

Mag. iur. Dr. techn. Michael Sonntag

Introduction to Computer forensics

Computer forensics

Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria

E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

© Michael Sonntag 2009

Agenda

- What is computer forensics?
 - \rightarrow When and where is it used?
 - \rightarrow Who may use such techniques?
- Computer forensics vs. encryption
- Computer forensics vs. steganography
- Securing evidence
 - → Running systems
 - → "Inert" systems
- What information can be obtained in which circumstances?
- Legal aspects:
 - → Classifying information to look for according to crimes
 - Admissibility of evidence

What is "Computer Forensics"?

One indispensable issue is "data integrity"
 Data is easily changeable:
 Evidence is then and only then usable in proceedings, if it is ensured, that it has not been changed!

What is "Computer Forensics"?

•Other definitions:

→ Analytical techniques to identify, collect, preserve, and examine evidence/information which is magnetically stored or encoded

- » Problem: "magnetically" → Flash disks, running systems?
- »Better: "in computerized systems and their parts"
- → We define computer forensics as the discipline that combines elements of law and computer science to collect and analyze data from computer systems, networks, wireless communications, and storage devices in a way that is admissible as evidence in a court of law.

» Focus on legal proceedings; there are many other uses as well!

- Note that this is the "highest" form: If evidence is sufficient for criminal proceedings, it can be used for everything else as well!
- → A technological, systematic inspection of the computer system and its contents for evidence or supportive evidence of a crime or other computer use that is being inspected.

Michael Sonntag

What is "Computer Forensics"?

●Three main elements:
 → Has something happened at all?
 » Random effect, bugs, …

- \rightarrow What has happened and what are the effects?
 - » What are the results from the intrusion/...and what is their direct and indirect "cost"?

 \rightarrow Who was responsible for it and how did he do it?

- » Can we identify an IP address or a person?
- » How did the intruder enter \rightarrow So we can block this?

The basic principles of CF

- No action to secure/collect evidence should affect its integrity
 - → It becomes much less worth/completely worthless!
- Examiners should be trained
 - → Only investigate as far as your knowledge goes
- All activities should be logged
 - → Seizure, examination, storage, and transfer
 - » Complete chain of custody (including its security measures)
 - Documented, preserved, and available for review » Proof for the chain of custody
- Investigations must be accurate and impartial
 - → Computer forensic ≠ prosecutor/attorney/judge
 - » Describe what was actually found
 - And what should have been found, but was missing!
 - » Describe how reliable these facts are
 - » Describe what conclusions can reasonably be drawn from it Computer forensics: Introduction to Computer Forensics

Michael Sonntag

When to use CF?

- To provide digital evidence of specific activity
 - → In general, proving non-activity might also be the goal, but this is more difficult and only sometimes possible!
- For legal proceedings
 - → Criminal cases: Child pornography, computer fraud, ...
 - Civil cases: Hacking, information theft, industry espionage, …
- Recovering data
 - → (In)advertently deleted information
- Identifying weaknesses
 - → After a break in, identify the method employed to prevent it in the future
- Identifying the attack/attacker
 - → Verify, whether an incident actually happened and who was responsible for it

When to use CF? Concrete examples

• Misuse of ICT by employees

- → Unauthorized disclosure of data
- → Internet (WWW, E-Mail, ...) abuse
- → Deleted/damaged information
- Exploiting ICT
 - → Industrial espionage
 - → Hacking of systems
 - \rightarrow Infiltration (zombie, trojans, viruses, ...)
- Damaging ICT
 - → Web page defacements
 - → Denial of Service attacks
 - Crashing computers
- Use of ICT
 - → Storing data on various (planned) crimes Computer forensics: Interpreter forensics: Interpreter forensics: Interpreter

Michael Sonntag

Computer forensics: Introduction to Computer Forensics

8

Who should/may use CF?

- Authorization required for accessing data
 - → See privacy laws!
- Live monitoring, hacking, password cracking etc. tools are legally very "dangerous"!
 - → Possession alone might be criminal
 - Sood explanation and evidence for its necessity is required!
- Personnel to "do" CF:
 - → System administrators in their own area
 - → Experts for courts or private investigations
 - → Everyone on their own system
 - »Note: A second person (→ e.g. husband/wife) uses the system means, that consent by this person is indispensable!

Where to find evidence

- Disks: Hard disks, USB-Disks, floppy disks, tapes, ...
 - → The typical "storage medium"
 - \rightarrow Note: These can be very small and very easily hidden
 - » They might also pose as "normal" objects
 - Example: USB-Stick in pocket knife!
- Devices: Mobile phones, PDAs, MP3 players, USB sticks, game consoles, ...
 - → Directly or in disks contained therein
 - Not a storage medium, but usually may contain arbitrary data
 » In addition to the "normal" data like music, contacts etc.!
- Recorders: Cameras, audio recorders, GPS trackers, …
 - \rightarrow Similar to devices: Own data + any other stored data
- Digital copiers/printers
 - Might add a serial number to each copied/printed sheet!
 - → May contain old scanned pages

The sequence of actions in CF

- Secure and isolate
 - → Remove all other personnel
 - → Keep reliable witness (police, other third persons) » To protect against "The investigator added this data!"
- Record the scene
 - → Photograph, write down
 - Search Strandberg Strandberg
 - » How are the systems connected (WLAN!)?
 - » What is the current state (running; screen content; ...)
 - → In many cases there is quite a mess + lots of cmputers/devices/...
 - » You won't remember exactly where the disk was and whether it was powered
 - Example: Disk behind desk? Fell down or deliberately hidden?
 - Example: Computer running \rightarrow Might act as a server

- Conduct a systematic search for evidence
 - → Especially: Notes with passwords, hints for online services used, storage mediums (USB sticks, flash cards etc.) » More "conventional" search, but important
 - »E.g. steganography impossible without programs \rightarrow Disks, ...
 - → Printouts in waste paper basket, …
 - → Empty storage media ("commercial distribution"?)
- Collect and package evidence
 - → Keep it safe (no loss/destruction) and secure (no changes)
 - » Secure wrapping; external influences
 - » Especially: Magnetic media and magnet fields
 - Modern harddisks are resilient, but not all media are as safe (e.g. magnetic stripe cards)!
 - » Flash cards, USB sticks, etc.: Static electricity
 - \rightarrow Ideally: Make copies there and package & take both!

The sequence of actions in CF

- Maintain chain of custody
 - → Keep log on who has access and restrict this access
- Inspect and evaluate data
 - \rightarrow The main aspect we are going to cover here!
 - → Perhaps triage: Immediate brief investigation
 » What to impound, already some illegal material found → arrest
 - → Detailed investigation in lab (from copy of media!)
 - → Create report:
 - » What was done, what was found, what was not found, what should have been found, how searched, confidence in results, ...
- Present the results
 - → In a report
 - → Potentially also before the court
 - » Oral (cross-) examination probably
- Potentially answer questions/respond to counter-expertises

Chain of Custody

Guaranteeing identity and integrity of the evidence

• Requirements:

- Making sure, the piece of evidence introduced is the same as was taken from the suspect/scene of crime/.... » Serial numbers → All harddisks/USB/... look exactly the same! • Making sure there was no tampering with it » Witnesses of actions, trust in the person • Making sure of the transition to the next custodian » Who got it next, i.e. when was a chance for tampering - Lying around somewhere? Handed to a untrusted person? ... \rightarrow Repetition of **2** and **3** until the presentation in court Note: Digital evidence has a very nice property here: Hash values can nicely prove the "no tampering"! \rightarrow Acquire as early and trustworthy as possible
 - \rightarrow Store it "securely", e.g. on paper with signature of third person

The main problems of CF

- Anything done to a system changes it
 - \rightarrow Especially problematic for running systems
 - \rightarrow Usually not a problem for hard disks
 - » Reading data may change the content microscopically ...
- You can never trust the system under investigation

 \rightarrow It may be hacked, modified by the owner etc.

- Proving you did not change anything is difficult
 - You must be "above suspicion" and take precautions
- The past can never be known
 - \rightarrow We can only find hints what might have possibly been » The content could have been manufactured by someone! » This can be pretty good evidence, but no absolute proof
- Not everyone knows everything
- \rightarrow Every forensic examination is limited through the examiner! **Michael Sonntag** Computer forensics: Introduction to Computer Forensics

15

An increasing problem of CF: **Networking & Security**

- Today much data is not stored on "the" computer anymore
 - \rightarrow FTP server, bulletin boards, "online harddisks"
 - » Example: RapidShare and similar services
 - → Webmail accounts
 - \rightarrow Remote harddisks
 - \rightarrow VPN networks to other systems

Obtaining a copy of one system is often not enough today!

- \rightarrow Find traces of the existence of remote information
- Find traces of the remote information itself

» Caches, paging file, file slack, ...

- \rightarrow Try to access this remote information
 - » By seizure, copying, access over the network, ...
- Encrypted disks are difficult

Obtain keys from memory of running system if possible

See also TPM (Trusted Platform Module) Computer forensics: Introduction to Computer Forensics

Michael Sonntag

The order of volatility

- Registers, caches
- Memory
- Network state (routing configuration, estab. connections)
- Running processes
- Media in use: Disks in use
- Backup media: Disks not in use, tapes
- WOM: CD-ROMs, DVDs
- Analogue material: Paper, fingerprints, DNA, …

Evidence should be secured/collected in this order !

Power management (e.g. sleep) can be a great help here
 Used also normally, so the likelihood of delete-scripts is low)!
 Michael Sonntag

Computer forensics vs. encryption

- CF does work, but doesn't bring usable results if the data dis-/recovered is encrypted
 - \rightarrow Depends strongly on the kind of encryption!
- For some programs, decryption software is readily available
 - → Especially the integrated encryption of MS Office and Zip!
 - → Sometimes based on weaknesses or short keys
 - » But otherwise just brute force attacks: High computing power, special software, and long time may be necessary!
- If really good encryption is used, there is almost no chance of decryption without the key (or brute force)
 - → One of the reason for the hidden searches: Get at the data before/after it has been en-/decrypted!
 - → But: Very often passwords are known words (→ lists!), are written down somewhere, stored somewhere, …

» Important to search the environment for any clues!

Data hiding methods

• Numerous approaches to hide data exist :

- → Through the operating system » Mark as "hidden", "system", ...; use ADS
- → File extension modification: "order.txt" → "cmd.com"
- \rightarrow RAM slack: End of file \rightarrow End of sector
- \rightarrow File slack: End of file \rightarrow end of cluster
- \rightarrow Partition slack: End of partition \rightarrow end of track
- \rightarrow Disk slack: End of last partition \rightarrow end of disk
- → Unallocated/bad sectors
- \rightarrow Delete file / partition; format disk
- → Steganography
- Attention: Several methods are "unstable", i.e. further actions might destroy the data → Using such methods is complex!
- Many approaches require special programs (Hints!)

Introduction to Steganography

- Steganography: Hiding messages
 - \rightarrow The intention is, that there is no sign, that data exists at all
- Typical "recipients": graphics, HTML, text, executables
 - → Usual problem: Only a small part of the content data can be used for hiding information → Large "cover" for little "content"!

• Usage areas:

- → Where encryption is illegal
- When the fact of communication itself should be hidden
- Combining encryption and steganography
 - → Makes detection through statistics much harder!
- Relation to computer forensics:
 - → Hiding data in "inaccessible" places is steganography too
 - \rightarrow Examples: Various slack spaces, alternate data streams

» Rather easy to uncover, if presence is known!

Computer forensics: Introduction to Computer Forensics 20

Problems of Steganography

- Not very resilient:
 - → Data hidden in images is easily destroyed through recoding
 - → Text can be reformatted
- Not all base data is suitable:
 - → Many files are exactly "known": E.g. OS files cannot be used to hide data within them
 - » See also the problems caused by signed code!
- Complicated to use: Additional tools necessary
 - → These can be found on the computer, disks, USB sticks, … » But need not necessarily be installed!
- Large pieces of seemingly important base material needed
 → This is not always available, or is a hint to hidden data
- Requires a high level of knowledge to be "good"

→ Free tools are available, but these are often easily detected! Michael Sonntag

CF vs. Steganography

• In practice, Steganography seems to be rather rare

- There are much easier methods for hidden communication!
 » E.g. the personal ad columns with certain pre-defined texts
 » If the text to hide is very long (or multiple pictures, videos),
 Steganography is still problematic
- Still, looking for hints that it has been applied should be part of every investigation
 - Are there any traces of Steganography programs?
 - \rightarrow Is there suspicious data?
- Brute force attacks, e.g. using steganalysis programs on all images on a computer, are probably less useful
 - → Takes very long and it's not very probable to find anything » Mostly, the programs only "support" specific tools!

- Evidence must be secured in a "trustworthy" way
 - → Nobody should later be able to question the authenticity
- Evidence should be collected as fast as possible, but without destroying anything
 - → This might mean, keeping some devices powered, others without power
 - » Keep with power: mobile phones, PDAs, fax machines, ...
 - » Store without power: Flash disks, hard drives, computers
 - Disconnect any communication to/from the device
 - Attention: Not necessarily immediately!
 - » E.g. mobile phones: Shielding (no powering off!)
 - » Computers: Network cables, phone lines, serial lines etc.
 - Othe Check with other forensic experts: Fingerprints
 - » Obtaining traces can damage electronic media!

Securing evidence

• Secure the scene \rightarrow Preserve potential fingerprints, ensure personnel safety \rightarrow Immediately restrict access to computers » Physically; electronically comes next! \rightarrow Document current state (hardware & software) • Secure the computer as Evidence \rightarrow If the computer is "OFF", do not turn it "ON" » Disconnect all power sources; unplug from wall AND computer » Place evidence tape over each drive slot » Photograph/diagram and label back of components with existing connections » Label all connectors/cable end to allow reassembly as needed » Package components and transport/store components as "fragile" » Keep away from magnets, radio transmitters, heated seats, etc. Interview all persons/witnesses Michael Sonntag Source: US Secret Service

Computer forensics: Introduction to Computer Forensics 24

Securing evidence: Online computers (1)

→ If the computer is "ON"

- » Stand-alone computer (non-networked)
 - Consult computer specialist
 - If specialist is not available
 - » Photograph screen
 - » Disconnect all power sources; unplug from wall AND computer
 - » Continue as with offline computer!
- » Networked or business computers / Routers
 - Consult a Computer Specialist for further assistance, because pulling the plug could:
 - » Severely damage the system
 - » Disrupt legitimate business
 - » Create officer and department liability

Please note: Typical procedure for non-experts → Experts will (try to) acquire the runtime-state first!

Michael Sonntag

Securing evidence: Online computers (2)

Better: Obtain as much information from the running system as possible; only then "shutdown" the system \rightarrow General rule: Do not alter the state (On \rightarrow On, Off \rightarrow Off)! • Obtain a copy of the complete state \rightarrow Copy of the complete memory » With as little changes as possible! - Some additional software MUST be started for transfer! \rightarrow Output of various "state" commands, e.g. running processes, open network connections, open files/shares, ... Remove power cable from computer » In general, some files might be destroyed, so the computer might not boot anymore. But much less data is lost/changed in this way than when shutting it down! - "Delete paging file on shutdown", "Clear privacy data when I close Firefox", ... \rightarrow Not from wall socket: There might be a UPS somewhere! → Laptops: Remove accumulator (both if present) as well Michael Sonntag Computer forensics: Introduction to Computer Forensics 26

Pulling the plug

Note: Other recommendations are bit more sophisticated

→ Servers: Shutdown

» Much data can be destroyed when a file/database/E-Mail server is "killed", which can be a problem for companies

- Data is lost, computer must be reinstalled/backups restored, ...

- » Little danger of deletion/modification scripts
 - These might be shut down at any point in time by someone else (e.g. by UPS in case of power failure!)
- →Workstations: Pull plug
 - » Little damage to be done by killing
 - » Usually full control by a single person \rightarrow Traps much likelier
 - » Restore much quicker and easier
 - » Affects only a single private person, not a huge company!
- → Appliances: Pull plug

» They typically are built to survive this without any damage

» The runtime data must be copied before, of course!

The Heisenberg principle - Analogon

- It is impossible to completely capture an entire running system at any point in time
 - → Every kind of "copying the state" will change the state itself!
- The goal to reach:
 - \rightarrow With as little changes as possible
 - → Without distortion (like installing additional software)
 - → Without bias (like adding hardware/software)
 - » With additional hardware, the data state alone **can** be captured completely and without its modification!

Decisions are necessary, what to do (and with that tools!)

- → Generally, try to obtain as much information as possible without changing too much
- → Examples: Display the running processes and photograph the output on the screen
 - » Even better: Use your own (statically linked) program from a CD

Interviewing personnel/witnesses

29

- Very important: Encryption, Steganography!
- Information to obtain:
 - → Owner
 - → User names, passwords
 - »PW: Account, BIOS, E-Mail, configuration, network, ISP, applications, token codes, …
 - → Procedures for access (log in method)
 - → E-Mail addresses, online services/applications used, ISP
 - Purpose of the system, persons using it
 - Security schemes (self-destruct systems; e.g. delete scripts)
 - → Offsite data: Backups, online replications, …
 - → Documentation of the system: Version numbers
- Note also when information is not provided!

» Or what turns out to be incorrect

→ Won't help the investigation, but may be important in court Michael Sonntag

Guiding the search for information

• The aim of the search is most important

- → Is it a search for "something illegal", a specific crime, or whether the image "xyz.jpg" is present on the computer?
- → Uncovering all information that is recoverable is possible, but also a lot of work (and therefore extremely expensive!)!
- Assessing the proficiency of the suspect
 - → What "hiding" can reasonable be expected?
 - » If unknown, always assume the worst, i.e. expert techniques!
- When to stop:
 - → If something matching has been found or must all/the most of such data be recovered?
 - Monetary considerations (expenses)

- Electronic intrusion
 - → Configuration files
 - → Executable programs and source code/scripts
 - → Open ports, running processes (esp. servers)
 - → Logs: Activity, connection, programs, communication, ...
 - Fraud
 - → Address books, calendars: Physical, E-Mail etc.
 - → Images: Cheques, currency, Western Union, signatures, products, …
 - → Credit card data, esp. CVC
 - → Office documents: Letters, spreadsheets, databases
 - → Banking/accounting software: Dedicated and online
 - → Internet activity: Logs, caches, cookies, …
 - → Account information: eBay, banks, …
 - Communication history: E-Mails, chat logs

- Undesirable communication (threats, spam, mobbing)
 - → Address information: E-Mail, telephone, ...
 - → Documents: Background information, diaries, legal etc.
 - → Communication: Letters, E-Mails, SMS, chat logs, …
 - → Internet activity: Cache, logs, cookies
 - → Accounts: Online communication facilities
 - → Images: Person, products, fakes
 - → Software: Mass mailers, text/image/PDF generators
 - → Financial information: Accounts, banking

- Violence: Child abuse/pornography, domestic v., death
 - → Images, especially hidden ones, and videos
 - → Date and time stamps
 - → Internet activity: Cache, logs, cookies, access time, searches
 - → Software: Communication, photo, P2P
 - Address information and communication: E-Mails, chats, tel.
 - Documents: Legal, medical

Identity theft

- → Personal information: Name, address, credit card, ...
- → Communication: Especially copies of other person's, obtaining/buying information online
- → Software: Generators (names, credit card numbers), imaging (scanner, photo modification)
- → Images: Certificates, forms, signatures
- → Documents: Forms, letters, orders, …
- → Electronic signatures
- \rightarrow Internet activity: Cache, logs, searches

Copyright

- → Software: P2P, CD/DVD-burning, encryption, recoding, key generators, cracks
- → Documents: Serial numbers, authorization information
- → Internet activity: Cache, logs, searches, cookies
- → Images: Covers, license forms
- → Communication information: E-Mail, chat
- \rightarrow Accounts: Web-Sites, FTP, shops
- → Date and time stamps

Admissibility of evidence

- Digital information is no evidence as such alone
 - → Illegal image on disk? How did it come to be there? Unknown!
 - » Was it the accused, someone else with his account, the police, a hacker who broke in over the network, ... ?
 - » Additional information can help if present
 - Physical access to computer, logon-history, encryption etc.
- One very important aspect is the person collecting and interpreting the evidence
 - If this person is trusted, then no later modifications took place
 - → When a conclusion is stated as a fact, the person will not be very useful, as judges will not believe them
 - »Fact = Observable
 - Example: Car braking took x meters (measured on asphalt)
 - »Conclusion = Fact + interpretation/general rules
 - Example: Start speed was y km/h because of known friction of tires, weight of car, laws of physics, …

Admissibility of evidence

Continental law:

- → Generally all evidence is admissible, regardless how obtained
 - » But what evidence is worth depends on
 - How it was collected and stored
 - By whom it was collected
 - Who analyzed it
 - How it was analyzed
 - Whether the conclusions are supported by facts
 - Whether the conclusions are "state of the art"
- \rightarrow Typically the judge (or a jury) decides

Common law:

- \rightarrow Facts might also be fixed by parties!
 - » If agreed upon, judge/jury cannot discuss it any more
- \rightarrow Esp. USA: "fruit of the poisonous tree" doctrine
 - » Evidence obtained unlawfully may not be used

Admissibility of evidence

• Note: There is no "court-approved forensic SW"!

- → Neither in the USA nor the EU/Austria there is a certification for what things might be used for investigation
- But: Investigation must be done according to state of the art!
 - → Using the "usual" SW is typically state of the art
 - → But other software might also be used, but could require additional explanation in court

» Typically the case in the USA!

- Europe: Person of investigator is often more important
 - » Officially certified court expert, reputation etc.!
 - » Method is only important if another expert criticizes it
 - Or the court knows/suspects from other cases that it might be suspect/wrong/incorrectly applied, …

Documenting actions

All actions during an investigation must be documented

→ This starts with acquiring the evidence!

» Writing down and photographing when/how the computer was found, which state it was in, etc.

- Running systems: Every single command entered must be documented with the time and the complete results
 - → Ideally the log and the result should be stored as a file with a checksum to verify its integrity

• Offline systems:

- → The state must be exactly documented, e.g. checksums over the whole disk
- → Every step of the examination should be documented like in a running system

Generally: Document also tools (make, version, ...) used!

Final report: General information

- Identity of the examiner
- Identification of the case, e.g. case numbers
 - → Who commissioned the report?
- Subject of examination
 - → List of and serial numbers of disks/components/...
 - → Source of the equipment
 - » Personally taken from suspect, received from police/court etc.
- Procedural history
 - → When was what piece of evidence received, examined, passed on, reported upon, …
 - » Chain of custody!
 - Description of examination: Who did what when in which way » Which techniques were used; state of the art?

Final report: General information

- Results and conclusions
 - → Facts (see next slide): What was found
 - → Conclusions: What can be derived from that?
 - » This must conform to a very high degree and state assumptions!
 - Example: Time of computer matches "real" time, file access date is 12.12.06 (facts) → File was accessed at that time
 - » Note: Changing the clock, who used the computer, network connections, ...?
 - » Includes a reliability assessment:
 - Not necessarily with a percentage, but should have it if possible!
 - "Might perhaps be", e.g. 10%
 - "Almost assuredly", e.g. 99,999%
 - → What was not investigated?
 - » But might be interesting
 - » Reason for this "omission"
 - » What therefore cannot be deduced from the things investigated
 - » What could be in there and what could never (?) be in there

Final report: Content

- Summary of findings (non-technical language!)
- Detailed findings:
 - → Specific files matching the search
 - » And other files supporting the findings
 - → String searches, keywords searches, and text string searches
 - → Internet-evidence: Web traffic analysis, chat logs, cache files, E-Mail, newsgroup activity, ICQ/Skype/… activity
 - → Graphic image analysis
 - Ownership status of all files found
 - » Who of the users owned them/when were they created/accessed
 - \rightarrow Techniques used to hide data or limit access to it
 - » Steganography, encryption, hidden attributes/partitions/streams
 » Incorrect file names (e.g. JPEG files with ".bin" extension)
- Annex: Printouts, digital copies, documentation

Conclusions

- Obtaining some information from hard disks is easy
 - → Ensuring it is complete **and** usable in courts is difficult!
 - → There is only a single chance ...
- A wide variety of hardware exists, which must be treated differently and contains various information
 - Specialization is needed for in-depth investigation
- The huge amount of data on modern computers is a problem
 - Try to reduce the scope of investigation » Lists of "known good" files
 - → Automate examination
 - » Keyword searches, deleted file recreation etc.
- Expensive software needed
 - \rightarrow Some investigation also possible with cheaper tools
 - Open source software available partly

Michael Sonntag

Questions?

Thank you for your attention!

Literature

- NIJ Report: Forensic Examination of Digital Evidence: A Guide for Law Enforcement. http://www.ojp.usdoj/nij
- NIJ Report: Electronic Crime Scene Investigation: A Guide for First Responders. http://www.ojp.usdoj/nij
- dns: An introduction to: Computer Forensics http://www.dns.co.uk/NR/rdonlyres/5ED1542B-6AB5-4CCE-838D-D5F3A4494F46/0/ComputerForensics.pdf