

Mag. iur. Dr. techn. Michael Sonntag

Disk/File system investigation

Institute for Information Processing and Technology (FIM) Johannes Kepler University Linz, Austria

E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

© Michael Sonntag 2013

Agenda

Michael Sonntag

- Acquiring a forensic copy
- Preliminary stages
 - → Image hashing
 - → Partition/file system information
- Removing known files
- Identifying file types
 - → Hash databases
- Creating a timeline

Acquiring a forensic copy: Write blockers

- Never work on the original media
 - \rightarrow Anything goes wrong \rightarrow Evidence is gone!
 - » Even just a suspicion this occurred may be enough in a process!
- So we need a copy...
 - → But during copying the media is accessed as well!
 - → Additionally, we don't want a copy of the files ... we want a copy of the whole medium!
 - » This is not the same: Unallocated clusters are e.g. not copied when transferring (all) files through a share
- Result: Create a binary copy of the source media while applying some kind of write-protection to the original
 - → This may be quite easy: Floppy disks/USB sticks do have (more correct: "had"!) a "write-protect" "switch"
 » But can we trust it? And what about media without them, e.g. normal hard disks, most modern USB sticks?

Requirements for forensic duplications

- Physical copy:
 - → We need a copy of every single bit, not only of the (currently existing) files on the disk
- Error handling:
 - → Read errors must be detected without fail and be documented
 - Replaced by pre-determined and known pattern

Completeness:

- Reserved areas of the disk must be detected and deactivated for the copying to obtain a truly complete image
- Unmodified:
 - → Calculate a checksum to be later able to prove the integrity of the image

Acquiring a forensic copy: Write blockers

- Therefore we need a separate write blocker
 - → Which is under the control of the person performing the copy!
- Use a trusted hardware write blocker
 - → Exist for all kind of media: IDE, SATA, flash-disks, SCSI, ... »Note: More "exotic" or high-performance → Expensive – This is not a mainstream hardware sold in the thousands!
 - \rightarrow USB is quite universal (USB HD cases!)
- Alternatively use a software write blocker
 - Problem: Many things can go wrong, e.g. configuring it for the wrong device, bugs etc.
 - → Additionally, it should only be used on a trusted computer
 » Not: Installing/Running a SW write-blocker on source machine
 - You don't know what else is installed there and whether this will actually work or not!
 - → Typical example: USB write blocker
 - Potential problem: Reboot may be required

Hardware write blockers: How they work

- Two kinds exists
 - → Same interface on both sides: IDE IDE
 - → Different interfaces: SATA USB/Firewire
 - » The typical computer-side is USB and/or Firewire
 - Future: Perhaps eSATA or USBv3; but not yet available!
 - » Advantage: USB and Firewire are hot-swappable!
- Basic approach
 - Intercept commands and drop those writing to the disk
 - » Problem: Custom extensions!
 - Best approach: Don't allow anything not explicitly known to not modify the data and block everything else
 - Note: This may break compatibility with exotic systems!
 - » Return OK/Failure depending on configuration
 - \rightarrow Pass all other, i.e. read-only, commands

 See http://www.cftt.nist.gov/hardware_write_block.htm for tested appliances!

Hardware write blockers: Examples

- Examples:
 - → FastBloc
 - » http://www.encase.com/products/ee_hardware.aspx
 - → ICS DriveLock
 - » http://www.icsforensic.com/index.cfm/action/catalog.browse/category/DriveLock/ id_category/c14d69f1-dcb6-47ab-8be6-1b13217f5b84
 - WiebeTech Forensic ComboDock v4
 - » http://wiebetech.com/products/ForensicComboDock.php
 - » http://www.wiebetech.com/products/USB-WriteBlocker.php
 - → Tableau
 - » http://tableau.com/index.php?pageid=products&category=forensic_bridges
 - → MyKey NoWrite FPU (owns a patent on write-blocking)
 - » http://www.mykeytech.com/

E and Electron Floor

Software write blockers: How they work

- Basic principle: Access the media without passing on write requests; only allow read requests
 - → I.e., on Linux do not mount it in read/write mode, or just "refrain from writing" (USB)
 - » "Not writing" may (and often will!) still change access times
 - $(\rightarrow$ Windows registry flag)
 - » Attention on journaling file systems!
 - Not recommended: Setting the USB-write-protection flag in the Windows registry
 - This requires a reboot and is not guaranteed to work!
 - In general, SW blockers do the same as Hardware ones
 - Comparing Hardware and Software blockers:
 - → SW +: Cheaper and flexible (all devices)
 - → SW -: Platform specific, working not immediately apparent
 - \rightarrow HW +: Hot-swap, interface conversion, easier to verify
 - \rightarrow HW -: Expensive, only for selected interfaces

Software write blockers: Examples

- Digital Intelligence PDBlock
 - → http://www.digitalintelligence.com/software/disoftware/pdblock/
- Linux:
 - → Disable auto-mounting
 - → Mount drive as read-only
 - Example: mount -t <fs-type> -o ro,noexec,noatime,loop<image> <directory>
 - » ro: Do not write to disk, not even for root
 » noexec: Do not execute files from this disk
 - » noatime: Do not change access time on access
 - » loop: Loopback device, i.e. opening an image as a file system
- See http://www.cftt.nist.gov/software_write_block.htm for test reports of dedicated software!

Duplication issues

- Read errors: What to do when encountering erroneous sectors on the source media
 - \rightarrow Try to get the data nevertheless (several retries)
 - → If really not accessible, then it wasn't for the suspect as well!
 » When still suspected → Hardware investigation (platter surface)
 - → Write zeros ('0x00') to the destination instead
 » This will cause the least harm and not introduce other material
 » Additionally, mark it as "BAD" externally or within (not pure 0x00)
 Wiped destination disk
 - → Ideally the destination disk should be wiped before acquiring

 » This means all zeros, not just a (fast/complete) formatting!
 » Reason: Read errors, larger size, … precaution
 → Not needed when acquiring to an image file (common today)

 Large disks may require multiple destination volumes

 → Splitting the image into several image files
- Michael Sonntage Care required on analyzing: Seams!

Forensic duplication file formats

11

- Raw: Bit-by-bit copy of the source (".dd", ".bin", ...)
 - → Every program can work with this format
 - \rightarrow There is no compression and no metadata
 - » Compression only for transfer possible, not for working with it!
 - → Integrity check must be external (separate file with hash)
- AFF/AFF4: Advanced Forensic Format (".AFF", ".AFD")
 - → Open format: Documented, no royalties, BSD-licensed code
 - → Supports arbitrary metadata
 - Includes metadata, compression, chain-of-custody recording, encryption, image signing
- EnCase: "Standard" in law enforcement (".E01", ".E02", ...)
 - → Proprietary file format, certain metadata
 - → Supports compression and encryption
 - » Requires more CPU power to work with, but less space

Several other exist: http://www.forensicswiki.org/wiki/Forensic_file_formats
 Michael Sonntag

Creating a forensic duplication: dd

- dd = Data Dump; Used to create binary copies
- Example: dd if=/dev/hdb of=SuspectHD.bin conv=notrunc,noerror,sync bs=1024
 - → if: Input device
 - → of: Output device; just a normal file here
 - → notrunc: Don't truncate output on errors
 - → noerror: Do not stop on read errors
 - \rightarrow sync: Write zeros on read errors instead of skipping sector
 - → bs: Block size. Default = 512; better performance with larger values, but read errors always affect complete block
 » Use the physical size if possible; usually 512 (or 4096)
 - → count: Number of blocks to copy

» Must be multiplied by "bs" value to get bytes!

 \rightarrow skip: Number of blocks skipped before copying starts

• Make sure that "of" is mounted, but "if" is not!

Michael Sonntag

Creating a hash of the whole image

- Important to assure the identity of the image and the source
- Therefore two hashes should theoretically be built
 - → One of the source drive
 - → One of the image
- Actually, usually only a single one is calculated, as reading the source again would not be different from image creation!
 - → Still important: Later modifications of the image can be detected easily
- Additionally, in case of doubt, the original can be re-read and hashed and compared to the image which was analyzed » Helps against swapping images or malicious modifications
 Typically SHA-1, SHA-256, or MD5 is used
 → MD5 should not be used any more, as it is known to be
 - susceptible to attacks (not yet broken completely)

Creating a hash of the whole image:

Example

- Example for creating a MD5 hash:
 - → chmod 444 SuspectHD.bin
 - → md5sum –b SuspectHD.bin >md5sum.txt
 - → chmod 444 md5sum.txt
- Example for checking:
 - → md5sum –c md5sum.txt
 - » File need not be specified stated in md5sum.txt!
- Content of md5sum.txt:
 - → 3be6330d9da0db04d45ef96c86bd7afc SuspectHD.bin
- See "sha1sum" for calculating SHA-1 hashes
 - → "shasum" calculates other versions as well » Algorithm: 1, 224, 256, 384, 512

Note: chmod is only there for "security": Read-only files!

Duplication + Hashing: dcfldd

- Slight enhancement of "dd", the disk duplication SW
 - → Open source program
 - → Created by the DoD Computer Forensics Lab (DCFL)
- Features:
 - → Hashing of the data on the fly (=during duplication)
 » Not only for whole file but also for smaller blocks
 - → Status output (progress bar)
 - Supports disk wipes with special patterns (not just zeros)
 - → Multiple and split output possible
 - → Produces raw images only

Duplication + Hashing: dcfldd

- Example: dcfldd if=/dev/hda of=/mnt/evidence/disk_a.dd conv=sync,noerror hashwindow=1024 hashlog=hash.txt
 - → Parameters similar to dd
 - » if: Input device
 - » of: Output device
 - »sync: Write zeros on read errors instead of skipping sector
 - » noerror: Do not stop on read errors
 - » bs: Block size. Default = 512; better performance with larger values, but read errors always affect the complete block

- Use physical size if possible; usually 512

- → Additional parameters (hashing):
 - » hashwindow=1024: Separate hash for every 1024 bytes
 - Practice: Use 1000000 or larger
 - » hashlog=hash.txt: Where to write the hash values
- Windows: if=\\.\PhysicalDrive3
 - → >= Vista: Application must run as Administrator http://dcfldd.sourceforge.net/

Michael Sonntag

Partition and file system information

- "Volume": Careful, it can mean many things!
 - → Collection of addressable sectors
 - » Not necessarily on one physical device or consecutive sectors
 » Must only look to the OS/application as if it were cons. sectors!
 - → Single accessible storage area within a single file system » Typically within a partition
 - \rightarrow An entity that has a drive letter mapped to it
- Therefore applicable only to Windows, not Unix
 Physical disk organization can be complex
 - → Several disks can be grouped to create a single "volume" » Example: RAID-0 (Striping), RAID-…
 - → This volume can then be split in several partitions
 » Within an partition there can be more partitions
 - → Each partition has a single file system
 - → Not the whole disk must be assigned to partitions File system

Partition and file system information Forensic considerations

- On complex or uncommon systems, copying the physical disk may not be very useful
 - → String search is always possible » Unless partitions are compressed or encrypted!
 - → But recreating the file systems may be impossible » Depends on the OS used, which is perhaps not available
- Sometimes it may therefore be better to do a "live" copy
 - Start the system and copy all files to another computer with a "common" file system
 - → Note: All slack space, deleted files etc. are lost!
- Best, but most expensive/time-consuming approach:
 - → Create two full physical copies
 - » One for physical-drive-analysis and an "original" as evidence
 - → Boot from one copy and create a file system duplicate

» If possible, use VMWare → Snapshot allows reverting changes!

(D)

DOS partitions

- The most common type of disk organization
 - → DOS, Windows, Linux, BSD; most multi-boot systems » 32 Bit versions only; 64 Bit versions are often different!
- Basic layout: See file systems!
- A DOS partitioned hard disk can only contain 4 partitions » These are called "primary partitions"
 - → But one can also be an "extended partition"
 - This can contain several "logical" ("secondary") partitions
 In theory, only two: A normal and again an extended one, ...
 - → Any of the sub-partitions could be from a different OS and be organized differently within!
 - → One partition may be marked as "active" or "bootable"
 » This will be the one the system boots from
 » Note: The code in the MBR record may decide otherwise, perhaps based on user input, or change the markings!

MBR / Partition table example

- MBR = Master Boot Record
 - → 0-445: Boot code (to be executed on booting the system)
 » 440-443: Windows ≥ NT: NT Drive Serial Number
 - Also used by Linux 2.6 to determine boot volume location
 - → 446-509: Partition table (space for describing 4 partitions)
 - → 510-511: Magic number: 0x55, 0xAA
 - Partition table:
 - \rightarrow 0: Bootable Flag (0x80 = Boot partition)
 - → 1-3: Start CHS address
 - » Cylinder-Head-Sector; Only for old/small hard disks
 - → 4: Partition type
 - » E.g. 0x06 (FAT16, 32MB-2GB, CHS), 0x0c (FAT32 LBA), 0x83 (Linux), 0x84 (Hibernation), 0x86 (NTFS Volume Set), ...
 - → 5-7: Ending CHS address
 - → 8-11: Starting LBA address
- Michael Sonntage 12-15: Size in sectors

MBR example

Offset	0	1	2	3	4	- 5	6	- 7	8	- 9	A	В	С	D	Е	F	
000000000	33	C0	8E	D0	BC	00	7C	\mathbf{FB}	50	07	50	1F	FC	BE	1B	7C	3À∎м ûP P ü¾
000000010	BF	1B	06	50	57	В9	E5	01	F3	Α4	CB	BD	\mathbf{BE}	07	B1	04	ί PW¹å ό¤Ë½¾ ±
000000020	38	6E	00	7C	09	75	13	83	C5	10	E2	F4	CD	18	8B	F5	8n u ∎Å âôÍ ∎õ
000000030	83	C6	10	49	74	19	38	2C	74	F6	A0	B5	07	B4	07	8B	∎Æ It 8,töµ′∎
000000040	F0	AC	3C	00	74	\mathbf{FC}	BB	07	00	B4	0E	CD	10	\mathbf{EB}	F2	88	ð¬< tü≫ ´Íëò∎
000000050	4E	10	E8	46	00	73	2Å	FE	46	10	80	7E	04	0B	74	0B	NèFs * þF∎~ t
000000060	80	7E	04	0C	74	05	ΔO	B6	07	75	D2	80	46	02	06	83	~ t ¶uÒ F
000000070	46	08	06	83	56	ΟÀ	00	E8	21	00	73	05	Α0	B6	07	\mathbf{EB}	F ∎V è!s ¶ë
000000080	BC	81	ЗE	FE	7D	55	AA	74	0B	80	7E	10	00	74	C8	AO	¼∎>þ}Uªt ∎~ tÈ
000000090	B7	07	EΒ	Α9	8B	FC	1E	57	8B	F5	CB	BF	05	00	84	56	·ë©∥ü V∥õË¿ ∣V
0A000000A0	00	В4	08	CD	13	72	23	88	C1	24	ЗF	98	84	DE	84	\mathbf{FC}	′Ír#∥Á\$?∎Þ∎ü
0000000B0	43	F7	E3	8B	D1	86	D6	B1	06	D2	EE	42	F7	E2	39	56	C÷ã∎Ñ∎Ö± ÒîB÷â9V
0000000C0	ΟA	77	23	72	05	39	46	08	73	1C	B8	01	02	BB	00	7C	w#r 9Fs, ≫∣
0000000D0	8B	4E	02	8B	56	00	CD	13	73	51	4F	74	4E	32	E4	8A	∎N ∎V Í sQOtN2ä∎
0000000E0	56	00	CD	13	EΒ	E4	88	56	00	60	BB	AA	55	Β4	41	CD	V Í ëä∎V `≫ªU′AÍ
0000000F0	13	72	36	81	FB	55	ÅΆ	75	30	F6	C1	01	74	2B	61	60	r6∎ûUªu0öÁ t+a`
000000100	6A	00	6Å	00	FF	76	ΟÀ	FF	76	08	6Å	00	68	00	7C	6A	j j ÿv ÿv j h j
000000110	01	6Å	10	Β4	42	8B	F4	CD	13	61	61	73	0E	4F	74	0B	j 'B∎ôÍ aas Ot
000000120	32	E4	8À	56	00	CD	13	EΒ	D6	61	F9	C3	55	6E	67	81	2ä∎V Í ëÖaùÃUng∎
000000130	6C	74	69	67	65	20	50	61	72	74	69	74	69	6F	6E	73	ltige Partitions
000000140	74	61	62	65	6C	6C	65	00	46	65	68	6C	65	72	20	62	tabelle Fehler b
000000150	65	69	6D	20	4C	61	64	65	6E	20	64	65	73	20	42	65	eim Laden des Be
000000160	74	72	69	65	62	73	73	79	73	74	65	6D	73	00	42	65	triebssystems Be
000000170	74	72	69	65	62	73	73	79	73	74	65	6D	20	6E	69	63	triebssystem nic
000000180	68	74	20	76	6F	72	68	61	-6E	64	65	6E	00	00	00	00	ht vorhanden
000000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000001A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000001B0	00	00	00	00	00	2C	48	6E	BE	C0	BE	C0	00	00	80	01	, Hn¾Å¾Å ∎
0000001C0	01	00	07	FE	FF	FF	ЗF	00	00	00	0E	E3	CA	04	00	00	þ ÿÿ ? ãÊ
0000001D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000001E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000001F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	55	AA	Ωa

Boot code

Error messages

NT Drive Serial Number

Partition table

Magic number (Signature ID)

•Text for error messages is at the end of the code

•The three bytes before the serial number are the relative offsets of the individual messages

 Allows translations of different length without changing the code

пШ⁽¹⁾

Michael Sonntag See http://www.geocities.com./thestarman3/asm/mbr/Win2kmbr.htm

NTFS Partition Boot Record example

_																		
	0000:	ΕB	52	90	4E	54	46	53	20	20	20	20	00	02	08	00	00	.R.NTFS
	0010:	00	00	00	00	00	F8	00	00	3F	00	FF	00	ЗF	00	00	00	??
	0020:	00	00	00	00	80	00	80	00	0D	ЕЗ	CA	04	00	00	00	00	
	0030:	00	00	0C	00	00	00	00	00	10	00	00	00	00	00	00	00	
	0040:	F6	00	00	00	01	00	00	00	9E	D1	A3	28	0A	A4	28	AC	
\checkmark	0050:	00	00	00	00	FA	33	С0	8E	DO	BC	00	7C	FB	В8	С0	07	
Ó	0060:	8E	D8	E8	16	00	В8	00	0 D	8E	C0	33	DB	C6	06	ΟE	00	
ģ	0070:	10	E8	53	00	68	00	0 D	68	6A	02	СВ	8A	16	24	00	В4	S.hhj\$
ē	0080:	08	CD	13	73	05	В9	FF	FF	8A	F1	66	0 F	В6	С6	40	66	sf@f
Jet	0090:	ΟF	В6	D1	80	E2	3F	F7	E2	86	CD	C0	ΕD	06	41	66	ΟF	?Af.
an	00A0:	в7	С9	66	F7	E1	66	A3	20	00	C3	В4	41	BB	AA	55	8A	ffAU.
Jar	00B0:	16	24	00	CD	13	72	ΟF	81	FB	55	AA	75	09	F6	C1	01	.\$rU.u
S	00C0:	74	04	FE	06	14	00	С3	66	60	1E	06	66	A1	10	00	66	tf`ff
Q	00D0:	03	06	1C	00	66	3в	06	20	00	ΟF	82	ЗA	00	1E	66	6A	f;:fj
B	00E0:	00	66	50	06	53	66	68	10	00	01	00	80	ЗE	14	00	00	.fP.Sfh>
40	00F0:	ΟF	85	0C	00	E8	В3	FF	80	3E	14	00	00	0 F	84	61	00	a.
õ	0100:	В4	42	8A	16	24	00	16	1F	8B	F4	CD	13	66	58	5B	07	.B\$fX[.
ő	0110:	66	58	66	58	1F	ΕB	2D	66	33	D2	66	ΟF	В7	ΟE	18	00	fXfXf3.f
n m	0120:	66	F7	F1	FΕ	C2	8A	CA	66	8B	D0	66	C1	ΕA	10	F7	36	fff6
õ	0130:	1A	00	86	D6	8A	16	24	00	8A	E8	C0	E4	06	0A	СС	В8	\$
Ô	0140:	01	02	CD	13	0F	82	19	00	8C	С0	05	20	00	8E	С0	66	f
/	0150:	FF	06	10	00	FF	0E	ΟE	00	ΟF	85	6F	FF	07	1F	66	61	fa
	0160:	C3	AO	F8	01	E8	09	00	AO	FB	01	E8	03	00	FB	ΕB	FE	
	0170:	В4	01	8B	FO	AC	ЗC	00	74	09	B4	0E	ΒB	07	00	CD	10	<.t
	0180:	ΕB	F2	C3	0 D	0A	41	20	64	69	73	6B	20	72	65	61	64	A disk read
	0190:	20	65	72	72	6F	72	20	6F	63	63	75	72	72	65	64	00	error occurred.
	01A0:	0D	0A	4E	54	4C	44	52	20	69	73	20	6D	69	73	73	69	NTLDR is missi
	01B0:	6E	67	00	0 D	0A	4E	54	4C	44	52	20	69	73	20	63	6F	ngNTLDR is co
	01C0:	6D	70	72	65	73	73	65	64	00	0 D	0A	50	72	65	73	73	mpressedPress
	01D0:	20	43	74	72	6C	2B	41	6C	74	2B	44	65	6C	20	74	6F	Ctrl+Alt+Del to
	01E0:	20	72	65	73	74	61	72	74	0 D	0A	00	00	00	00	00	00	restart
	01F0:	00	00	00	00	00	00	00	00	83	AO	В3	C9	00	00	55	AA	U.

<u>ישר</u>

Michael Sonntag

Ju	ump to code start + NOP
P	roducer and/or type name+version
B	ytes per sector
S	ectors per cluster
R	eserved sector count
Μ	ledia descriptor
S	ectors per track
N	umber of read/write heads
Н	idden sectors (start of volume)
D	isc unit number
S	ignature byte (Magic number)
S	ectors in volume
S	tart cluster of MFT
S	tart cluster of MFT mirror
С	lusters per MFT record
С	lusters per index Block
N	TFS volume serial number
B	oot code
E	rror messages

File system investigation 22

See: http://www.geocities.com./thestarman3/asm/mbr/NTFSBR.htm

and http://homepages.tesco.net/J.deBoynePollard/FGA/bios-parameter-block.html

Logical Volumes

- An alternative/add-on to DOS partitions
 - → Typically used on top of DOS partitions (one full-size partition per disk), but also works on "raw" disks
- Several physical volumes (partitions/disks) are combined to a volume group, which is then split into logical volumes
- Advantages:
 - Physical volumes can easily be added
 - \rightarrow Logical volumes can easily be resized (typ. while in use!)
 - → Logical volumes can span multiple physical volumes
 - \rightarrow Disks identified by UUID \rightarrow Physical disks can be moved
- Problems:
 - → Bootloaders/other OS might have problems with it » Therefore typically a "DOS" boot partition + LVM for rest!
- Supported by many OS (notably not by Windows!)

HPA – Host Protected Area

- Hidden area on the disk invisible to the OS
 - → Introduced with ATA-4 standard
 - → Usage e.g.:
 - » Repair info for OS (copy of installation DVD)
 - » Theft recovery and monitoring services
 - »Reducing capacity of disks to match existing ones
 - Properties:
 - → Survives formatting the disk
 - \rightarrow No access by user, OS, or BIOS
 - → Accessible through directly issuing ATA commands
 » "READ NATIVE MAX ADDRESS (EXT)": Read physical size
 » "SET MAX ADDRESS (EXT)": Set maximum addressable size
 - → "Volatile" bit: Changes revert on next power up/reboot
 - » Useful for imaging: The disk itself remains unchanged!
 - Careful with write blockers: They may block the necessary ATA commands as they change the disk, although only temporarily!

DCO – Device Configuration Overlay

- Modifications/hidden area invisible to the OS
 - → Reduce disk capacity to exactly match existing ones
 - → Remove special (optional) features of the controller
 - → Introduced with ATA-6 standard
- Properties:
 - → Survives formatting the disk
 - \rightarrow No access by user, OS, or BIOS
 - → Modifications are always permanent
- Access directly through ATA commands
- DCO and HPA can exist on the same disk
 - → First set DCO, then reduce size through HPA! » READ NATIVE MAX ADDRESS will return the reduced size! » DEVICE CONFIGURATION IDENTIFY shows the actual size

Combining HPA and DCO

HPA + DCO vs. computer forensics

- Both are simple to detect manually:
 - → Read number of sectors from physical drive (Internet, sticker)
 » But a label on the drive need not necessarily be original ...
 - → Compare to information obtained on the computer
- HPA (DCO) can also be detected through software
 - → Retrieving physical size and comparing it to the maximum addressable sector
- Changing the DCO is always permanent!
 - → No "volatile" bit → Image first, the remove DCO and image all/the rest again. The disk is modified through this!
- Imaging without HPA/DCO will produce incomplete copies
 - → And return different hashes than copies including them!
- Good forensic programs handle HPA (automatically), but DCO seems to be still a problem
 - → Or they automatically remove it but do not recreate them
 - \rightarrow This applies to disk wiping programs as well ...

Checklist for creating a forensic copy

- General preparation: Write blockers, disks (disk space) available, disks are wiped, software is available on CD-ROM
- Acquiring the forensic copy:
 - \rightarrow Identify evidence disk (serial number, type, size, ...)
 - → Connect evidence disk to write blocker
 - → Switch on evidence disk/write blocker
 - → Find evidence disk (which "name" is it on this system)
 - → Find target disk/space
 - → Start acquisition software
 - → Create image
 - → Create hash value & save it (unless done by software)
 - → Document other information electronically
 - Unmount both disks & switch off write blocker
 - Package evidence disk & add printout of summary (serial)

Michael Sonntag

Removing known files

- Usually a disk under investigation will contain an operating system, i.e. several thousands of uninteresting files
 - → But you can't be sure that everything within "C:\Windows" is from Microsoft and completely unchanged …
 - → Applies to any other "known" files/locations as well
- Simple approach: Compare file names and contents with installation media and securely downloaded updates
- Better: Create hash values of all files and compare them to public libraries of hash values of known files
 - \rightarrow These exist for OS, applications, malware etc.
 - → Private libraries also exist for illegal files, e.g. child porn
 » This is legal: Only the hash value is stored, not the file!
 - → md5deep calculates hash values on numerous files, esp. also recursively (has some other nice features as well)!

Hash libraries

- National Software Reference Library
 - → Contains hash values of known and traceable software applications, but none of illegal data
 - → Currently 33.058.182 unique hash values from 111.011.929 files (1.6.2013)
 - Four main CDs
 - → Split according to the SHA-1 hash value)

»00...-3F..., 40...-7F..., 80...-BF..., C0...-FF...

- File format: CSV
 - → SHA-1, MD5, CRC32, Filename, Filesize, Product + OS code
 - → "000004DA6391F7F5D2F7FCCF36CEBDA60C6EA02", "0E53C14A3E48D94FF596A2824307B492","AA6A7B16", "00br2026.gif",2226,228,"WIN",""

» Corel Gallery 750.000, English, Windows

hashdeep

- Similar to md5deep (which, unlike its name suggests, also calculates other algorithms!), but advanced "set" features
- Compares against a set (list) of hash values

→ Matched, missing, moved, and new files

- First run: Creates a file with size, <several hash algorithms as configured, default: MD5 & SHA256>, path+filename
 - → Can be run recursively on a whole file tree
 - »Example: hashdeep -r myDir > log.txt
- Matching mode: Positive and negative is possible

 \rightarrow List all those with matching/unknown hashes

- Audit mode: Verifies hashes and lists moved, changed and inserted files
 - \rightarrow Details can be controlled with "-v", "-vv", and "-vvv"
 - »Example: hashdeep -r -a -k log.txt myDir
 - » This will list only success or failure (-v for details)

Michael Sonntag

Source: http://md5deep.sourceforge.net/

Identifying file types

- Important to identify files intentionally misnamed
 - → Changing the name from "drugs.doc" to "cmd.com"
 - → See also temporary office files: ".doc", ".xls" → ".tmp"
- Also important after undelete or file carving
 - \rightarrow The filename may no longer be available, but the content is
- How it works:
 - Most file formats include some kind of header or footer with specific value at certain positions: "Magic numbers"
 - → Linux: "file" command
- Example:
 - \rightarrow # MS Access database
 - \rightarrow 4 string Standard\ Jet\ DB Microsoft Access Database
 - → At position 4 the string "Standard Jet DB" is expected
 - → Format: Position Type Value Document-type

• "GIF8"

"Magic number" examples

• "JFIF" JPEG images

Oliset		- -	~ ~			- U	0			1.1	н	D		- 2	12	- P	
00000000	FF	D8	FF	ΕO	00	10	4 A	46	49	46	00	01	02	01	00	48	ÿØÿà <mark>JFIF</mark> H
00000010	00	48	00	00	FF	ED	0B	D8	50	68	6F	74	6F	73	68	6F	H ÿí ØPhotosho
00000020	70	20	33	2E	30	00	38	42	49	$4\mathrm{D}$	03	ED	00	00	00	00	р 3.0 8ВІМ і́

E I

Note: Not immediately at the start of the file!

Also "magic": FF D8

Offset	0	1	2	3	4	5	6	7	8	- 9	A	В	С	D	Е	F	
00000000	47	49	46	38	39	61	ΕE	00	D3	00	F7	00	00	00	00	00	<mark>GIF8</mark> 9aî Ó ÷
00000010	80	00	00	00	80	00	80	80	00	00	00	80	80	00	80	00	1 1 11 11 1
00000020	80	80	C0	C0	C0	C0	DC	C0	Α6	CA	F0	04	04	04	08	08	IIÀÀÀÀÜÀ¦Éð

GIF images

• 0x89"PNG" PNG images

Offset	0	1	- 2	3	4	- 5	6	- 7	8	- 9	A	В	С	D	E	F			
00000000	89	50	4E	47	0D	ΟA	1A	ΟA	00	00	00	0D	49	48	44	52	∎PNG		IHDR
00000010	00	00	02	80	00	00	01	E0	08	06	00	00	00	35	D1	DC	- 1	à	5សិបី
00000020	E4	00	00	00	09	70	48	59	73	00	00	0B	13	00	00	0B	ä	pHYs	

MS Access Database

		F	E	D	С	В	A	- 9	8	- 7	- 6	- 5	4	3	- 2	1	0	Offset
Standard Jet		74	65	4 A	20	64	72	61	64	6E	61	74	53	00	00	01	00	000000000
DB µn b`ÂU	DB	55	C2	09	60	62	03	6E	B5	00	00	00	01	00	42	44	20	00000010
©gr@? ∥~∥∥ÿ∥∥1Å	é©gı	C5	31	9A	85	\mathbf{FF}	90	9F	7E	9C	00	ЗF	40	72	67	Α9	E9	00000020

Identification example

- Example file: "cmd.com"
 - → Note: Both "command.com" and "cmd.exe" do exist in "C:\Windows\System32" (Windows command line)!
- Output on a Linux machine: [user@host ~]# file cmd.com cmd.com: PDF document, version 1.4
- Suggested actions:
 - \rightarrow Make a copy to a different disk
 - » Keep original disk and file unchanged!
 - → Rename extension to PDF
 - → Open with Acrobat Reader

cmd.com																	
Offset	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	
00000000	25	50	44	46	2D	31	2E	34	ΟÀ	25	C7	EC	8F	Å2	ΟÀ	31	%PDF-1.4 %Çì∎¢ 1 _
00000010	20	30	20	6F	62	6A	ΟA	3C	3C	ΟA	2F	54	79	70	65	20	0 obj << /Type
00000020	2F	43	61	74	61	6C	6F	67	0 A O	2F	4F	75	74	6C	69	6E	/Catalog /Outlin
00000020	600	70	20	22	20	20	20	E 2	0.2	25	Εn	61	67	2 E	70	20	2 N D /D-7

Creating a timeline

- Timeline: When any/certain actions were taken
 - → Take care: Usually all you get is computer local time!
- May contain various elements
 - → When the computer was started/stopped » Use of company resources outside working hours
 - When certain files were created/deleted/modified/accessed
 - » Creation: E.g. rootkit installation
 - Note: Linux typically has no creation time!
 - The "C" time is the time of the last change of the inode; this might be the creation time, but can be modified later as well through various other actions!
 - » Modification: Modification date past the date stated within
 - Example: Backdating letters, modifying balance sheets, ...
 - » Deletion: After notice of proceedings \rightarrow Evidence of destruction
 - → When a certain user was logged in/active

Creating a timeline

- Sources: MAC time of files, log files / Registry
 - → HKLM\System\CurrentControlSet\Control\Windows\ ShutdownTime: 64 Bit Hex datetime value
- Hints:
 - → Compare e.g. web cache files to their timestamps to detect clock skew!
 - → Look for inconsistencies in the naming of system restore points (which are created in increasing numbering and are timestamps, as they are files, directories, etc.)

MAC

- MAC = Modification, Access, Creation time
 - → Some file systems have other metadata as well!
 - → Access time is fragile: Most actions on a file will change it! » Usually not: Appearing in a directory list
 - » Should: Open for display, copy (source & destination)
 - → Modification: When the file was written to
 - Note: Modifying these values depends on the OS
 - \rightarrow On most systems changes can be forbidden
 - »HKLM\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisa bleLastAccessUpdate → 1 (Default in Vista!)
 - » Linux: mount -o noatime

Windows specialty: Copying files retains M, but sets new C!

- → Creation after modification:
 A bint that the file was copied
 - A hint that the file was copied here
- Not reset on extracting files from an archive!

Created:	Mittwoch, 05. Dezember 2007, 12:55:24
Modified: 🕇 🕯	Mittwoch, 03. Oktober 2007, 12:01:20
Accessed:	Mittwoch, 05. Dezember 2007, 12:55:24

Timeline based on MAC: Example

- Access dates only after 13.6.2007
- Creation dates are rather recent, compared to modification dates
- Files must have been copied there
- Older C dates: Probably extracted from ZIP files!
- Notice the "blue line" in 8/2006: Continuous work over the weekends!

• Gray crosses: Weekends!

Timeline based on MAC: Example

•File information on hovering the mouse

→ Note: The hovering is not quite correct: The access date is not shown in the popup, although marked in the calendar and shown in the directory view above!

Startup and shutdown information

- Recorded in the system log: Detailed time
 - → When this is cleared, the information is gone!
 » Traces may remain on disk → partial information

- Based on MAC times of all files and all log entries
 - → Results only in vague times: When the computer was definitely on (single last shutdown time: Registry time)
 » But it might have been on at other times as well …
- Manipulating the local clock allows falsifying such data
 - But this is difficult: All file times must match these values too!
- Linux is similar to Windows: Specific entries/MAC+whole log Michael Sonntag

log2timeline

- Tool for creating a timeline from various sources
 - → Originally written in Perl, now a new backend in Python is under development
- Scans data from many sources, including:
 - → Apache/IIS/Squid logs, browser history/bookmarks (Chrome, Firefox, IE, Opera), Windows event log/Syslog, EXIF, MACtime, OPenXML documents, pcap (packet sniffer), PDF metadata, prefetch files, recycle bin, restore points, setupapi log, XP firewall log, …
- Separated into backend (collecting data) and frontend (searching and presenting data)
- Stores data typically in SQLite (but exports to CSV, ... too)

Conclusions

• The first and most important aspects of forensic are the Three "P's" of evidence: "preserve, package, protect" \rightarrow This especially includes using write blockers Computer forensics is not only undeleting files \rightarrow There are many small but important areas as well, e.g. » Partition table examination » E-Mail / Web browser forensics » Recognizing files » Creating timelines » Investigating the Windows registry » Recycle bins, LNK files, ... What is therefore needed: Caution \rightarrow And a good list of where what information might be found, to acquire knowledge/expertise in this area if needed!

Questions?

Thank you for your attention!

F[∐][♠]

Links

- http://tech.groups.yahoo.com/group/hashkeeper/
- http://www.nsrl.nist.gov/
- http://www.utica.edu/academic/institutes/ecii/publications/articles/EFE36584-D13F-2962-67BEB146864A2671.pdf
- http://www.foi.se/upload/rapporter/foi-computer-forensics.pdf
- http://log2timeline.net/ http://log2timeline.kiddaland.net/