLRE: Current network connections/open ports

Currently active network connections (output is only a small selection!):
— [root@mail ~]# netstat –an

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 192.168.2.240:3128 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN

tcp 0 0 192.168.2.240:3128 192.168.2.48:1226 ESTABLISHED

tcp 0 0 127.0.0.1:52860 127.0.0.1:3551 TIME_WAIT

tcp 0 0 :::22 :::* LISTEN

udp 0 0 127.0.0.1:123 0.0.0.0:*

udp 0 0 192.168.2.240:123 0.0.0.0:*

— Plus lots of unix domain sockets (one way of inter-process communication)

Info: Port 3551 = USV (apcupsd); LISTEN = Waiting for connection; TIME_WAIT: Making sure

a connection is really and successfully closed; udp ports do not have a connection state; :::22 is

IPv6 port 22 (=SSH)

Live-Forensics, © 2012 19

LLRE: RAM content (1)

Copy the complete RAM content (=physical memory)

Software access: Typically two options exist

— /proc/kcore: Memory in ELF core format Ideal for debugging!

— /dev/mem: Completely raw memory

— Simple approach: dd if=/dev/mem of=mem.bin bs=4096 conv=noerror,sync

• Note: Creates a local file; better to redirect it to nc!

Physical access:

— Firewire can use DMA for direct access to the whole memory (but: slow!)

• Obviously requires a Firewire port to be present and active…

• May hang the system; 128 MB 15 seconds

— Adding PCI cards

• Before the intrusion

or special hot-plug ones – system must support this!

• Not generally available

Live-Forensics, © 2012 20

LLRE: RAM content (2)

Problem: Many distributions now prevent access to these files/their content!

— E.g. /dev/mem: Access only to BIOS and PCI (=mapped I/O range), but not the RAM

— Option: Use the crash driver or the fmem kernel module (creates /dev/fmem which

doesn’t have any restrictions)

• Note: Drivers, modules, … must be compiled (or at least loaded)

 Even more changes to the system and the RAM!

— Even if modules are removed after imaging, the memory has changed

Note: Most kinds of memory dump suffer from potential race conditions!

— While the RAM is copied, the RAM is still being modified (=system continues to run!)

— A memory dump is therefore not necessarily consistent

• Problems when arguing in court that this is a “correct” dump!

Live-Forensics, © 2012 21

LLRE: RAM content (3)

Example with fmem:

— Compile fmem for (but not "on"!) the target operating system

• On a separate system; requires the development libraries (kernel headers)!

— Get “fmem.ko” and “run.sh” to the target system (USB, CD-ROM, …)

— Run “run.sh”, which loads the module and provides information which address areas

(=size) are really RAM (and not mapped …)

• Memory size MUST be provided; dd will read beyond end otherwise!
• [root@mail src]# ./run.sh

Module: insmod fmem.ko a1=0xc041c8d8 : OK
Device: /dev/fmem
----Memory areas: -----
reg00: base=0x00000000 (0MB), size=2048MB: write-back, count=1
reg01: base=0xf8000000 (3968MB), size= 4MB: write-combining, count=1

!!! Don't forget add "count=" to dd !!!

— dd if=/dev/fmem bs=1M count=2048 | /mnt/cdrom/nc <Remote IP> <Port>

Live-Forensics, © 2012 22

LLRE: Loaded kernel modules

Shows all loaded kernel modules

— Interesting especially if there is something “strange”

• Here only a part of the normally very long list is shown!
— [root@mail ~]# lsmod

Module Size Used by
ipt_MASQUERADE 7617 1
ipt_REJECT 9537 2
ipt_LOG 10049 42
iptable_nat 10949 1
iptable_mangle 6849 1
iptable_filter 7105 1
ip_nat_pptp 9797 0
ip_conntrack_pptp 15441 1 ip_nat_pptp
ip_tables 17029 3 iptable_nat,iptable_mangle,iptable_filter
cifs 231385 0
asus_acpi 19289 0
pl2303 21829 0
usbserial 33065 1 pl2303
ext3 125385 2
jbd 57321 1 ext3
uhci_hcd 25421 0
ohci_hcd 24937 0
ehci_hcd 33741 0

Live-Forensics, © 2012 23

LLRE: Who is listening?

We have seen which ports are open, but we also want to find out which

programs have opened them

• Lists open “files” (=file, directory, block/character file, library, stream, socket, …)

• Attention: Really LONG listing … Only very few selected lines shown!

— [root@mail ~]# lsof –nP -n: Numerical output, -P: no port name conversion

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
init 1 root cwd DIR 253,0 12288 2 /
init 1 root rtd DIR 253,0 12288 2 /
init 1 root txt REG 253,0 38652 10148267 /sbin/init
java 4017 root mem REG 253,0 1146570 13389759

/usr/share/apache-tomcat-6.0.20/lib/catalina.jar
ntpd 3485 ntp 16u IPv4 8600 UDP *:123
mysqld 3635 mysql mem REG 253,0 13038518

/usr/lib/libkrb5.so.3.3 (path inode=12112988)
bash 28718 root cwd DIR 253,0 4096 621985 /root
bash 28718 root rtd DIR 253,0 12288 2 /
bash 28718 root txt REG 253,0 735004 15549661 /bin/bash
bash 28718 root mem REG 253,0 129900 4026535 /lib/ld-2.5.so
bash 28718 root 0u CHR 136,1 3 /dev/pts/1

Live-Forensics, © 2012 24

What the “lsof –nP” command shows (1)

Attention: Great care is necessary! Use documentation when interpreting output!

— Most fields show different values/possess varying meanings depending on what is

actually shown in this line (what kind of file it is)

COMMAND: First nine characters of the command (no args); PID: Process ID

USER: ID (or name) of the user the process belongs to

— Differs on Linux if effective user ID has been changed

FD: File descriptor number or special name

— cwd (current working directory), rtd (root directory), pd (parent directory), txt (program

“text” = code+data), mem (memory-mapped file), mmap (memory-mapped device),

<number>r/w/u (open for read/write/read+write access), …

• Standard file descriptor numbers: 0 = StdIn, 1 = StdOut, 2 = StdErr

Live-Forensics, © 2012 25

What the “lsof –nP” command shows (2)

TYPE: Type of the file

— IPv4, IPv6, PIPE, DIR (directory), REG (“regular”=normal file), CHR (character

file/device), BLK (block file/device), unix (Unix domain socket), LINK (symbolic link)

DEVICE: Device numbers separated by commas

SIZE: Size of the file

— Great care must be taken for everything which is not a normal file: e.g. for sockets it

might be the amount of data in memory (=buffer) at the moment!

NODE: Node/Inode number of the file

NAME: name of mount point(s), filesystem, file name, device name,

local/local&remote addresses of network files, etc.

Live-Forensics, © 2012 26

LLRE: Running processes

This includes services; the command also shows which user runs them

• Lots of lines (system as well as potentially interesting ones) removed!
— [root@mail ~]# ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 2160 592 ? Ss May17 13:58 init [5]

root 2 0.0 0.0 0 0 ? S< May17 0:35 [migration/0]

apache 800 0.2 1.9 68236 41020 ? S 15:14 0:08 /usr/sbin/httpd

ntp 3363 0.0 0.2 4508 4504 ? SLs May17 0:22 ntpd -u ntp:ntp -p

/var/run/ntpd.pid –g

mysql 3513 0.0 3.8 184544 80332 ? Sl May17 62:16

/usr/libexec/mysqld --basedir=/usr --datadir=/var/lib/mysql --user=mysql

--federated --log-error=/var/log/mysqld.log --pid-file=/var/run/mysqld/mysqld.pid

--socket=/var/lib/mysql/mysql.sock

root 28332 0.0 0.1 9908 2696 ? Ss 14:55 0:00 sshd: root@pts/1

root 28335 0.0 0.0 4764 1480 pts/1 Ss 14:55 0:00 –bash

Live-Forensics, © 2012 27

What the “ps aux” command shows (1)

USER: Effective user name (preferably textual if existing)

— Normally the same as the real user ID (who started it), but may be different for SUID

executables (then it is the UID of the file owner)

PID: Process ID (unique number of this process)

— Other output formats also include PPID (=ID of parent process)

%CPU: CPU this process currently uses in percent

%MEM: Physical memory share (RAM) in percent of this process

— This excludes memory in swap or parts of the program never loaded

VSZ: Virtual memory in kB: Memory reserved, but swapped out

RSS: Resident Set Size in kB: Non-swapped physical memory

Live-Forensics, © 2012 28

What the “ps aux” command shows (2)

TTY: Controlling terminal (only exists for processes associated with one!)

— Services don’t have a terminal

STAT: Process state code(s)

— R (Running/runnable), S (Interruptible sleep), T (Stopped, e.g. tracing), Z (Zombie –

terminated, but not collected by parent), < (high priority), N (low priority), l (multi-

threaded), L (has pages locked in memory), s (session leader; first of a group of

processes; often a kind of shell), …

START: Time when the process was started

— Day+month; hour+minute only if less than 24 hours

TIME: CPU time (user + system)

COMMAND: Command line with all the arguments passed to it

Live-Forensics, © 2012 29

LLRE: Currently logged on users

Currently logged on users: /var/run/utmp (retrieved with the “w” command)

— The history of logins is saved under /var/log/wtmp (binary file!) Offline
— [root@mail ~]# w

15:41:54 up 18:57, 1 user, load average: 0.48, 0.29, 0.25

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

root pts/1 fim211.fim.uni-l 10:09 0.00s 0.12s 0.09s –bash

USER: Name/ID of the user

TTY: Where the user is logged in, FROM: Where he is connecting from

LOGIN@: (Time of login), IDLE (Idle time), JCPU (CPU time of this + all child

processes which are running), PCPU (CPU time of currently active processes)

WHAT: What shell is being used

Live-Forensics, © 2012 30

LLRE: Mounted file systems

Lists the mounted file systems
— [root@mail ~]# mount –l

/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)

/dev/cciss/c0d0p1 on /boot type ext3 (rw) [/boot]

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

Output: Device (where does it “come from”), Mountpoint (where is it), file

system type, options (r=read only, rw=read/write, …)

— “-l”: For ext2, ext3 and XFS the (optional) labels are shown too (above: “[/boot]”)

Live-Forensics, © 2012 31

LLRE: Cached DNS addresses

Linux doesn’t do any DNS caching itself by default (every program must do it

on his own), but often a full DNS server (in caching mode) is used (or nscd;

Name Service Cache Daemon); or some other software!

NSCD: Also caches other databases (e.g. users, groups)

— nscd –g: Show statistics only, but no content (option not available everywhere!)

BIND: rndc dumpdb –cache

— Will write the complete cache (in normal configuration format!) to

/var/named/data/named_dump.db

• Exact path: Check with your distro, especially if chroot’ed as often!

— Problematic for computer forensics as the destination is a fixed local file!

Live-Forensics, © 2012 32

LLRE: System load

Typically not very interesting, but may show “strange” things

— Nothing happening according to the output of other tools, but heavy system load?!?

• But take care: System load is not CPU alone, but also disk, …!
— [root@mail ~]# uptime

14:12:06 up 4 days, 17:27, 1 user, load average: 0.17, 0.21, 0.19

• Load: System load average for 1, 5, and 15 minutes
— [root@mail ~]# top -bn 1

top - 14:17:16 up 4 days, 17:32, 1 user, load average: 0.18, 0.20, 0.18
Tasks: 209 total, 1 running, 208 sleeping, 0 stopped, 0 zombie
Cpu(s): 4.2%us, 0.9%sy, 0.1%ni, 94.4%id, 0.3%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 2075012k total, 1832808k used, 242204k free, 182276k buffers
Swap: 4128760k total, 116k used, 4128644k free, 789964k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1852 root 15 0 2424 964 696 R 5.5 0.0 0:00.04 top

1 root 15 0 2160 604 524 S 0.0 0.0 1:08.82 init
2 root RT -5 0 0 0 S 0.0 0.0 0:03.55 migration/0
3 root 34 19 0 0 0 S 0.0 0.0 0:00.11 ksoftirqd/0
4 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/0
5 root RT -5 0 0 0 S 0.0 0.0 0:03.29 migration/1

Live-Forensics, © 2012 33

LLRE: Scheduled jobs

This refers to the “at” command

— Most jobs are scheduled through cron: These are excluded here, as they are specified

in static files, which will be investigated in the forensic copy!

— Note: We will get only the “meta-information” here. The actual commands are stored in

files, e.g. under “/var/spool/at”
— [root@mail at]# atq

2 2011-07-11 12:00 a root

Result:

— Id of job (environment and command will e.g. be in file /var/spool/at/a00002014d3f18)

— Date and time when it will run

— Queue name (here: “a”)

— User to run this under

Live-Forensics, © 2012 34

LLRE: Current firewall configuration

What is running need not necessarily be the same as what is configured

— Dynamically adding exceptions is trivial!

Can be very difficult for custom firewalls (Memory analysis), but easy if the

standard “iptables” is used:
— [root@mail ~]# iptables-save

Generated by iptables-save v1.3.5 on Wed May 9 12:33:06 2012
*filter
:INPUT DROP [2789:339230]
:FORWARD DROP [232:22301]
:OUTPUT DROP [81:222570]
-A INPUT -s ?.?.?.? -j ACCEPT
-A INPUT -s 192.168.0.0/255.255.255.0 -p tcp -m tcp --dport 80 -j ACCEPT
……………………………………………
COMMIT
Completed on Wed May 9 12:33:06 2012

Result: A complete dump of the current configuration

— Exactly; normally this would be used to recreate it after the next boot!

Live-Forensics, © 2012 35

LLRE: Current firewall counters

Additional data, especially counters, might also be interesting:

— Must be done for each table separately
— [root@mail ~]# iptables –t {filter, nat, mangle, raw} –L –vnx

Chain INPUT (policy DROP 2800 packets, 339810 bytes)

pkts bytes target prot opt in out source destination

1578852 216446630 ACCEPT all -- * * ?.?.?.? 0.0.0.0/0

Counter: How many packets matched this rule and how many bytes were these

— Header: Were dropped (2800 packets, which were 339.810 bytes in total)

Alternative: iptables-save –c will print packet and byte counters too

Result: General information on how often this rule matched (exact numbers are of

little use!), especially for “DROP” (which are not automatically logged!)

Live-Forensics, © 2012 36

LLRE: Recovering deleted files still in use

Malware often uses a file, starts a process, and then deletes itself

— Analysis becomes difficult, no “strange” file on disk, …

But how can it still work?!? A (partial) copy remains in RAM!

— Carving/extraction from the RAM image

Alternative: File carving in unallocated disk space

— Note: Might be overwritten on disk already, although it still exists in RAM!

Alternative: As long as the process is running, a (hard-)link to it still exists under

“/proc/<process id>/fd/<file descriptor number>”

— Just copy the file to another location (nc to another computer!)

— Process id and FD can be obtained by lsof

Live-Forensics, © 2012 37

LLRE: Example of recovering files still in use (1)

Shell 1:
— cp /var/log/messages /tmp

vi /tmp/messages

Shell 2:
— rm –f /tmp/messages /tmp/.messages.swp

lsof |grep vi

cp /proc/2326/fd/4 /tmp/.messages-recovered.swp

vi –r .messages-recovered.swp

Note: In the example here the file is incomplete, as the swap file of vi only

contains what has been shown to the user!

— I.e., we recovered the complete swap file, but not the complete “source” file, as this

one is just held in memory, but no longer has a file descriptor!

Live-Forensics, © 2012 38

LLRE: Example of recovering files still in use (2)

[root@localhost tmp]# lsof |grep vi
vi 2326 root cwd DIR 253,0 4096 425985 /tmp
vi 2326 root rtd DIR 253,0 4096 2 /
vi 2326 root txt REG 253,0 594740 1441884 /bin/vi
vi 2326 root mem REG 253,0 129832 557087 /lib/ld-2.5.so
vi 2326 root mem REG 253,0 1689388 557289 /lib/libc-2.5.so
<… more libraries …>
vi 2326 root mem REG 253,0 56465584 831291
/usr/lib/locale/locale-archive
vi 2326 root 0u CHR 4,1 659 /dev/tty1
vi 2326 root 1u CHR 4,1 659 /dev/tty1
vi 2326 root 2u CHR 4,1 659 /dev/tty1
vi 2326 root 4u REG 253,0 16384 425989 /tmp/.messages.swp
(deleted)

cp /proc/2326/fd/4 /tmp/.messages-recovered.swp

FilenameProcess ID File descriptor number

Live-Forensics, © 2012 39

Summary

Quite a lot of information can be gathered from a running system

— Sometimes this is necessary, as some viruses/rootkits reside in memory only

Careful preparation is needed

— You need binaries working on this specific system

• Which can be the latest OS version or a very old one, a common or an exotic one!

— You have exactly one chance (and for caches, it is a brief one too!)

Accessing the memory can get very difficult today with software only

— A lot of contamination happens (installing kernel modules, …)

Not touched here: Evaluation

— Very difficult, as few tools exist. Mostly: Simple (string search) or very complex

(debugging the OS itself, with manually interpreting the kernel data structures)

Michael Sonntag
Institute for Information processing and

microprocessor technology (FIM)
Johannes Kepler University Linz, Austria

sonntag@fim.uni-linz.ac.at

Thank you for your attention!

40

Live-Forensics, © 2012 41

Appendix: Programs used

nc, date, uname, rpm, arp, ip, route, netstat, insmod, lsmod, lsof, ps, w, mount,

nscd/mdc, top, at, atq, iptables, iptables-save, df, find, hostname, who

Note: This is directly used software

— If these are scripts/aliases, they might use different programs too

— They will definitely use lots of libraries, unless statically linked

— If automated as a script, some shell will be required as well (e.g. bash)

— General tools (ls, cat, last, grep, md5sum, more, strings, telnet, vi, wc) might be

needed as well

Potentially as well:

— dd/dcfldd, strace, unhide

Live-Forensics, © 2012 42

Literature

Jones, Bejtlich, Rose: Real Digital Forensics, Addison-Wesley 2006

http://www.forensicswiki.org/wiki/Linux_Memory_Analysis

Ivor Kollár: Forensic RAM dump image analyser

http://hysteria.sk/~niekt0/foriana/doc/foriana.pdf

fmem source: http://hysteria.sk/~niekt0/foriana/fmem_current.tgz

Mariusz Burdach: Physical Memory Forensics

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf

	Slide Number 1
	What is “Live-Forensics”
	Why do it?
	What data to collect (1)
	What data to collect (2)
	“But if the system is running, it will still change!”
	Elements of good toolkits for live forensics
	Using netcat for transferring output
	Preconditions
	Tools
	Linux live response example: Date and time
	LLRE: System version and patch level
	LLRE: Cached ARP addresses
	LLRE: IP configuration (1)
	LLRE: IP configuration (2)
	LLRE: Routing table
	LLRE: Routing table cache
	LLRE: Current network connections/open ports
	LLRE: RAM content (1)
	LLRE: RAM content (2)
	LLRE: RAM content (3)
	LLRE: Loaded kernel modules
	LLRE: Who is listening?
	What the “lsof –nP” command shows (1)
	What the “lsof –nP” command shows (2)
	LLRE: Running processes
	What the “ps aux” command shows (1)
	What the “ps aux” command shows (2)
	LLRE: Currently logged on users
	LLRE: Mounted file systems
	LLRE: Cached DNS addresses
	LLRE: System load
	LLRE: Scheduled jobs
	LLRE: Current firewall configuration
	LLRE: Current firewall counters
	LLRE: Recovering deleted files still in use
	LLRE: Example of recovering files still in use (1)
	LLRE: Example of recovering files still in use (2)
	Summary
	Slide Number 40
	Appendix: Programs used
	Literature

