

Mag. iur. Dr. techn. Michael Sonntag

Filesystems

Computer forensics

Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria

E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

© Michael Sonntag 2007

- Physical disk layout
- The boot sequence
 - \rightarrow What changes on a disk during a boot?
- Filesystems in detail:
 - → FAT, FAT32
 - → NTFS
 - → EXT3

Physical structure of a harddisk

Michael Sonntag

General aspects of harddisks

- Several different sized exist
 - → Typically named according to the size of the disks, not the case » Note that these are not absolutely accurate (3,5" drive → 3,74" disk)!
- Rotating disks = "platters"
 - → Made from aluminium or compounds; perhaps even glass
 - → Coating: Ironoxide, Cobalt, …
- "Comb" with read-/write heads
- Landing Zone / Auto Parking: Resting the head on the surface when not spinning in an area where there is no data
 - → In olden times: Manual. Today fully automatic
- Impenetrable to dust, but not airtight
- Geometry"
 - → Number of platters, heads, cylinders, sectors
- Reserve tracks to enable size guarantee (every disk has phys. errors!)
- SMART = Self-Monitoring Analysis and Reporting Technology

Tracks and sectors

- Formatting the disk creates a filesystem on the media
 - → Which must be able to address individual "parts"!
- A disk is divided into (thousands) of concentric circles = tracks
- Each track is subdivided into sectors of each 512 bytes
 - → Not every track has the same number of sectors, however!
- sector = The smallest addressable unit on a disk (="parts")
 - → Because of various reasons, larger units might be created on higher levels
 » Example: Clusters, partitions, directories, files, …

Tracks and sectors

- 5,25" disk
 - \rightarrow 2 sides
 - → á 40 tracks
 - → á 9 sectors
- Space for data:
 - → 2*40*9*512
 - → 368640 Bytes » = 360 kBytes

Image: 20 tracks, 16 sectors

Source: http://www.storagereview.com/guide2000/ref/hdd/geom/tracks.html

6

ZBR Zoned Bit Recording

Zones with different number of sectors per track
 → Why not different for each track? → Because, …

Source: http://www.storagereview.com/guide2000/hdd/...

7

Cylinders

All tracks on a harddisk which are aligned

- → A harddisk may consist of several physical disks (=platters)
- → All physical disks spin at the same rate and synchronously (=common shaft)
- Accessing data on the same cylinder is possible without moving the heads!
 - → All heads are mounted on a single actuator arm → Simultaneous moves
- Example: A cylinder of a harddisk with 4 platters consists of 8 tracks

Tracks, Cylinders, and Sectors

Michael Sonntag

9

Introducing "clusters"

- Several sectors are combined to a single cluster
- Cluster = Smallest part which can be addresses individually by the operating system
- Introduced to manage large/variable-size harddisks by OS
 - → Example: FAT16 can only address 2¹⁶ units
 - > 1 unit = 1 sector → 32 MB
 - » 1 unit = 1 cluster (=4 sectors each) \rightarrow 128 MB
- What about fragmentation?
 - Internal fragmentation: Space between end of file and end of cluster
 » Increases: File slack → Forensic!!!
 - → External fragmentation: Clusters are not allocated in "sequence"
 » Reduced slightly, as less "units" are needed for a single file
- Advantages and problems of cluster size?
 - → A 1 byte file requires at least a full cluster
 - » Depends strongly on the number of small files!
- → Larger disks are possible

Disk-Partition and OS-BOOT

• BIOS

- → "Basic Input / Output System"
- → Provides also information on disks
- → Cannot be changed by a program
 - » Modern computers: Flash-programmable, but often requires setting a jumper on the motherboard to enable this!

MBR

- → Master Boot Record
- Contains partition information on the disk and a small piece of code (initial loader for the operating system)
 - » This piece of code is executed first \rightarrow Boot sector viruses!
- → Contains the partition table
 - » List of partitions; which is active, set as boot, ...
- → Located at Cylinder 0, head 0, sector 1 (harddisks, floppy disks)

The FAT file system

- Very old: Was developed by Microsoft for MS-DOS
 - → Partially patented!
 - → Little overhead
 - → Used today still for memory sticks, flash drives, etc.
 » Not used anymore for "main" OS partitions (NTFS, etx, ...)
- Big advantage: Standardized
 - → This means, available fully on various OS!
 - » NTFS can be used on Linux, but not completely
 - » Ext can be used on Windows, but not completely
- Various versions exist: FAT12, FAT16, FAT32
 - → FAT16: Typically used on most flash disks etc.!
 - → We will only discuss FAT16 here!
- Bad sectors are marked as such only within the cluster
- Simple and fast for smaller disks!

Michael Sonntag

Properties of FAT16

- Stores only short filenames: 8.3
 - → Long filenames possible through a (patented) extension
- Stores creation, modification and access date
- Attributes: Read-only, hidden, system, archive
- Maximum number of files: 65517
 - \rightarrow FAT 12 \rightarrow 2¹², FAT 16 \rightarrow 2¹⁶, FAT32 \rightarrow 2²⁸
 - → Root directory: Typically 512 files; maximum 32767 files » Fixed maximum size; created during formatting
- Maximum file size: 2 GB
- Maximum volume size: 2 GB (theoretical: 4 GB)
- Allows hierarchical directories
 - Each counts against the limit as a file

Physical layout of FAT16

- Optional: Reserved sectors

- Boot sector: A single sector containing the boot code and the partition table
 - → More reserved sectors immediately afterwards possible
- FAT1: The File Allocation Table
 - Sontains the map to the data area (which clusters used)
- FAT2: Copy of FAT1
- Root directory (fixed location!)
 - → Location and properties of files
 - » Note: Subdirectories are located in the data area!
- Data area: Where files and subdirectories are located.

The File Allocation Table (FAT16)

- Basic concept of storing/accessing a file:
 - 1. Locate file description in root directory
 - 2. Extract from description number of first cluster
 - 3. Read cluster
 - 4. Lookup this cluster number in FAT
 - 5. According to value found, go to step 3 (next cluster) or terminate (last cluster)
 - » Note: FAT-lookup can also be done in a single step for a whole file and cached until all data sectors were read!
- Each cluster is described by a number as
 - → Unused
 - → Used by a file
 - → Last cluster in a file
 - → Bad cluster

Michael Sonntag

Storing a directory in FAT16

- Like normal file, but format identical to root directory
 - → 11 bytes: Name (8.3)
 - → 1 byte: Attributes
 - → 5 bytes: Creation time and date
 - → 2 bytes: Last access date (no time!)
 - → 4 bytes: Last modification time and date
 - 2 bytes: First cluster number
 - → 4 bytes: File size in bytes
 - 3 bytes: Reserved
- Deleting files:
 - Marked as deleted within the directory ONLY
 - A Marking is done by setting first filename byte to "E5h" » The FAT is unaffected and can be used to reconstruct the
 - content as long as the sectors are not reused!
 - » The rest of the directory entry remains until reused!

FAT 16 and computer forensic

- Typically, files are not actually deleted (see above)
 - → Unless the physical area is reused, it is recoverable
 - → Fragments of FAT chains may exist even then » Partial recovery of files might be possible
- There is no "partition" slack within FAT
 - All clusters are used; there are no partitions within
- Slack typically does exists
 - \rightarrow Files are usually written only up to the end of the data
 - → File Slack:
 - » Data is retained from previous content in the remaining sectors of the cluster; these are not written to
 - → RAM slack:
 - » Data in the last sector of the file after its end will usually be random data from in-memory buffer; written to disk

The NTFS filesystem

- Internals are trade secrets of its creator Microsoft
 - → But commercial licensing is possible
- There are no predefined attributes for files
 - → Everything is stored as "Metadata", including filename, creation date, access permissions, …
 - This allows easy extension to other associated data
- Names are stored as 16 Bit/Character \rightarrow UTF-16 possible
 - **But not restricted to it, any 16-Bit values are allowed**
- Organisation is in a B-Tree
 - Allows very fast searching for huge numbers of elements
 » Drawback: Complex to implement
- Journaling is built-in
 - \rightarrow However, only for the filesystem itself, not the data
 - » The directory will be correct, but the file may be garbled!

Properties of NTFS

- Some file names are not allowed
 - Reserved for internal management; all start with "\$"
 » Examples: \$MFT, \$MFTMirr (Master File Table & its mirror)
- Maximum volume size:
 - → 2³²-1 clusters (implemented); 2⁶⁴-1 clusters (theoretical)
 - \rightarrow With 4 kB cluster size \rightarrow 16 TB
 - Note: The boot partition is typically limited to 4 GB as it is initially FAT (and converted to NTFS later)!
- Maximum file size:
 - $\Rightarrow \approx 16 \text{ TB}$ (implemented); $\approx 16 \text{ EB}$ (2⁶⁴-2¹⁰ B; theoretical)
- Compared to FAT there is no date restriction
 - → Range from 1.1.1601 28.5.60056
- Suffers from defragmentation problems
 - The defragmentation API only allows relocating 16 clusters at once and only every 16 clusters of a file computer forensics: File system

Michael Sonntag

Master File Table (MFT)

- Contains the "directory" structure and the files
 - Located at the beginning of the disk in a reserved space
 - \rightarrow If it grows too much, it is extended to the data area
- Contains file records of fixed size
 - → These are reused after deletion
 - A reserved area for system files exists
- File records:
 - Each file has at least one with the "standard" attributes
 - → More space needed? → More records allocated to file
 - → Contains e.g. information on access rights
- Updates are first logged, then performed, then marked as completed in the log → Journaling

Alternate Date Streams (ADS)

- Additional "attributes" of a file: This can be a file itself!
- Attention: In the "normal" UI these are invisible!
 - → The file shows up identically in the GUI
 - → The file shows up identically on the command line » Note: The file size stays the same!
 - The file behaves exactly as it did before
 - They show only up in the taskmanager in recent versions
 - What changes is the modification timestamp
- Alternate Data Streams cannot be disabled or limited
 - → Only "normal" access restrictions of the base file apply
 - → But copying the base file to a system without ADS will automatically strip them

ADS example

Command Prompt	
C:\temp\ADS-Example>dir Volume in drive C is Local Disk Volume Serial Number is 28A3-D19E	
Directory of C:\temp\ADS-Example	
27.07.2007 11:11 (DIR) . 27.07.2007 11:11 (DIR) . 23.08.2001 14:00 114.688 calc.exe 04.01.2007 04:10 61.952 lads.exe 04.08.2004 00:56 69.120 notepad.exe 3 File(s) 245.760 bytes 2 Dir(s) 9.593.368.576 bytes free	
C:\temp\ADS-Example>type calc.exe >notepad.exe:calc.exe	
C:\temp\ADS-Example>dir Volume in drive C is Local Disk Volume Serial Number is 28A3-D19E	
Directory of C:\temp\ADS-Example	
27.07.2007 11:11 〈DIR〉 27.07.2007 11:11 〈DIR〉 23.08.2001 14:00 114.688 calc.exe 64.01.2007 04:10 61.952 lado.exe	
27.07.2007 11:11 3 File(s) 245.760 bytes 2 Dir(s) 9.593.253.888 bytes free	
C:\temp\ADS-Example>start c:\temp\ADS-Example\notepad.exe:calc.exe	
C:\temp\ADS-Example>_	-

Taskmanager:

00
00
- 00
00

NTFS security

- NTFS contains access permissions
 - → Without the correct permission, no access is possible » Use direct (hex) access to the disk
 - Alternative: Insert (copy of) disk into system where you are the administrator
 - »Reason: The administrator can reset permissions!
 - These are then lost (\rightarrow copy!), but you get access to the file
- NTFS support file encryption
 - Specifically targeted at making the disk "unreadable" by third persons (typically thieves, but includes CF!)
 - → Files are encrypted separately, i.e. only their content
 - The key is stored for each user and with recovery agents
 » Typically the administrator
 - » Newer version require admin rights and the users password!
- →
 Tools can decrypt, but >= XP SP1 the recovery agent's

 Michael Sonntag
 password is needed
 Computer forensics: File systems
 27

- General consideration like File-/RAM-slack apply as well
- NTFS supports "Volume Shadow Copies"!
 - → Intended for backups of open files
 - → Keeps "old" versions of files
 - When the file is written to, the previous values are copied to another place; on reading it is "overlaid" back
 - → These shadow copies reside on the disk and can therefore contain copies of older version/deleted files!
- Special software needed for interpretation
 - → As no specification is freely available and the structure is complex in itself
- Bitlocker (Vista) may require live gathering!
 - May be configured so it asks for password before boot!
 Whole disk is encrypted, i.e. no NTFS structures readable

The EXT3 filesystem

• EXT3 is EXT2 + enhancements

- → This means, the EXT2 tools also work on EXT3!
- → Added:
 - » Journal: For crash-resistance
 - »Tree-based directory indices: For very large directories
 - Online filesystem growth: Enlarging "on the fly"
- EXT3 is based on "inodes" (and blocks=clusters)
 - Contains metadata (file size, dates, …)
 - » But not: Filename (\rightarrow in directory)!
 - Jinks to the actual data blocks
 - » These may be direct or (1-N) levels of indirection
 - Indirection: Pointer to block containing pointers to data blocks
 - EXT3: 12 direct, 1 single indirect, 1 double ind., 1 triple ind.
 - → Reference counter (for links)

Properties of EXT3

- Maximum volume size: 16 TB (4 kB block size)
- Maximum file size: 2 TB (4 kB block size)
- Maximum filename size: 255 Bytes
 - → May contain all characters except 0x00 and '/'
- Stores modification, attribute mod., and access time
- No real defragmentation or online compression
- An EXT3 partition is subdivided into block groups
 - Block count per block group is variable
 - Determined on formatting
- Clusters" are called "blocks" in EXT3
 - → The block size is determined on formatting: Typ. 4 kB

EXT3 physical layout

Partition:

sector 1 2 3 4 5 N		Boot sector	Block group 1	Block group 2	Block group 3	Block group 4	Block group 5	• • •	Block group N
--------------------	--	----------------	------------------	------------------	------------------	------------------	------------------	-------	------------------

Single block group:

Super	Group	Block	Inode	Inode	Data	Data	Data	Data		Data
block	descriptors	bitmap	bitmap	table	block 1	block 2	block 3	block 4	• • •	block N

- Each block group contains redundant copy of general information structures (superblock + FS descriptor)
 - → Block+Inode bitmap, Inode table: Only for this block group!
 - Block groups reduce the distance between file information and file data
 - » This is not a hard allocation: Data from a file can also be in a different block group!
 - Sparse superblocks": Repeated only in some groups to reduce space used on large volumes

Block and Inode bitmaps

• Block bitmap: Which blocks are used/free

- \rightarrow Every block is represented by a single bit (\rightarrow bitmap)
- → Organization:
 - » **1** = used, **0** = free
 - »Block 1 = Byte 0 Bit 0, Block 2 = Byte 0 Bit 1,
 - Block 8 = Byte 0 Bit 7, Block 9 = Byte 1 Bit 0

• Inode bitmap:

- Every Inode is represented by a single bit
- Organization: Like block bitmap
 - » The first bits are always set: Superblock, group desc., ...!

Inodes

- Mode: Permissions
 - → Includes Inode type
 - » File/Directory/Link/...
- Owner info:
 - \rightarrow User and group ID
- Size: File size in Bytes
- Timestamps:
 - \rightarrow Access time
 - \rightarrow Creation time
 - → Modification time
 - \rightarrow Deletion time
- Other metadata:
 - → Link/Block count
 - File flags \rightarrow

 \rightarrow

EXT3 Undelete

• EXT3 undelete is very difficult

- → File size and block addresses are overwritten on delete!
 - »Reason: Easier recreation through journal after crash
 - » Result: File name still exists, file data still exists, but which blocks of data belong to the file in which order is lost
- → Undelete is still possible, but it must work on the level of individual blocks/clusters, not just "unmarking the directory entry as deleted"!

» Basis: Journal entries or "file carving"!

- Journal: Several inodes/block; Whole block is saved in journal
 - \rightarrow Journal entries for other files may contain the pointers!
- Carving: Try to detect start/end of file by "magic numbers"
- » Note: These approaches identify only parts of the file. The rest must be assumed to be "physically in between"!

– This fails when the file is fragmented \rightarrow Undelete very difficult!

EXT3 directory

- Directories are "ordinary" files
 - A Root directory: Inode number is part of superblock!
 - \rightarrow They contain no metadata at all \rightarrow Inode
- Format is very simple:
 - $\square \rightarrow$ Inode associated with file (4 Bytes)
 - $\blacksquare \rightarrow$ Length of this entry in bytes (2 Bytes)
 - $\square \rightarrow$ Filename length in bytes (1 Byte)
 - $\Box \rightarrow$ File type (1 = file, 2 = directory, 7 = Symlink, ...; 1 Byte)
 - □ → Filename (N Bytes)

0		4	6	7	8	9	13	15	16	17
0x081	15	0x09	0x01	0x02		0x4711	0x0A	0x02	0x02	
19		23	25	26	27	•		-		
0.04-		0 10	0.00	0.01	l le en tra		Note	e: Each i	record is	usually aligned to

EXT3 security

- The traditional unix rights system:
 - → There are users and groups
 - → Each user is member of a single primary and an arbitrary number of secondary groups
 - → One special user ("root"), has all rights on (normal) files or can obtain them through changing ownership/rights
 - Each file has an owner and an "owning group"
 - There are only 3 permissions: "read", "write", and "execute"
 - → A combination of these three permissions can be set for three different groups of persons:
 - The owner, the owning group, and for everyone
 - \rightarrow Additionally there are a few specialty bits
 - » E.g. executing the program as owner/owning group, regardless of the actual user

EXT3 security example

Access control lists

- ACLs also exist, but on a different layer
 - → Supported by: Ext2, Ext3, XFS, JFS, ReiserFS
- The normal permissions (rwx) of a file can be assigned to arbitrary other users and groups
 - → Commands: getfacl, setfacl
- Example:
 - → "getfacl index.html"
 - → # file: index.html
 # owner: root
 # group: apache
 user::rw user:sonntag:rwx
 group::r- other::---

Attention: Filesystem must be mounted accordingly for this to be supported (/etc/fstab !)

EXT3 and computer forensics

• EXT3 is a journaling filesystem

- → Depending on the mode used, file metadata and perhaps even file data may be present in the Journal!
 » This is actually a problem for wiping too ...
- Making a copy of a live system is difficult » Special tools needed or remounting as read-only!
- Recovering deleted files can be very difficult
- General consideration like File-/RAM-slack apply as well
 - But swap space is a separate partition, not a file, and therefore itself a "filesystem"

Conclusions

- Recreating evidence from a filesystem requires intimate knowledge of the filesystem or special tools
 - → An important approach is "file carving", i.e. recreating files through assembling only data sectors and ignoring all directory entries
 - This is much more independent of the file system, but also more difficult; e.g. which sectors belong to a binary file
 - Plain text files \rightarrow Easy!
 - Many different filesystems exist, but only few are common » "Rare" filesystems might pose special difficulties!
- Journaling file systems offer an additional approach
 - → Some data might be present in the journal
 - » E.g. recently deleted data

Questions?

Thank you for your attention!

Literature

- Alternate data stream http://www.wikistc.org/wiki/Alternate_data_streams
- Berghel, H., Brajkovska: Wading into Alternate Data Streams. Communications of the ACM Aplril 2004/Vol. 47, No. 4, 21-27 http://portal.acm.org/ft_gateway.cfm? id=975836&type=pdf&coll=GUIDE&dl=ACM