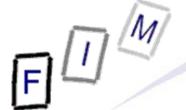


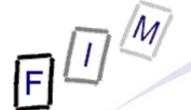
Introduction


Computer forensics

Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria

E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

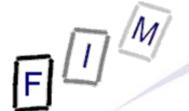
- What is computer forensics?
 - → When and where is it used?
 - → Who may use such techniques?
- Computer forensics vs. encryption
- Computer forensics vs. steganography
- Securing evidence
 - → Running systems
 - → "Inert" systems
- What information can be obtained in which circumstances?
- Legal aspects:
 - → Classifying information to look for according to crimes
 - → Admissibility of evidence



What is "Computer Forensics"?

- Computer Forensics (CF) is obtaining digital evidence
 - » Analog evidence is usually not considered here: Use "ordinary" forensics to gather/evaluate
 - Analog computers are almost non-existing today!
 - This may come from running systems or parts of them
 Hard disks flash drives, PDAs, mobile phones, telephones etc.
 - → Can be evidence for computer crimes (computer fraud, hacking, ...) or any other crime (documents with plans for x) or for various other uses
- One indispensable issue is "data integrity"

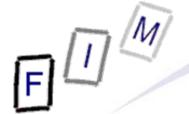
Data is easily changeable:


Evidence is **then and only then** usable in proceedings, if it is **ensured**, that it **has not been changed**!

What is "Computer Forensics"?

Other definitions:

- → Analytical techniques to identify, collect, preserve, and examine evidence/information which is magnetically stored or encoded
 - » Problem: "magnetically" → Flash disks, running systems?
 - » Better: "in computerized systems and their parts"
- → We define computer forensics as the discipline that combines elements of law and computer science to collect and analyze data from computer systems, networks, wireless communications, and storage devices in a way that is admissible as evidence in a court of law.
 - » Focus on legal proceedings; there are many other uses as well!
 - Note that this is the "highest" form: If evidence is sufficient for criminal proceedings, it can be used for everything else as well!
- → A technological, systematic inspection of the computer system and its contents for evidence or supportive evidence of a crime or other computer use that is being inspected.



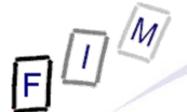
The basic principles of CF

- No action to secure/collect evidence should affect its integrity
 - → It becomes much less worth/completely worthless!
- Examiners should be trained
 - → Only investigate as far as your knowledge goes
- All activities should be logged
 - → Seizure, examination, storage, and transfer
 - » Complete chain of custody (including its security measures)
 - → Documented, preserved, and available for review
 - » Proof for the chain of custody
- Investigations must be accurate and impartial
 - → Computer forensic ≠ prosecutor/attorney/judge
 - » Describe what was actually found
 - » Describe how reliable these facts are
 - » Describe what conclusions can reasonably be drawn from it

Michael Sonntag Computer forensics: Introduction

- To provide digital evidence of specific activity
 - → In general, proving non-activity might also be the goal, but this is more difficult and only sometimes possible!
- For legal proceedings
 - → Criminal cases: Child pornography, computer fraud, ...
 - → Civil cases: Hacking, information theft, industry espionage, ...
- Recovering data
 - → (In)advertently deleted information
- Identifying weaknesses
 - → After a break in, identify the method employed to prevent it in the future
- Identifying the attack/attacker
 - Verify, whether an incident actually happened and who was responsible for it

Michael Sonntag


When to use CF? Concrete examples

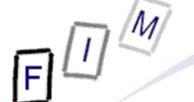
- Misuse of ICT by employees
 - → Unauthorized disclosure of data
 - → Internet (WWW, E-Mail, ...) abuse
 - → Deleted/damaged information
- Exploiting ICT
 - → Industrial espionage
 - → Hacking of systems
 - → Infiltration (zombie, trojans, viruses, ...)
- Damaging ICT
 - → Web page defacements
 - → Denial of Service attacks
 - → Crashing computers
- Use of ICT
 - Storing data on various (planned) crimes

Who should/may use CF?

- Authorization required for accessing data
 - → See privacy laws!
- Live monitoring tools are legally "dangerous"!
 - → Possession alone might be criminal
- Personnel to "do" CF:
 - → System administrators in their own area
 - → Experts for courts or private investigations
 - Everyone on their own system
 - » Note: A second person (→ e.g. husband/wife) uses the system means, that consent by this person is indispensable!

The sequence of actions in CF

- Secure and isolate
 - → Remove all other personnel
- Record the scene
 - → Photograph, write down
- Conduct a systematic search for evidence
 - → Especially: Notes with passwords, hints for online services used, storage mediums (USB sticks, flash cards etc.)
- Collect and package evidence
 - → Keep it safe (no loss/destruction) and secure (no changes)
- Maintain chain of custody
 - → Keep log on who has access and restrict this access
- Inspect and evaluate data
 - The main aspect we are going to cover here!
- Present the results


The main problems of CF

- Anything done to a system changes it
 - → Especially problematic for running systems
 - → Usually not a problem for hard disks
 - » Reading data may change the content microscopically ...
- You can never trust the system under investigation
 - → It may be hacked, modified by the owner etc.
- Proving you did not change anything is difficult
 - You must be "above suspicion" and take precautions
- The past can never be known
 - → We can only find hints what might have possibly been
 - » The content could have been manufactured by someone!
 - » This can be pretty good evidence, but no absolute proof
- Not everyone knows everything
 - → Every forensic examination is limited through the examiner!

An increasing problem of CF: Networking & Security

- Today much data is not stored on "the" computer anymore
 - → FTP server, bulletin boards, "online harddisks"
 - » Example: RapidShare and similar services
 - → Webmail accounts
 - → Remote harddisks
 - → VPN networks to other systems
- Obtaining a copy of one system is often not enough today!
 - → Find traces of the existence of remote information
 - → Find traces of the remote information itself
 - » Caches, paging file, file slack, ...
 - → Try to access this remote information
 - » By seizure, copying, access over the network, ...
- Encrypted disks are difficult
 - Obtain keys from memory of running system if possible
 - See also TPM (Trusted Platform Module)

The order of volatility

- Registers, caches
- Memory
- Network state (routing configuration, estab. connections)
- Running processes
- Media in use: Disks in use
- Backup media: Disks not in use, tapes
- WOM: CD-ROMs, DVDs
- Analogue material: Paper, fingerprints, DNA, ...

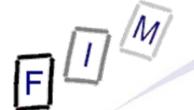
In this order evidence should be secured/collected!

- Power management (e.g. sleep) can be a great help here
 - → Used also normally, so the likelihood of delete-scripts is low)!

Computer forensics vs. encryption

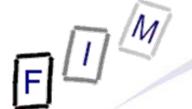
13

- CF does work, but doesn't bring usable results if the data dis-/recovered is encrypted
 - → Depends strongly on the kind of encryption!
- For some programs, decryption software is readily available
 - → Especially the integrated encryption of MS Office and Zip!
 - → Sometimes based on weaknesses or short keys
 - » But otherwise just brute force attacks: High computing power, special software, and long time may be necessary!
- If really good encryption is used, there is almost no chance of decryption without the key (or brute force)
 - → One of the reason for the hidden searches: Get at the data before/after it has been en-/decrypted!
 - → But: Very often passwords are know words (→ lists!), are written down somewhere, stored somewhere, ...
 - » Important to search the environment for any clues!

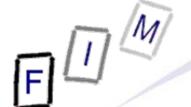

Michael Sonntag Computer forensics: Introduction

Data hiding methods

- Numerous approaches to hide data exist :
 - → Through the operating system» Mark as "hidden", "system", ...; use ADS
 - → File extension modification: "order.txt" → "cmd.com"
 - → RAM slack: End of file → End of sector
 - → File slack: End of file → end of cluster
 - → Partition slack: End of partition → end of track
 - → Unallocated/bad sectors
 - → Delete file
 - → Delete partition
 - → Format disk
 - → Steganography
- Attention: Several methods are "unstable", i.e. further actions might destroy the data -> Using such methods is complex!
- Many approaches require special programs (Hints!)


Michael Sonntag

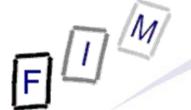
Introduction to Steganography


- Steganography: Hiding messages
 - → The intention is, that there is no sign, that data exists at all
- Typical "recipients": graphics, HTML, text, executables
 - → Usual problem: Only a small part of the content data can be used for hiding information → Large "cover" for little "content"!
- Usage areas:
 - → Where encryption is illegal
 - → When the fact of communication itself should be hidden.
- Combining encryption and steganography
 - → Makes detection through statistics much harder!
- Relation to computer forensics:
 - → Hiding data in "inaccessible" places is steganography too
 - → Examples: Various slack spaces, alternate data streams

» Rather easy to uncover, if presence is known!

Problems of Steganography

- Not very resilient:
 - → Data hidden in images is easily destroyed through recoding
 - → Text can be reformatted
- Not all base data is suitable:
 - → Many files are exactly "known": E.g. OS files cannot be used to hide data within them
 - » See also the problems caused by signed code!
- Complicated to use: Additional tools necessary
 - → These can be found on the computer, disks, USB sticks, ...
 » But need not necessarily be installed!
- Large pieces of seemingly important base material needed
 - → This is not always available, or is a hint to hidden data
- Requires a high level of knowledge to be "good"
 - → Free tools are available, but these are often easily detected!


CF vs. Steganography

- In practice, Steganography seems to be rather rare
 - → There are much easier methods for hidden communication!
 - » E.g. the personal ad columns with certain pre-defined texts
 - » If the text to hide is very long (or multiple pictures), Steganography is still problematic
- Still, looking for hints that it has been applied should be part of every investigation
 - → Are there any traces of Steganography programs?
 - → Is there suspicious data?
- Brute force attacks, e.g. using steganalysis programs on all images on a computer, are probably less useful
 - → Takes very long, and is not probable to find anything
 - » Mostly, the programs only "support" specific tools!

Securing evidence: General considerations

- Evidence must be secured in a "trustworthy" way
 - → Nobody should later be able to question the authenticity
- Evidence should be collected as fast as possible, but without destroying anything
 - → This might mean, keeping some devices powered, others without power
 - » Keep with power: mobile phones, PDAs, fax machines, ...
 - » Store without power: Flash disks, hard drives, computers
 - → Disconnect any communication to/from the device
 - Attention: Not necessarily immediately!
 - » E.g. mobile phones: Shielding (no powering off!)
 - » Computers: Network cables, phone lines, serial lines etc.
 - → Check with other forensic experts: Fingerprints
 - » Obtaining traces can damage electronic media!

Securing evidence

- Secure the scene
 - → Preserve potential fingerprints, ensure personnel safety
 - → Immediately restrict access to computers
 - » Physically; electronically comes next!
 - → Document current state (hardware & software)
- Secure the computer as Evidence
 - → If the computer is "OFF", do not turn it "ON"
 - » Disconnect all power sources; unplug from wall AND computer
 - » Place evidence tape over each drive slot
 - » Photograph/diagram and label back of components with existing connections
 - » Label all connectors/cable end to allow reassembly as needed
 - » Package components and transport/store components as "fragile"
 - » Keep away from magnets, radio transmitters, heated seats, etc.
- Interview all persons/witnesses

19

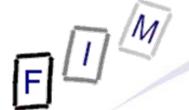
Securing evidence: Online computers (1)

- → If the computer is "ON"
 - » Stand-alone computer (non-networked)
 - Consult computer specialist
 - If specialist is not available
 - » Photograph screen
 - » Disconnect all power sources; unplug from wall AND computer
 - » Continue as with offline computer!
 - » Networked or business computers / Routers
 - Consult a Computer Specialist for further assistance, because pulling the plug could:
 - » Severely damage the system
 - » Disrupt legitimate business
 - » Create officer and department liability
- Please note: Typical procedure for non-experts

Source: US Secret Service

→ Experts will try to acquire the runtime-state first!

Michael Sonntag


Computer forensics: Introduction

Securing evidence: Online computers (2)

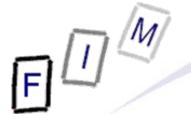
21

- Better: Obtain as much information from the running system as possible; only then "shutdown" the system
 - \rightarrow General rule: Do not alter the state (On \rightarrow On, Off \rightarrow Off)!
- Obtain a copy of the complete state
 - → Copy of the complete memory
 - » With as little changes as possible!
 - Some additional software MUST be started for transfer!
 - → Output of various "state" commands, e.g. running processes, open network connections, open files/shares, ...
- Remove power cable from computer
 - » In general, some files might be destroyed, so the computer might not boot anymore. But much less data is lost/changed in this way than when shutting it down!
 - "Delete paging file on shutdown", "Clear privacy data when I close Firefox", ...
 - → Not from wall socket: There might be a UPS somewhere!
 - → Laptops: Remove accumulator (both if present) as well

Michael Sonntag Computer forensics: Introduction

The Heisenberg principle - Analogon

- It is impossible to completely capture an entire running system at any point in time
 - → Every kind of "copying the state" will change the state itself!
- The goal to reach:
 - → With as little changes as possible
 - → Without distortion (like installing additional software)
 - → Without bias (like adding hardware/software)
- Decisions are necessary, what to do (and with that tools!)
 - → Generally, try to obtain as much information as possible without changing too much
 - → Examples: Display the running processes and photograph the output on the screen
 - » Even better: Use your own (statically linked) program from a CD



Interviewing personnel/witnesses

23

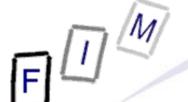
- Very important: Encryption, Steganography!
- Information to obtain:
 - → Owner
 - → User names, passwords
 - » PW: Account, BIOS, E-Mail, configuration, network, ISP, applications, token codes, ...
 - → Procedures for access (log in method)
 - → E-Mail addresses, online services/applications used, ISP
 - Purpose of the system, persons using it
 - → Security schemes (self-destruct systems; e.g. delete scripts)
 - → Offsite data: Backups, online replications, ...
 - → Documentation of the system: Version numbers
- Note also when information is not provided!
 - → Won't help the investigation, but can be important in court

Michael Sonntag Computer forensics: Introduction

Guiding the search for information

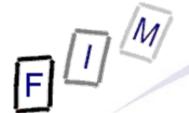
- The aim of the search is most important
 - → Is it a search for "something illegal", a specific crime, or whether the image "xyz.jpg" is present on the computer?
 - → Uncovering all information that is recoverable is possible, but also a lot of work (and therefore expensive!)!
- Assessing the proficiency of the suspect
 - → What "hiding" can reasonable be expected?
 » If unknown, always assume the worst, i.e. expert techniques!
- When to stop:
 - → If something matching has been found or must all/the most of such data be recovered?
 - → Monetary considerations (expenses)

M


Information according to crimes

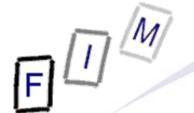
Electronic intrusion

- → Configuration files
- → Executable programs and source code/scripts
- → Open ports, running processes (esp. servers)
- → Logs: Activity, connection, programs, communication, ...


Fraud

- → Address books, calendars: Physical, E-Mail etc.
- → Images: Cheques, currency, Western Union, signatures, products, ...
- → Credit card data, esp. CVC
- → Office documents: Letters, spreadsheets, databases
- → Banking/accounting software: Dedicated and online
- → Internet activity: Logs, caches, cookies, ...
- → Account information: eBay, banks, ...
- → Communication history: E-Mails, chat logs

Information according to crimes


- Undesirable communication (threats, spam, mobbing)
 - → Address information: E-Mail, telephone, ...
 - → Documents: Background information, diaries, legal etc.
 - → Communication: Letters, E-Mails, SMS, chat logs, ...
 - → Internet activity: Cache, logs, cookies
 - Accounts: Online communication facilities
 - → Images: Person, products, fakes
 - → Software: Mass mailers, text/image/PDF generators
 - → Financial information: Accounts, banking
- Violence: Child abuse/pornography, domestic v., death
 - → Images, especially hidden ones, and videos
 - → Date and time stamps
 - → Internet activity: Cache, logs, cookies, access time, searches
 - → Software: Communication, photo, P2P
 - → Address information and communication: E-Mails, chats, tel.
 - → Documents: Legal, medical

Information according to crimes

Identity theft

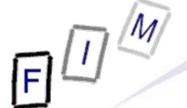
- → Personal information: Name, address, credit card, ...
- → Communication: Especially copies of other person's, obtaining/buying information online
- → Software: Generators (names, credit card numbers), imaging (scanner, photo modification)
- → Images: Certificates, forms, signatures
- → Documents: Forms, letters, orders, ...
- → Electronic signatures
- → Internet activity: Cache, logs, searches

Information according to crimes

Copyright

- → Software: P2P, CD/DVD-burning, encryption, recoding, key generators, cracks
- → Documents: Serial numbers, authorization information
- → Internet activity: Cache, logs, searches, cookies
- → Images: Covers, license forms
- → Communication information: E-Mail, chat
- → Accounts: Web-Sites, FTP, shops
- → Date and time stamps

- Digital information is no evidence as such alone
 - → There might be an illegal picture on the disk, but how it came to be there is unknown!
 - » Was it the accused, someone else with his account, the police, a hacker who broke in over the network, ...?
 - » Additional information can help if present
 - Physical access to computer, logon-history, encryption etc.
- One very important aspect is the person collecting and interpreting the evidence
 - → If this person is trusted, then no later modifications took place
 - → When a conclusion is stated as a fact, the person will not be very useful, as judges will not believe them
 - » Fact = Observable
 - Example: Car braking took x meters (measured on asphalt)
 - » Conclusion = Fact + interpretation/general rules
 - Example: Start speed was y km/h because of known friction of tires, Computer forensics: Introduction weight of car, laws of physics, ...

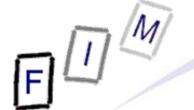


Admissibility of evidence

(2)

Continental law:

- → Generally all evidence is admissible, regardless how obtained
 - » But what evidence is worth depends on
 - How it was collected and stored
 - By whom it was collected
 - Who analyzed it
 - How it was analyzed
 - Whether the conclusions are supported by facts
 - Whether the conclusions are "state of the art"
- → Typically the judge (or a jury) decides
- Common law:
 - → Facts might also be fixed by parties!
 - » If agreed upon, judge/jury cannot discuss it any more
 - → Esp. USA: "fruit of the poisonous tree" doctrine
 - » Evidence obtained unlawfully may not be used



Documenting actions

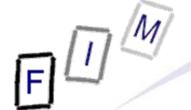
- All actions during an investigation must be documented
 - → This start already with acquiring the evidence!
 - » Writing down and photographing when/how the computer was found, which state it was in, etc.
- Running systems: Every single command entered must be documented with the time and the complete results
 - → Ideally the log and/or the result should be stored as a file with a checksum to verify its integrity
- Offline systems:
 - → The state must be exactly documented, e.g. checksums over the whole disk
 - > Every step of the examination should be documented like in a running system
- Generally: Document also the tools which were used!

Michael Sonntag Computer forensics: Introduction

31

Final report: General information

- Identity of the examiner
- Identification of the case, e.g. case numbers
- Subject of examination
 - → List of and serial numbers of disks/components/...
- Procedural history
 - When was what piece of evidence received, examined, passed on, reported upon, ...
 - Description of the examination: Who did what when
- Results and conclusions
 - → Facts (see next slide): What was found
 - → Conclusions: What can be derived from that?
 - » This must conform to a very high degree and state assumptions!
 - Example: Time of computer matches "real" time, file access date is
 12.12.06 (facts) → File was accessed at that time
 - » Note: Changing the clock, who used the computer, network connections, ...?


 Computer forensics: Introduction

Final report: Content

- Summary of findings (non-technical language!)
- Detailed findings:
 - → Specific files matching the search
 - » And other files supporting the findings
 - → String searches, keywords searches and text string searches
 - → Internet-evidence: Web traffic analysis, chat logs, cache files, E-Mail, newsgroup activity, ICQ/Skype/... activity
 - → Graphic image analysis
 - Ownership status of all files found
 - » Who of the users owned them/when were they created/accessed
 - → Techniques used to hide data or limit access to it
 - » Steganography, encryption, hidden attributes/partitions/streams
 - » Incorrect file names (e.g. JPEG files with ".bin" extension)
- Annex: Printouts, digital copies, documentation

- Obtaining some information from hard disks is easy
 - → Ensuring it is usable in courts is much more difficult!
 - → There is only a single chance ...
- A wide variety of hardware exists, which must be treated differently and contains various information
 - → Specialization is needed for in-depth investigation
- The huge amount of data on modern computers is a problem
 - Try to reduce the scope of investigation
 » Lists of "known good" files
 - → Automate examination
 - » Keyword searches, deleted file recreation etc.
- Expensive software needed
 - → Some investigation also possible with cheaper tools
 - Open source software available partly

- NIJ Report: Forensic Examination of Digital Evidence: A Guide for Law Enforcement. http://www.ojp.usdoj/nij
- NIJ Report: Electronic Crime Scene Investigation: A Guide for First Responders. http://www.ojp.usdoj/nij
- dns: An introduction to: Computer Forensics http://www.dns.co.uk/NR/rdonlyres/5ED1542B-6AB5-4CCE-838D-D5F3A4494F46/0/ComputerForensics.pdf