
Writing Secure Code
Fundamentals and Coding Techniques

DI Andreas Schabus
aschabus@microsoft.com
Academic Relations Manager
Microsoft Österreich GmbH

secure: [si-'kyur]
1: free from danger
2: free from risk of loss
3: affording safety

Security

Security: [si-'kyur-&-tE]
1: the quality or state of being secure
2: freedom from danger
3: measures taken to guard against espionage or
sabotage, crime, attack, or escape

Reality
Call to action

Holistic approach
Raising the bar
Being as secure as possible
Security as Research Topic

Thread Modeling Security TestingSD3 Framework

Writing Secure Code

Security Fundamentals SD3 Design Principles

Security TechnologiesSecure Coding Techniques .NET
Security

Security Fundamentals The Developer’s Role

Coding Issues

Security TestingThreat ModelingSD3 Framework

Security Fundamentals

Security Fundamentals

Security TechnologiesCoding Issues .NET
Security

Security TestingThreat ModelingSD3 Framework

The Developer’s Role

Vulnerability

Threat

loot

Asset

Common Security Terms (1/2)

Mitigation
Techniques

Patrolled!
loot ggrr!

Common Security Terms (2/2)

Common Types of Attack

Connection Fails

Organizational
Attacks

Restricted Data

Accidental
Breaches
in Security

Automated
Attacks

Hackers

Viruses,
Trojan Horses,

and Worms

Denial of
Service (DoS)

DoS

What Sort Of Figures Are
We Talking About?

Source: Vendor Web Sites 1-Jan-03 to 31-Dec-03

OS Bulletin Count (2003)

39

51 51

68

119 120

184

0

20

40

60

80

100

120

140

160

180

200

Microsoft (OS) Microsoft (All) SuSE Solaris Mandrake RedHat Debian

Similar Dist

Large Dist

Root Causes

Complexity
Lack of Transparency
Conflicting security models
Large Monolithic Trusted Computing
Bases

Vulnerability in on part of large system
exposes the entire system

Once attacked it’s hard to recover
You’re now connected

Patches proliferating
Time to exploit decreasing
Exploits more sophisticated
Customer frustration

151151180180

331331

BlasterBlasterWelchiaWelchia/ /
NachiNachi

NimdaNimda

2525

SQL SQL
SlammerSlammer

Days between patch & exploitDays between patch & exploit

The ChallengeThe Challenge

Time To Apply Patch - OpenSSL

25,539, 49%

14,116, 28%

5,877, 12%

4,003, 8%

1,356, 3%
0.9.6d and earlier
0.9.6e-h and 0.9.7
0.9.6i and 0.9.7a
0.9.6j and 0.9.7b
0.9.6k and 0.9.7c

Source: Source: ““Vulnerable versions of Vulnerable versions of OpenSSLOpenSSL apparently still apparently still
widely deployed on commerce siteswidely deployed on commerce sites”” netcraft.comnetcraft.com 11/0311/03

Secure
Version

49% have not applied
a patch in 1 ½ years

Why Is Security So Difficult?

Attackers have extraordinary resources
Attackers need to master only one attack
Defenders constrained by ethics and laws
Attackers have no rules and play dirty
Defenders must serve business goals
Defenders must win all the time
Attackers have to find the weakest point only
Attackers try any vulnerabilities
Attackers attack at will

Security Today
Technology alone will not solve your problem
Nobody believes anything bad can happen to them, until
it does
Security works only if the secure way also happens to be
the easiest way
In you do not keep up with security fixes, your network
will not be yours for long
There really is someone out there trying compromise your
systems
Your data and systems are of value to someone
Security is not about risk elimination; it is about
risk management

The Developer’s Role

Security Fundamentals

Security TechnologiesCoding Issues .NET
Security

The Developer’s Role

Security TestingThreat ModelingSD3 Framework

DOS SampleDOS Sample

demodemo

“Many Eyeballs Makes all Bugs Shallow”

If you don’t know what to look for – you will
find nothing
People must want to review old code

Not just create sexy new features
It misses the point

We should not be putting the security bugs in
the code in the first place!
Too much emphasis on code
What about design?

EBay EBay

demodemo

Coding Issues

Security Fundamentals

Security TechnologiesCoding Issues .NET
Security

Security TestingThreat ModelingSD3 Framework

The Developer’s Role

Coding Issues

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

Cross-Site Scripting SQL InjectionSQL InjectionBuffer Overrun Cross-Site Scripting

Buffer Overrun

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

Buffer OverrunBuffer Overrun

demodemo

Stack BOs at Work
Higher addresses

Buffers Other vars

EBP

EIP Args

void foo(char *p, int i) {
int j = 0;
CFoo foo;
int (*fp)(int) = &func;
char b[16];

}

VC++ /GS at work
Higher addresses

Buffers Other vars

EBP

EIP Args

A normal stack

Buffers Other vars

EBP

EIP Args

cookie

VC++ 2002 stack (with /GS)

BuffersOther vars
EBP

EIP Args
cookie

VC++ 2003 stack (with /GS and safe exceptions)

EH #1: 0x77E74717
EH #2: 0x77E8C2E7
EH #3: 0x77E95FE7

In PE
Header

View Safe Exception list with:
link -dump -loadconfig <executable>

Integer Overflow Attacks

Integer overflow is a generic name for
a set of common integer arithmetic
mistakes that can lead to BOs

Overflow and underflow
Signed versus unsigned errors
Truncation

They lead to BOs

Integer Overflow Attacks
intint ConcatString(charConcatString(char *buf1, char *buf2, *buf1, char *buf2,

size_tsize_t len1, len1, size_tsize_t len2){len2){
char buf[255];char buf[255];

if((len1 + len2) > 0xFF) return if((len1 + len2) > 0xFF) return --1;1;

memcpy(bufmemcpy(buf, buf1, len1); , buf1, len1);
memcpy(bufmemcpy(buf + len1, buf2, len2);+ len1, buf2, len2);

// do stuff with // do stuff with bufbuf

return 0;return 0;
}}

len1len1
len2len2

0x1030x103
+ 0xFFFFFFFC+ 0xFFFFFFFC

0xFF0xFF

Both memcpy functions
attempt to copy >255 bytes

// 0-19 system data, 20-499 user data
const UInt32 USER_DATA_START = 20;
Object[] myData = new Object[500];

[PrincipalPermissionAttribute(SecurityAction.Demand,
Role=@"BUILTIN\Administrators")]

public Object
GetSystemData(uint ItemNumber, WindowsPrincipal pr) {

return myData[ItemNumber];
}

public Object GetUserData(UInt32 ItemNumber) {
return myData[ItemNumber + USER_DATA_START];

}

Integer Arithmetic in C#
An Example ‘Authz’ Method

What if ItemNumber is
close to Uint32.MaxValue?

Remedy: Integer Arithmetic
Any calculation used to determine an array
offset or memory allocation is suspect
Use unsigned variables for array indexes and
buffer sizes
Watch out for:

C4018 & C4389 (signed/unsigned mismatch)
C4244 warnings (conversion from 'type1' to
'type2', possible loss of data)
#pragma and casts that shut the compiler up!

Remedy: Arithmetic Errors in C#

public Object GetUserData(UInt32 ItemNumber) {
checked {

return myData[ItemNumber+USER_DATA_START];
}

}

Just fix ‘em!
Build defensive code, and add
defensive layers (/GS etc)Use the latest version of VC++ /GS

User safer string librariesAll arithmetic used to calculate
memory allocations are probably wrong!

Buffer Overrun Checklist

Cross-Site Scripting SQL InjectionSQL InjectionBuffer Overrun Cross-Site Scripting

Cross-Site Scripting

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

CrossCross--Site ScriptingSite Scripting

demodemo

Anatomy of Cross-Site Scripting
Web based applications

Redirect info via <form>
E-Mail platforms & discussion boards

Allows hackers to:
Execute script in client’s browser
<script>, <object>, <applet>, <form>, <embed>

Arising threats
Steal session / AuthN cookies
Access to client computer

Cross-Site Scripting SQL InjectionSQL InjectionBuffer Overrun Cross-Site Scripting

SQL Injection

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

SQL InjectionSQL Injection

demodemo

Anatomy of SQL Injections (2/2)

Problem: string concatenation
strSql = "SELECT * FROM titles " & _

"WHERE id LIKE '" & textName.Text & "'"

Dim cmd As New SqlCommand(strSql, "server=...")

myReader = cmd.ExecuteReader()

Good Guy

ID: 1001
SELECT *
FROM titles
WHERE id = ‘1001'

Not so Good Guy

ID: 1001' or 1=1 --
SELECT *
FROM titles
WHERE id=‘1001' or 1=1 -- '

Really Bad Guy

ID: 1001’; drop table orders --
SELECT *
FROM titles
WHERE id=‘1001‘; drop table orders -- '

Downright Evil Guy

ID: 1001’; exec xp_cmdshell(‘fdisk.exe’) --
SELECT *
FROM titles
WHERE id=‘1001‘; exec xp_cmdshell(‘fdisk.exe’) --'

PreventingPreventing
SQL InjectionSQL Injection

demodemo

Other Issues

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

Cross-Site Scripting SQL InjectionCompilation IssuesCanonicalization Unicode Issues

Canonicalization Issues

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

Canonicalization Issues

Never make a security decision based on
the name of something

Chances are good that you’ll get it wrong
Often, there is more than one way to name
something

if (username == @if (username == @““DOMAINDOMAIN\\UserUser”” && &&
filename == filename == ““MyLongFile.txtMyLongFile.txt””))
// go away// go away

File Name Issues

1.1. MyLongFile.txtMyLongFile.txt
2.2. MyLongFile.txt.MyLongFile.txt.
3.3. MyLong~1.txtMyLong~1.txt
4.4. MyLongFile.txt::$DATAMyLongFile.txt::$DATA

http://www.microsoft.com/technet/security

Is the same as Is the same as --

http://www%2emicrosoft%2ecom%2ftechnet%2fsecurity

http://www.microsoft.com%c0%aftechnet%c0%afsecurity

http://www%25%32%65microsoft.com/technet/security

http://172.43.122.12 = http://2888530444

Character Representation

Canonicalization Issues

http://http://www.foo.com/prn/default.aspwww.foo.com/prn/default.asp
http://www.foo.com/aux.asphttp://www.foo.com/aux.asp
http://http://www.cnn.com&storywww.cnn.com&story==breaking_newsbreaking_news@@

18.69.0.44/evarady/www/top_story.htm18.69.0.44/evarady/www/top_story.htm

Cross-Site Scripting SQL InjectionCompilation IssuesCanonicalization Unicode Issues

Unicode Issues

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

The Turkish-I problem
(Applies also to Azerbaijan!)

Turkish has four letter ‘I’s
i (U+0069) ı (U+0131) İ (U+0130) I (U+0049)

In Turkish locale UC("file")==FİLE

// Do not allow "FILE://" URLs
if(url.ToUpper().Left(5) == "FILE:")
return ERROR;

getStuff(url);

// Only allow "HTTP://" URLs
if(url.ToUpper(CULTURE_INVARIANT).Left(5) == "HTTP:")
getStuff(url);

else
return ERROR;

Cross-Site Scripting SQL InjectionCompilation IssuesCanonicalization Unicode Issues

Canonicalization Issues

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Input Issues Other Issues

Threat ModelingSD3 Framework Security Testing

Scrubbing Secrets in Memory

void Function() {
char pwd[32];
GetPwdFromUser(pwd,32);
UsePwd(pwd,32);
memset(pwd,0,32);

}

What’s wrong with this code?

void Function() {
char pwd[32];
GetPwdFromUser(pwd,32);
UsePwd(pwd,32);
SecureZeroMemory(pwd,32);

}

Victim of
“dead store removal”
by optimizing compilers

Security for Developer

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Security TestingThreat ModelingSD3 Framework

Security is only as good
as its weakest link

Note…

Security for Developer

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Security TestingThreat ModelingSD3 Framework

SD3

The SD3 Security Framework

Secure Secure
by Designby Design

Secure Secure
by Defaultby Default

Secure in Secure in
DeploymentDeployment

Threat analysisThreat analysis
Secure architecture & codeSecure architecture & code
Vulnerability reductionVulnerability reduction

Reduced attack surfaceReduced attack surface
Unused features Unused features off by defaultoff by default
Least privilegeLeast privilege

Detection, defense, recovery, Detection, defense, recovery,
managementmanagement
Architecture guides, howArchitecture guides, how--toto
Ongoing educationOngoing education

Defense in Depth (MS03-007)
Windows Server 2003 Unaffected

The underlying DLL The underlying DLL
(NTDLL.DLL) not vulnerable(NTDLL.DLL) not vulnerable Code made more conservative during Security PushCode made more conservative during Security Push

EvenEven if it was runningif it was running IIS 6.0 doesnIIS 6.0 doesn’’t have t have WebDAVWebDAV enabled by defaultenabled by default

EvenEven if it did have if it did have
WebDAVWebDAV enabledenabled

Maximum URL length in IIS 6.0 is 16kb by default Maximum URL length in IIS 6.0 is 16kb by default
(>64kb needed) (>64kb needed)

EvenEven if it was vulnerableif it was vulnerable IIS 6.0 not running by default on IIS 6.0 not running by default on
Windows Server 2003Windows Server 2003

EvenEven if it there was an if it there was an
exploitable buffer overrunexploitable buffer overrun

Would have occurred in Would have occurred in w3wp.exew3wp.exe which is now which is now
running as running as ‘‘network servicenetwork service’’

EvenEven if the buffer was if the buffer was
large enoughlarge enough

Process halts rather than executes malicious code, Process halts rather than executes malicious code,
due to bufferdue to buffer--overrun detection code (overrun detection code (--GS)GS)

Secure Defaults
Less code running by default = less stuff to
attack by default
Slammer & CodeRed would not have happened
if the features were not enabled by default
Reduces the urgency to deploy security fixes

A ‘critical’ may be rated ‘important’
Defense in depth removes single points of failure
Reduces the need for customers to ‘harden’ the
product
Reduces your testing workload
Reduce your attack surface early!

A
tta

ck
 S

ur
fa

ce

Security R
eview

Increased Attack Surface
means

Increased Security Scrutiny…

…… From the good guys,From the good guys,
andand the bad guys!the bad guys!

Attack Surface Reduction Ideas

Service: Autostart SYSTEM

TCP/UDP

TCP/UDP

TCP/UDP

Attack Surface Reduction Ideas

Service: Autostart SYSTEM

Turn off less-used ports

TCP/UDP

TCP/UDP

TCP/UDP

Attack Surface Reduction Ideas

Service: Autostart SYSTEM

Turn off UDP connections

TCP/UDP

Attack Surface Reduction Ideas

Service: Autostart SYSTEM

Restrict requests
to subnet/IP range

TCP only

Attack Surface Reduction Ideas

Service: Autostart SYSTEM

Authenticate
connections

TCP only

Attack Surface Reduction Ideas

Service: Manual NetService

TCP only

Lower privilege
Turn feature off

Attack Surface Reduction Ideas

Service: Manual NetService

Harden ACLs on
data store

TCP only

Everyone (Full Control)Everyone (Full Control)Everyone (Full Control)

Admin (Full Control)
Everyone (Read)
Service (RW)

Admin (Full Control)Admin (Full Control)
Everyone (Read)Everyone (Read)
Service (RW)Service (RW)

Reduce attack surfaceGet a grip on the “giblets”Reduce attack surface EARLY!

PM Security Checklist

Everyone in the industry should do this security stuff

Security for Developer

Security Fundamentals The Developer’s Role

Security TechnologiesCoding Issues .NET
Security

Security TestingThreat ModelingSD3 Framework

Vulnerability

Threat

loot

Asset

Threats and Defense

Mitigation
techniques

Patrolled!
loot ggrr!

Threats and Defense

Threat Analysis
Secure software starts with understanding
the threats
Threats are not vulnerabilities
Threats live forever
How will attackers attempt to compromise
the system?

ThreatThreat

AssetAssetMitigationMitigation

VulnerabilityVulnerability

Benefits of Threat Modeling

Better application understanding
Helps finding bugs
Identify complex design bugs
Helps integrate new
team members
Drives well-designed
security test plans

Threat

Vulnerability

Asset

A Threat Modeling Process

•• UseUse--scenariosscenarios
•• Bound scopeBound scope
•• Determine Determine

dependenciesdependencies
•• Giblets?Giblets?

•• Data flow Data flow
diagramsdiagrams

•• Identify entry Identify entry
points & assetspoints & assets

•• Determine threat Determine threat
pathspaths •• STRIDESTRIDE

•• Threat TreesThreat Trees
•• RiskRisk

•• Fix?Fix?
•• WorkWork--around?around?
•• Notification?Notification?
•• Do nothing?Do nothing?

“Threat Modeling”
Frank Swiderski

Gather
Background

Info

Model the
System

Resolve
Threats

Identify
Threats

IIS6 Context Diagram

Identify the Threats

Exposing information in error messages
Exposing code on Web sitesInformation disclosure

Deleting a critical file and deny it
Purchasing a product and deny itRepudiation

Flooding a network with SYN packets
Flooding a network with forged ICMP
packets

Denial of service

ExamplesTypes of threats

Altering data during transmission
Changing data in filesTampering

Forging e-mail messages
Replaying authentication packetsSpoofing

Exploiting buffer overruns to gain system
privileges
Obtaining administrator privileges
illegitimately

Elevation of privilege

Determining Threat Types
Each element in Each element in
the DFD is the DFD is
susceptible to susceptible to
one or moreone or more
threat typesthreat types

1.01.0
5.05.0

2.0.2.0.

3.03.0
4.04.0

10.010.0
8.08.0

6.06.0

11.011.0 9.09.0

7.07.0

STRISTRI
DEDE

STRISTRI
DEDE

STRISTRI
DEDE

TIDTID

TIDTID

TIDTID

TIDTID

TIDTID

TIDTID

SRSR

SRSR

DFD Elements are Threat Targets

Each threat isEach threat is
governed by the governed by the
conditionsconditions
which make thewhich make the
threat possiblethreat possible

Threat Tree Format

Threat

Condition Condition

Condition Condition

Condition Condition Condition

‘And’ clause

‘Or’ clause

Sample Info Disclosure Threat
Threat #1 (I)
Compromise

password

1.1
Access “in-use”
password

1.1.1
Sniff network

1.1.2
Phishing attack

1.2
Guess password

1.2.1
Password is weak

1.2.2
Brute force attack

1.3
Access password
in database

1.3.1
Password is in
cleartext

1.3.2
Compromise
database

1.3.2.1
SQL injection
attack

1.3.2.2
Access database
directly

1.3.2.2.1
Port open

1.3.2.2.2
Weak db account
password(s)

STRIDE

Designing Mitigations

ss
authnauthn

safe safe credcred storagestorage

rr
authnauthn, , authzauthz, ,

signing, loggingsigning, logging

ii
authzauthz

encryptionencryption

tt
authzauthz

macmac, signing, signing

dd
filtering, filtering, authnauthn, ,

authzauthz

lowerlower
privpriv

ee

Sample I Threat Mitigations
Threat #1 (I)
Compromise

password

1.1
Access “in-use”
password

1.1.1
Sniff network

1.1.2
‘Phishing’ attack

1.2
Guess password

1.2.1
Password is weak

1.2.2
Brute force attack

1.3
Access password
in database

1.3.1
Password is in
cleartext

1.3.2
Compromise
database

1.3.2.1
SQL injection
attack

1.3.2.2
Access database
directly

1.3.2.2.1
Port open

1.3.2.2.2
Weak db account
password(s)

Application
Defenses

Infrastructure
Defenses

Encryption Education
Store Salted

Hash

Close ports
to Internet

Enforce strong
passwords

Enforce strong
passwords

Programming
Best Practice

Testing a Mitigation

Threat #1 (I)
Compromise

password

1.1
Access “in-use”
password

1.1.1
Sniff network

1.1.2
‘Phishing’ attack

Encryption

• Functionally, is the traffic
adequately protected?

• Can you force
unprotected traffic?

• Is the crypto weak?
• Where are keys stored?
• How are they exchanged?
• Defense in

depth methods ok?
• Other conditions?

??

No design is complete without a threat
model!
Follow anonymous data pathsEvery threat needs a security test plan

Check all information disclosure
threats – are they privacy issues?
Be wary of elevated processes

Threat Model Checklist

threat

asset

vuln

Security for Developer

Security Fundamentals The Developer’s Role

Coding Issues .NET
SecuritySecurity Technologies

Security TestingThreat ModelingSD3 Framework

©© 20032003--2004 Microsoft Corporation. All rights reserved.2004 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.makes no warranties, express or implied, in this summary.

	Writing Secure Code Fundamentals and Coding Techniques
	Security
	Writing Secure Code
	Security Fundamentals
	Common Security Terms (1/2)
	Common Security Terms (2/2)
	Common Types of Attack
	What Sort Of Figures Are We Talking About?
	Root Causes
	Time To Apply Patch - OpenSSL
	Why Is Security So Difficult?
	Security Today
	The Developer’s Role
	“Many Eyeballs Makes all Bugs Shallow”
	Blaster (MS03-026)
	Process Changes At Microsoft
	Coding Issues
	Coding Issues
	Input Issues
	Buffer Overrun
	Stack BOs at Work
	VC++ /GS at work
	Integer Overflow Attacks
	Integer Overflow Attacks
	Integer Arithmetic in C#An Example ‘Authz’ Method
	Remedy: Integer Arithmetic
	Remedy: Arithmetic Errors in C#
	Cross-Site Scripting
	Anatomy of Cross-Site Scripting
	SQL Injection
	Anatomy of SQL Injections (2/2)
	Other Issues
	Other Issues
	Canonicalization Issues
	Canonicalization Issues
	File Name Issues
	Character Representation
	Canonicalization Issues
	Unicode Issues
	Anatomy of Unicode Issues
	The Turkish-I problem(Applies also to Azerbaijan!)
	Canonicalization Issues
	Scrubbing Secrets in Memory
	Security for Developer
	Note…
	Security for Developer
	Proactive – Project Life Cycle
	The SD3 Security Framework
	Defense in Depth (MS03-007)Windows Server 2003 Unaffected
	Secure Defaults
	Attack Surface Reduction Ideas
	Attack Surface Reduction Ideas
	Attack Surface Reduction Ideas
	Attack Surface Reduction Ideas
	Attack Surface Reduction Ideas
	Attack Surface Reduction Ideas
	Attack Surface Reduction Ideas
	Security for Developer
	Threats and Defense
	Threats and Defense
	Threat Analysis
	Benefits of Threat Modeling
	A Threat Modeling Process
	IIS6 Context Diagram
	IIS6 Level-0 DFD
	Identify the Threats
	Determining Threat Types
	DFD Elements are Threat Targets
	Threat Tree Format
	Sample Info Disclosure Threat
	Applying Risk
	Designing Mitigations
	Example Threat Mitigation Techniques & Technologies
	Sample I Threat Mitigations
	Testing a Mitigation
	Security for Developer

