
Mobile agent security based on payment

Michael Sonntag, Rudolf Hörmanseder
(Institute for Information Processing and Microprocessor Technology (FIM),
Johannes-Kepler-University Linz, Altenbergerstr. 69, A-4040 Linz, Austria.

E-Mail: sonntag@fim.uni-linz.ac.at, hoermanseder@fim.uni-linz.ac.at)

Mobile agents are autonomous entities that handle tasks for their owner. Agents act on their
own by reacting to changes and by planning their course of action. These agents can move
from one server to another. In the future, agents will also be supplied with real money in
some form to pay for resources or services.

In this paper we discuss a dynamic security architecture, in which permissions are assigned
in exchange for information (money). The decision as to which permissions are available, as
well as how much they cost, is based on the source of the code, the owner/user of the code
and what other information the agent is willing (or able) to provide.

We discuss the advantages and limitations of assessing permissions in monetary terms, rather
than binary granting or denial of permissions according to pre-set classes. A test-framework
has been implemented using Java.

1. Introduction

In the scenario envisioned in this paper, mobile agents ([Kotz99]) possess some valuable in-
formation, such as e-cash or a credit-card number, and thus have to be protected through ex-
tensive security [Vigna98]. The agents need to be protected from each other on a host, as well
as during transmission, which would preclude tampering. Protecting agents from the host is
currently not possible [Tschudin99]. These transportable valuables allow agents to use per-
missions and resources on servers, which would not be available to them otherwise. Thus
agents only receive certain resources by paying for them.

In many cases, agents will not provide this information initially, but only at a later point in
time. Consider this example: an agent looks for a certain service anonymously and reveals its
identity (and credit-card number) only to the server on which the service is ultimately pur-
chased. This requires a dynamic security architecture, in which permissions can change over
time (unlike e. g. Aglets [Aglets] or Java [Gosling96] itself).

2. A security model for mobile agents based on money

Our security model is based on the (in fact, capitalist) assumption that (almost) every permis-
sion and every resource can be assessed in terms of money. Some of these may be very cheap
(e.g. free for agents of employees in a particular company) or very expensive (hitherto un-
known agents) or not available at all (e.g. infinite price for agents without certificates, which
ensures denial). Permissions are allocated according to the origin of the code as well as the

owner who is responsible for the execution of the code. Both identities are established and
verified by the use of certificates. Agents that cannot produce a certificate will usually be
treated very cautiously or not granted a permission at all. The price of permission reflects
neither the availability of resources, nor the load of the host, as in electronic market models
such as [Bredin98] or [Yemini98] (although this can be included); but it does reflect the cost
and risk to the host in granting permission.

2.1. Discussion of the model

This model has a number of advantages over binary decision models based on granting or
denial of permissions according to a limited number of classes (e.g. a permission may or may
not be used according to the category of an agent: “our” agents, trusted agents, foreign
agents, …).

Fine-grained security. Each permission is assessed according to the risk of being used by
certain code or persons, as well as according to the consequences of possible misuse. One
example is the following. Many providers grant permissions to unknown agents, despite the
danger of misuse, if the agents pay more than the cost of adding disk space or temporarily
denying access to other agents, when resources become exhausted. This also allows small
differences (e.g. a slightly higher price) between groups of agents, which would not be possi-
ble if just granting or denying access.

Ease of understanding. Everybody can understand the policy used, as the value charged for
the permission correlates to the real costs and the estimated risk. This is also easier to com-
municate to, for example, managers who are not actively involved in establishing the security
policy, but who are proficient in assessing risks and calculating necessary prices.

Billing. This model lends itself perfectly to billing for services (constrained execution). Since
permissions may not only consist of a certain type of access, but also of a certain quality-of-
service or amount (e. g. high priority, a temporary file up to 150 kB, use of special hard- or
software, etc.), agents can pay for the precise services they need. Servers can utilize their re-
sources to the full, since they can distribute them to the highest bidder and need not reserve
them for possible future use by an agent that may actually never use it. Another option would
be to charge agents for the time or amount a privilege is used or granted.

There are, however, some limitations to this model.

Unsuitability for classification according to creditworthiness. A major drawback of this
scheme is that agents cannot be directly classified according to their creditworthiness. It
makes no sense to charge them more money if it is more likely that they will never actually
pay their debts. Therefore, payment methods for agents must either be equivalent to cash
(immediate payment, e.g. e-cash) or agents must attain a higher trust level before being able
to buy privileges at all (or using forms of payment other than cash, such as debiting from an
account).

Large number of decisions. As there are three aspects defining the actual price of a permis-
sion (origin of the code, owner of the agent, and permission desired), configuration is com-

plicated. If each of these three aspects possesses only 4 groups, there are already 64 combi-
nations altogether. For each of the 64 combinations, a decision whether, and at which price
(=risk), the permissions should be granted must be made. Because of this large number, a vi-
able pre-configuration, suitable for most cases, is needed. Grouping sets of permissions to-
gether eases the work needed for configuration, but the necessity remains to build groups,
assess the risk-levels and calculate the prices.

Impossibility of delegation. Trusted code cannot delegate a task to another code because the
necessary permissions cannot be transferred. This limitation is inherent in the model, since
each agent is assessed only according to the source of its code, and owner. It may be possible
to allow an agent to be the owner of other agents, thus creating a hierarchy of agents that ul-
timately terminates at an external owner - certified by a recognized certificate authority - at
the top of the tree. This would be problematic since the transmission of trust along a series of
agent-owners is even harder to evaluate than the direct association of an agent to an owner.
(For example, how well do you trust the sub-agent of the sub-agent of your own agent, if the
agent you created selected them itself?)

Permissions which cannot or should not be strictly enforced are especially suited to dynamic
modification. One example is the amount of hard disk space an agent may use. Even the
agent itself probably cannot tell exactly how much space it is going to need; hence, it might
purchase a minimum amount of space, and may be granted an optional quota according to the
trust it holds (which may be unlimited). The system hosting the agent can set an upper limit,
forcing the agent to purchase more space. In the meantime, the host trusts the agent that it
will pay for the space actually used. This disk space may be cheaper (if, for example, the
agent has always promptly paid for the services used) or more expensive (if, for example, the
host knows nothing about the agent). In any case, if the agent does not pay, the owner could
be billed directly according to the agent’s certificate. This would be more cumbersome and
expensive and would take longer; the agent must therefore pay a premium for the risk to the
system and owner.

2.2. Basic evaluation according to the code-signer and the owner

In order to capture both static and dynamic aspects, security is based on two considerations;
the origin of the agent’s code (static; signed code); and who the owner of the agent is (dy-
namic; identity of the agent). This distinction is necessary as most users will employ agents
created by other persons.

The code of an agent from a well-known producer will have a larger set of options than code
from unknown companies or persons, since it is likely to be of higher quality (fewer bugs and
less possibility of misuse). Also, the probability of the code being infected by a virus is lower
in the case of a professional company that uses extensive countermeasures against these risks
[Garfinkel97]. Since an agent must show (at least some) intelligent behavior to be classified
favorably, much depends on its parameterization, which is done by the owner of the agent.
Even a perfectly innocent code can be tricked into doing something harmful through mis-
leading parameters. (For example, enquiries may be made by a shopping agent about illegal

or embarrassing items under a false identity.) It is therefore necessary also to include this as-
pect when considering the permissions to be granted to an agent. To ease administration, pro-
ducers of code and owners can be grouped according to the following considerations.

? Producers of code. Grouping is facilitated by the certificate whose private key was used
to sign the code and name of package or class. Certain servers may also accept unsigned
code, although the permissions will usually be very restrictive. These groupings can be
very fine-grained, depending, for example, on which certificate authority provided the
certificate, and therefore on the amount of guaranteed compensation (i.e. liability) in the
event of wrong content. Individual assignment according to a list of trusted agent-code is
also possible.

? Owners of agents. The distinction between groups depends on whether the agent can (or
is willing to) provide an owner-certificate, or, when applicable, whether the agent belongs
to an arbitrary selection of individual users. Again, agents without a certificate, or with a
certificate that was not issued by a recognized certificate authority, will be more limited
in their actions. Since security is based on monetary aspects, grouping according to owner
can also be carried out by considering the way the agent wants (or is able) to pay for ad-
ditional permissions. In this case, agents paying by electronic cash will receive permis-
sions more readily than those paying by invoice. Agents can also be divided into groups
based on the level of warranty the certificate authority provides, or on the company the
owner belongs to or is authorized to sign for (this information might also be included in a
certificate).

At any given moment, an agent belongs only to one code group and one owner group, re-
spectively. The groups to which an agent is assigned can change over time (e.g. if the agent
provides some proof of identity, or if checking of certificates used for code-signing is de-
ferred to a later time). So a dynamic change of permissions is required. This dynamic behav-
ior of the system is in strong contrast to the static model of permissions in standard Java se-
curity [Jsec].

Permissions within a group are further divided into two subgroups, as follows:

Basic rights. These are permissions an agent (of this group) always owns, because they are
needed for basic work. These permissions have a negative cost level to show that they are
assigned to the code automatically upon arrival or start.

Optional permissions. These are permissions an agent may receive under special circum-
stances; for example, by making a payment, or on a temporary basis. These permissions may
cost nothing for some agents, or medium or large sums for others, and may be unavailable for
other agents. This concept restricts the agents to a minimum possible set of rights while al-
lowing them selected permissions on demand if additional conditions are met. Some agents
are restricted from ever getting certain possibly dangerous permissions.

The actual set of permissions granted to an agent is retrieved from a matrix (see figure be-
low), and reflects the level of trust of the code origin and the owner. In many cases, the re-
sulting permissions will be the intersection of those of the agent code and those of the owner.

Nevertheless, there are cases in which special permissions apply. Indirection via a matrix al-
lows the implementation of a very flexible policy that can be adapted to almost any need.

2.3. Advanced evaluation according to additional classification information

To allow more flexibility, an agent can offer some additional classification data in order to
gain more permissions or to obtain a cheaper price. This fact could be modeled as additional
dimensions within the matrix. Nevertheless, these classifications can be very diverse and
would therefore not usually be standardized.

Additional classification could be used with “negative permissions” too. If an agent misbe-
haves, the system might dynamically revoke certain permissions. In this way, one can include
history-based access control, as described by [Acharya97], because the identification of an
agent can be carried out using code checksums or certificates. On the other hand, based on
recorded information, cheaper or more permissions (e.g. reduced prices) might be offered to
regular customers.

Classifications can have a number of different states.

? Request check. This is only a temporary state, during which the agent provides informa-
tion and requests the system to verify it.

? Unknown classification. The agent has provided some additional information, but the
system did not recognize it. (This can occur in the absence of standardization.)

? Check currently impossible. The agent system will sometimes be unable to check the
classification information; e.g. when no connection to a certificate authority can be estab-
lished. Because this is a temporary error condition, the agent is free to request this check
again later.

? Check impossible. The system cannot check the information offered because of some
permanent problem. Resubmission is discouraged since no change is likely to occur. An
example is a signature with an unknown certificate authority.

? Rejected. The information has been checked, but the check failed. This contrasts with the
“check impossible” state in that the checking procedure did not fail, but the content con-
tained an error (e.g. the identity of the agent claiming to be a regular customer could not
be found in the database).

1 0 3
21 0

1 2 5

…

…

……
i

j

Group according
to owner

G
ro

up
 a

cc
or

di
ng

to
 o

rig
in

 o
f c

od
e

Permission-
group of <i,j> Groups:

…

Basic rights

Optional
permissions

0
1

2

3

? Accepted. The classification information was accepted (and possibly checked).

Examples of additional classifications and their consequences include:

? Regular customers (i.e. who have already been in the system and have bought permis-
sions several times without problems) receive a discount.

? If an agent has bought a large number of units in the past, the signer of the code will re-
ceive a commission or a credit entry.

? By providing a membership card (=certificate), the agent is allowed to use a local drive.

? If some money has to be refunded to an agent, this can be done through an additional
classification (“voucher”).

3. Payment for permissions / services

There are two different methods of payment:

Prepaid. The agent has to pay in advance; i.e. before permission is granted. This payment
method favors the system since the system can remove permission at any time.

Postpaid. Payment when a permission is returned or the agent leaves the server; this clearly
favors the agent. If it is unwilling or unable to pay when the permission is returned, the sys-
tem either loses money or has to look elsewhere (e. g. other agents of the same owner or the
owner itself) for it. This is similar to extending credit to the agent, and might therefore be
limited to a certain amount, with the consequence of requiring payment by installments.

Postpayment allows permissions to be paid according to the amount of resource usage (e.g.
cpu time, hard disk space, ...). The alternative – in which the agent has to pay for a certain
amount of service in advance - puts the agent at a significant disadvantage, and complicates
the situation: the system has to refund money for unused services that have been paid for.

The agent or its owner must also receive a detailed invoice (period of use, price, classification
information), which would enable the owner to verify the transactions (in contrast to the lack
of information on, for example, credit card invoices, which typically contain only a single
line of text). Such an invoice, in combination with signed evidence of granting and payment
for permissions, could be used in automatic dispute resolving mechanisms.

Payment for services is currently implemented only in a rudimentary way, partly because no
practical solution for secure exchange of payment between host and agent is available. We
assume a trust relationship between the agent and its host. This is not an exceptional assump-
tion, because, for example, every customer has to trust his computer center. Hence, in the fu-
ture every mobile agent may carry a list of trusted servers.

If trust is not possible, then the only solution to the problem of secure exchange is the post-
payment option: the agent has to pay after it has left the host and has arrived at a trusted host.
This extended version of post-payment allows secure exchange using a trusted third party; the
communication link to the third party is controlled by neither of the two parties in the trans-

action. (Even sophisticated exchange protocols, such as the one presented by [Zhou], rely on
guaranteed and unchanged delivery of the messages to the third party.)

An interesting possibility of securing agents from the host they reside on is described in a pa-
per by [Sanders98], in which private data and the program are inseparably mixed. This con-
cept allows an agent to hide its private data and keep it secret even from the host it executes
on. However, it is rather limited at the moment, and it is unclear whether it is extendible to
general programs.

4. Conclusions

In this paper, we have presented a system in which permissions are bought, and mobile
agents are classified, according to owner and code, as well as according to additional infor-
mation agents are able or willing to provide. Advantages and disadvantages of this approach
have been presented, and the methods of payment were discussed. Issues concerning payment
were explained. The main problem is lack of security in the exchange of information during
the period when the agent is on the host that demands payment.

5. Future Plans

The dynamic security system, as it is described here, has been implemented in Java as a first
prototype in a test-framework for mobile agents. Further work on design and implementation
is planned especially in the following areas:

? Payment for permissions. Currently, permissions are allocated only when paying in ad-
vance. This shall be extended by storing the time or amount of usage, and by introducing
a scheme for paying by installments or paying after use. An invoice signed by the system
will also be created and transmitted to the agent upon leaving the server.

? The set of permissions supported will be extended to threads and priorities, as both can be
controlled from within the Java virtual machine.

? Currently, certificates are checked only against stored root certificates of certificate
authorities. These groups shall be enhanced to include the result of a check whether cer-
tificates have been revoked.

We plan to do further research on a special problem related to the use of mobile agents;
namely, how can the agent check that it gets what it pays for? For example, if some permis-
sion is only granted for an agreed span of time, the agent can only guess the amount of time it
has used through the work it has completed. Nevertheless, (e.g. with different priorities) the
amount of work will vary widely, and so no hard evidence can be produced. One (not com-
pletely satisfactory) suggestion is to use timestamps from a trusted third party.

Acknowledgment

This paper is a result of a project sponsored by the Anniversary Fund of the Austrian National
Bank (Project 7742).

References

[Acharya97] Anurag Acharya, Guy Edjlali: History-based Access Control for Mobile Code.
Technical report TRCS97-25 (ACM-CCCS-98)

[Aglets] IBM Research Lab: Aglets Homepage http://www.trl.ibm.co.jp/aglets
(7.10.1999)

[Bredin98] Jonathan Bredin, David Kotz, Daniela Rus: Market-based Resource Control
for Mobile Agents. In: Proceedings of the Second International Conference on
Autonomous Agents. ACM Press 1998

[Garfinkel97] Simson Garfinkel, Gene Spafford: Web Security & Commerce. Sebastopol:
O´Reilly 1998

[Gosling96] James Gosling, Bill Joy, Guy Steel: The Java Language Specification.
Addison-Wesley, 1996

[Jsec] J. Steven Fritzinger, Marianne Mueller: Java Security.
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-
spec.doc.html (12.19.99)

[Kotz99] David Kotz, Robert S. Gray: Mobile Agents and the Future of the Internet.
Operating Systems Review 3/1999, 7-13

[Kun00] Yang Kun, Guo Xin, Liu Dayou: Security in Mobile Agent System: Problems
and Approaches. Operating Systems Review 1/2000, 21-28

[Sanders98] Tomas Sanders, Christian F. Tschudin: Protecting Mobile Agents Against Ma-
licious Hosts. In: G. Vigna (Ed.) Mobile Agents and Security. Berlin: Springer
1998 (Lecture Notes in computer science; Vol. 1419)

[Tschudin99] Christian F. Tschudin: Mobile Agent Security. In: Matthias Klusch (Ed.): In-
telligent Information Agents. Agent-Based Information Discovery and Man-
agement on the Internet. Berlin: Springer 1999

[Vigna98] Giovanni Vigna (Ed.): Mobile Agents and Security. Berlin: Springer 1998
(Lecture notes in computer science; Vol. 1419)

[Yemini98] Y. Yemini, A. Dailianas, D. Florissi, G. Huberman: MarketNet: Market-Based
Protection of Information Systems. In: Proceedings of the First International
Conference on Information and Computation Economies. ACM Press 1998

[Zhou99] Jianying Zhou: Achieving Fair Non-repudiation in Electronic Transactions.
Journal of Network and Computer Applications. Academic Press (to appear)

