
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Androgios
Android Interface for Nagios

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

Netzwerke und Sicherheit

Eingereicht von:

Markus Koppensteiner, BSc

Angefertigt am:

Institut für Informationsverarbeitung und Mikroprozessortechnik

Beurteilung:

Assoz.-Prof. Mag. Dipl.Ing. Dr. Michael Sonntag

Linz, Juli 2012

Contents

1 Introduction 9

2 Network Monitoring 12

2.1 Nagios . 12

2.1.1 Monitoring Features . 15

2.2 Nagios Webinterface - CGI . 17

3 Android 23

3.1 Architecture . 23

3.2 SDK/AVD . 25

3.3 Android Components . 25

3.3.1 Activities . 27

3.3.2 Services . 30

3.3.3 Broadcast Receivers . 32

3.3.4 Content Providers . 33

4 Androgios 34

4.1 Competitor Software . 35

4.2 Architecture . 36

4.3 Implementation . 39

4.3.1 Android Manifest . 39

4.3.2 Model . 42

4.3.3 Polling . 45

Markus Koppensteiner, BSc Page 2

4.3.4 Fetching . 47

4.3.5 Parsing . 48

4.3.6 Sending External Commands 50

4.3.7 Date Formats . 54

4.3.8 Activities . 55

4.3.9 Resources . 59

4.3.10 Preferences . 62

4.3.11 MasterController . 65

4.3.12 Polling Service . 67

4.3.13 Widget . 69

4.3.14 NagiosInstance . 69

4.4 Testing . 71

4.5 License . 73

5 Conclusions 74

5.1 Future Work . 75

Appendices 78

A List of Requirements 78

A.1 Display Requirements . 78

A.2 Management Requirements . 81

A.3 Polling Service Requirements . 83

A.4 Widget Requirements . 84

Markus Koppensteiner, BSc Page 3

A.5 Non-functional Requirements . 84

B Androgios Installation 85

C Android development with Eclipse 86

D Androgios Screenshots 89

References 92

Curriculum Vitae 95

Eidesstattliche Erklärung 97

Markus Koppensteiner, BSc Page 4

List of Figures

1 Problem of the Web UI on Android 9

2 Adding a comment . 20

3 Tactical Overview . 21

4 Android Architecture (from [Inc12]) 23

5 Activity Lifecycle (from [Inc12]) . 28

6 Activity Instancestate (from [Inc12]) 29

7 Activity Backstack (from [Inc12]) 29

8 Service Lifecycle (from [Inc12]) . 32

9 System Overview . 34

10 Base Architecture . 37

11 Stowaway output . 41

12 Tactical Overview Model . 43

13 Detailed Monitoring Model . 44

14 Typical Life Cycle . 56

15 Nagios Report on Trends . 77

16 Android Virtual Device Manager 86

17 Android Virtual Device Manager 87

18 Android Virtual Device Manager 87

19 Export an Android Project . 88

Markus Koppensteiner, BSc Page 5

List of Tables

1 Competitor Software Comparision 36

2 Command Types for global parameters(from [Bar09]) 50

3 External Command Types (from [Bar09]) 51

4 Host Status Types . 58

5 Service Status Types . 58

6 Host/Service Properties for filtering 58

7 Androgios Features . 74

Listings

1 Intent Filter . 26

2 Activity Layout . 30

3 Manifest . 39

4 Creating Filter Parameters . 59

5 Excerpt of config.xml . 64

6 Connectivity Check . 71

Markus Koppensteiner, BSc Page 6

Abstract

Nagios is a widely used open source network monitoring system. It enables

administrators to continuously monitor hosts and services on the network.

Through a web interface administrators are able to watch the state of moni-

tored entities. However, an administrator can not only watch problems, but

also handle them in an easy way, for example he acknowledges a problem or

adds a comment. In that way it can be avoided that unintentionally multiple

persons work on the same problem the same time.

The growing distribution of the operating system Android for mobile devices

(smartphones, tablets) opens up the possibility to bring the user interface

of the network monitoring system still closer to the administrator: It is

no longer necessary to constantly monitor the web interface at a computer.

When problems arise, mobile devices can alert automatically (e.g. by sound,

or vibration).

The developed software ”Androgios” displays the main features of the Na-

gios web interface on Android devices. Through the use of Androgios users

can inspect both hosts and services. Overview lists of all monitored entities

can be displayed. These lists can be filtered to e.g. only display problems.

In addition to overviews there is a detailed view for each monitored entity

available. Androgios also supports to send external commands such as ac-

knowledging problems or adding comments. Changes in the configuration

of the Nagios server are not necessary.

Markus Koppensteiner, BSc Page 7

Kurzfassung

Nagios ist ein weit verbreitetes Open Source Netzwerkmonitoring System.

Es ermöglicht Administratoren Hosts und Dienste eines Netzwerkes kon-

tinuierlich zu überwachen. Über eine Weboberfläche können Administra-

toren den Zustand überwachter Einheiten einsehen. Ein Administrator kann

Probleme jedoch nicht nur einsehen, sondern auch in einfacher Weise behan-

deln, beispielsweise indem er ein Problem bestätigt oder einen Kommentar

hinzufügt. Auf diese Weise wird verhindert, dass sich ungewollt mehrere

Personen mit dem gleichen Problem gleichzeitig beschäftigen.

Die zunehmende Verbreitung des Betriebssystems Android für mobile Geräte

(Smartphones, Tablets) eröffnet die Möglichkeit eine Benutzerschnittstelle

zum Netzwerkmonitoring System noch näher an den Administrator zu brin-

gen: Es ist nicht mehr notwendig ständig an einem Rechner die Webober-

fläche zu überwachen. Bei auftretenden Problemen kann ein mobiles Gerät

selbstständig alarmieren (z.B. durch Ton, Vibration).

Die entwickelte Software ”Androgios” stellt die wichtigsten Funktionen der

Nagios Weboberfläche auf Android Geräten zur Verfügung. Durch die Ver-

wendung von Androgios können Benutzer sowohl Hosts als auch Dienste

inspizieren. Es können Listen von allen überwachten Geräten angezeigt

werden. Diese Listen können gefiltert werden um beispielsweise nur Prob-

leme anzuzeigen. Neben den Übersichten steht eine detailierte Ansicht für

jedes überwachte Gerät zur Verfügung. Androgios unterstützt außerdem

die Übermittlung externer Kommandos wie beispielsweise das Bestätigen

eines Problems oder das Hinzufügen eines Kommentars. Änderungen in der

Konfiguration am Nagios-Server sind dabei nicht notwendig.

Markus Koppensteiner, BSc Page 8

1 Introduction

1 Introduction

This thesis deals with the network monitoring system Nagios and the operating

system Android. An important benefit of Nagios is that it enables administra-

tors to detect network problems early. To ensure that an administrator handles

network problems as soon as possible, even when he does not sit at his computer

and watch the Nagios software, Nagios is capable to send notifications by E-Mail

or SMS. This approach has the disadvantage of forcing the administrator to his

computer immediately. Android devices as small computers are always near at

hand. It is therefore natural to want to have an interface to Nagios on the An-

droid device. This would give administrators the chance to get an first overview of

what happened in the network and to initiate first steps of remediation remotely.

Nagios has a web user interface and there is a web browser available on Android.

So it is already possible to handle Nagios from Android devices. However, the

screens on Android devices are quite small, so that the usage of the web browser

becomes very hard. Figure 1 illustrates the problem.

Figure 1: Problem of the Web UI on Android

Markus Koppensteiner, BSc Page 9

1 Introduction

Sought is therefore a system that combines Nagios and Android with a better

usability. The basic ideas for Androgios, the software to develop, are the following.

• A system to show and manage Nagios from Android devices.

• It should support most of the functionality of the web interface, but with an

easier use on touchscreens. No web interface, but a native application.

• The main Nagios system must not be changed.

• The system must support encrypted communication (HTTPS).

• Management must include: re-scheduling checks, acknowledging problems,

disabling notifications/checks, scheduling downtime, flap detection, com-

ments.

• The system should run (and ideally look good too) on mobile phones and on

tablets.

This thesis is organized as follows:

Section 2 is the theoretical part regarding network monitoring with Nagios. After

the introduction of Nagios’ basic principle of operation, the meaning of its moni-

toring features and the capabilities of the web user interface are explained. This

should help to understand the idea and benefit of Androgios’ functionality better.

Section 3 describes the fundamentals of Android, Androids architecture and how

to get started with developing on the Android platform. In addition core concepts

of Android development are introduced as necessary to understand the implemen-

tation of Androgios.

Markus Koppensteiner, BSc Page 10

1 Introduction

Section 4 is the main part that describes the practical aspects and the imple-

mentation of this work. Competiting software and problems with this software

are discussed here. Then Androgios’ base architecture is explained, followed by a

detailed description of the implementation of Androgios core components. How

Androgios was tested finishes this section.

Section 5 finally recapitulates the thesis and discusses ideas for future work.

Markus Koppensteiner, BSc Page 11

2 Network Monitoring

2 Network Monitoring

IT departments cannot monitor big networks manually all the time. However, in

complex networks it is crucial to notify administrators about problems as early as

possible. Network monitoring systems can check network infrastructure automati-

cally. Goal of network monitoring systems is to recognize problems, ideally before

they become critical. In that way administrators can handle upcoming problems

before they impact business processes.

A widely used network monitoring system is the open source software Nagios.

Administrators can use the the web interface of Nagios to get an idea what’s up

in the network. Nagios uses traffic light colors to denote states: green: ok, yellow:

warning, red: problem. What is considered a warning and what a problem can be

configured by the administrator. The following sections explain Nagios in more

detail.

2.1 Nagios

The Nagios homepage [Ent12b] introduces Nagios as follows:

”Nagios is a powerful monitoring system that enables organizations to identify and

resolve IT infrastructure problems before they affect critical business processes.”

and furthermore:

”Nagios monitors your entire IT infrastructure to ensure systems, applications,

services, and business processes are functioning properly. In the event of a failure,

Nagios can alert technical staff of the problem, allowing them to begin remediation

Markus Koppensteiner, BSc Page 12

2 Network Monitoring

processes before outages affect business processes, end-users, or customers. With

Nagios you’ll never be left having to explain why a unseen infrastructure outage

hurt your organization’s bottom line.”

Nagios distinguishes between hosts and services when it checks for problems. A

host check tests if a host is reachable, usually via ICMP echo (ping). Hosts can be

computers or other network devices such as routers, switches and so on. A service

check on the other hand tests network services such as HTTP or SSH. Service

checks can also include CPU-load or disk space. Basically everything measurable

can be monitored. Services always run on a particular host. This implies: if a

service is ok then the corresponding host must be up and Nagios does not perform

a host check in that case. The host check is only performed when none of the

service checks were successful.

Nagios has a modular structure. The Nagios core does not contain any checking

functionality. To perform checks, Nagios uses external programs called plugins.

Nagios already ships with a number of plugins. Plugins may also be implemented

by the user (plugins are written in PERL) or may be downloaded (NagiosExchange

[Ent12a] is an excellent source for plugins). Plugins return one of the states: ok,

warning, critical or unknown. The state unknown denotes an error in the usage,

such as an illegal option. Additionally if the check is performed the first time and

no data has been collected yet, Nagios will display the state pending.

Nagios always tries to support administrators to find problem causes efficiently.

Unsuccessful service checks are denoted as unimportant when the corresponding

host is down. A service may not only depend on a host, but also on another

service. E.g. a service may need a database in order to work correct. Such service

dependencies can be configured. Also configurable is that hosts may have parent

Markus Koppensteiner, BSc Page 13

2 Network Monitoring

hosts on that they depend. The network topology can be determined in that way

and Nagios uses this dependencies to give hints where to find the actual problem

cause.

Nagios comes with a notification system to avoid that administrators have to watch

the Nagios web interface all the time. It is configurable which contacts should be

informed, how the contacts should be informed and about what state changes.

Common ways to notify contacts are SMS and e-mail. For escalation management

it is possible to notify a supervisor in case of a problem that is not fixed within a

certain time period.

Once an administrator is aware of a problem, he acknowledges the problem using

the web interface. This instructs Nagios to not send further notifications. The

acknowledgement includes a comment set by the administrator that should con-

tain meaningful hints such as e.g. what is intended to be done or not, an external

support team has been informed . . . Other contacts can be notified about the ac-

knowledgement.

It’s possible that hosts or services are down for maintenance reason. In this time

periods no notifications should be sent. For such cases it is possible to set a

downtime. Downtimes include a comment to indicate the reason. The time period

can be treated in a fixed and in a flexible way. Fixed time periods start and end at

an exact defined time. Flexible time periods start when a host (or service) changes

its state to down and end after a certain time elapsed.

Acknowledging problems and setting downtimes are examples for sending external

commands. Nagios supports many more external commands. Therefore Nagios is

not only a pure viewing system. External commands also allow e.g. to enable or

disable the monitoring features described in section 2.1.1

Markus Koppensteiner, BSc Page 14

2 Network Monitoring

Nagios allows to define host and service groups. This enables administrators to

see states of a specific group quickly. Host and service groups can also be used to

send an external command to all members of the group at once to avoid forcing

an administrator to enter the same command over and over again.

2.1.1 Monitoring Features

Nagios offers a set of different monitoring features that can be enabled or disabled

on individual hosts/services or globally for all.

Active Checks are initiated by the Nagios server. They are scheduled by the

Nagios server on basis of the configured check interval. The check intervals can be

configured for each host and service separately. In case of negative check results a

retry interval can also be defined. The retry interval is used as long as the host or

service is in soft state. The parameter max check attempts tells how often retries

are performed. After that it turns into hard state and the normal check interval is

used. In contrast to soft states, hard states are considered as ”real” problem. This

distinction is used to prevent false alarms.

Passive Checks While active checks are initiated and performed by the Nagios

server, passive checks are done by external applications that transmit the results

to Nagios. Passive checks are useful e.g. to reduce traffic (active checks generate

a lot of network traffic, only to determine everything is ok) or if active checks are

not possible perhaps due to a firewall that blocks the check. Typical passive checks

are SNMP traps.

Markus Koppensteiner, BSc Page 15

2 Network Monitoring

Obsessing A command that is executed after each check may be configured. The

obsessing feature allows to enable or disable the execution of the defined command.

By default obsessing is disabled globally.

Notifications are sent when a hard state changes or if a hard state other than ok

remains longer than in the parameter notification interval specified. Notifications

will not be sent if one of the following points is true:

• the host or service is in a scheduled downtime

• the host or service is flapping (see below)

• the host or service is not configured for notifications

• the notification has to be sent in a non-valid time period for sending notifi-

cations (the notification is rescheduled in that case)

Event Handlers are commands that are executed when a host or service is in

soft state or changes to a hard state for the first time. Event handlers may trigger

self healing mechanisms, such as restarting faulty services. They can be of global

type or host/service specific.

Flap Detection A host or service is flapping when it frequently changes its state.

Flapping is detected by calculating a percentage of state changes. To calculate the

percentage of state changes, the last 21 check results are considered. By comparing

the percentage of state changes against a high flapping threshold it is detected that

a host or service has started flapping. To determine flapping has stopped, a low

flapping threshold is used.

Markus Koppensteiner, BSc Page 16

2 Network Monitoring

2.2 Nagios Webinterface - CGI

The Nagios web interface allows more than only to view information. Commands

can be sent and Nagios can be actively controlled, e.g. adding a comment or

restart Nagios. All web interface functionality is provided by CGI (based on C-

programs). In the following the CGI-programs are explained to give an overview

of their capabilities.

status.cgi This CGI-program is responsible for displaying status information in

several forms. There are three parameter groups that control what is displayed

in particular. The first group controls whether hosts, hostgroups or servicegroups

are displayed.

...cgi-bin/status.cgi?host=hostname

...cgi-bin/status.cgi?hostgroup=hostgroupname

...cgi-bin/status.cgi?servicegroup=servicegroupname

To display all hosts, hostgroups or servicegroups the keyword all can be used.

The second parameter group controls the style. A different style means different

granularity.

...cgi-bin/status.cgi?host=all&style=detail

Five styles are supported:

• overview displays hosts within a table and services are summarized by states.

• summary hosts are summarized by states too.

Markus Koppensteiner, BSc Page 17

2 Network Monitoring

• grid displays hosts and services within a table, service states are indicated

by color only.

• detail displays detailed information for each service in a separate row.

• hostdetail displays detailed information for each host in a separate row.

The third parameter group allows to filter by status types (e.g. UP, DOWN, . . .)

and by properties (e.g. Flap Detection enabled, notifications disabled, . . .).

...cgi-bin/status.cgi?host=all&hoststatustypes=2&hostprops=8

Detailed information about the application of filters can be read in section 4.3,

tables 4, 5 and 6.

extinfo.cgi This CGI-program displays the most detailed information about a

host, service, hostgroup, servicegroup, comments, downtimes, the Nagios process,

performance data or scheduled checks. Additionally, it provides external com-

mands. The detailed state information on the left side shows e.g. the state itself

(and since when), the last check time, the next scheduled check, is the entity flap-

ping or is it in scheduled downtime. Furthermore it showns if monitoring features

are enabled or disabled. At the bottom a list of comments is displayed. Commands

for adding a new comment and deleting all comments are offered there too. All

other commands are displayed at the right side. Commands refer to the cmd.cgi

that is explained in its own paragraph.

What in particular to display is controlled by the type parameter. Possible values

are:

Markus Koppensteiner, BSc Page 18

2 Network Monitoring

• extinfo.cgi?type=0

displays information about the Nagios process such as total time running,

process id or what monitoring features are enabled.

• extinfo.cgi?type=1&host=hostname

displays information about a host

• extinfo.cgi?type=2&service=servicename

displays information about a service

• extinfo.cgi?type=3

displays all host and service comments

• extinfo.cgi?type=4

displays information about the performance of Nagios, divided by active host

checks, passive host checks, active service checks, passive service checks

• extinfo.cgi?type=5&hostgroup=hostgroupname

displays information about a hostgroup

• extinfo.cgi?type=6

displays all scheduled host and service downtimes

• extinfo.cgi?type=7

displays all scheduled checks

• extinfo.cgi?type=8&servicegroup=servicegroupname

displays information about a servicegroup

cmd.cgi is the CGI-program that accepts external commands. The parameter

cmd typ controls what command should be executed. For more detailed infor-

mation about what commands may be sent and what additional parameters are

Markus Koppensteiner, BSc Page 19

2 Network Monitoring

required see tables 3 and 2 in section 4.3. Nagios’ web interface provides for each

command a separate input form. A command description is also available, shown

in figure 2.

Figure 2: Adding a comment

tac.cgi The CGI-program tactical overview displays summarized information in

a single page. As shown in figure 3 the tactical overview focuses on displaying

problems. Network outages are shown first, followed by the states of hosts and

services. At the bottom is shown if certain monitoring features are globally enabled

or disabled. In case of disabled monitoring features on single hosts or services, the

number of them is displayed.

If everything is ok, only the number of unproblematic hosts and services is shown.

In case of problems additional information is displayed such as number of un-

handled problems (these are problems without an acknowledgement). Nagios

distinguishes between important (e.g. a service in state critical without an ac-

knowledgement) and unimportant problems (e.g. a service in state critical that is

acknowledged). Important problems are highlighted in red, unimportant problems

Markus Koppensteiner, BSc Page 20

2 Network Monitoring

in pink.

Figure 3: Tactical Overview

outages.cgi This CGI-program displays a list of all hosts that cause an outage.

This list includes the number of hosts and services that are affected. Based on

the number of affected hosts/services Nagios calculates a severity level that is also

shown in the list. Possible actions are navigating to: detailed host information,

status map, trends, log entries or notifications.

others There are many other CGI-programs available. Since they are not used

by Androgios, they are only introduced briefly.

• statusmap.cgi

displays the monitored hosts topologically

Markus Koppensteiner, BSc Page 21

2 Network Monitoring

• statuswrl.cgi

displays the monitored hosts topologically in 3D (a VRML supporting browser

is required)

• statuswml.cgi

simple status page for WAP devices

• config.cgi

displays the Nagios configuration

• avail.cgi

displays availability reports

• histogram.cgi

displays a histogram of events happened

• history.cgi

displays all events ever happened

• notifications.cgi

displays all notifications sent

• showlog.cgi

displays all logfile entries

• summary.cgi

displays reports of events, arranged by hosts, services, errors and timeperiod

• trends.cgi

displays a timeline including states occurred

Markus Koppensteiner, BSc Page 22

3 Android

3 Android

According to [Inc12] ”Android is a software stack for mobile devices that includes

an operating system, middleware and key applications.”

Android Applications (Apps) are written in the Java programming language. Al-

though there is an Android specific library used, the Java Standard Edition API

[Cor12] is available. The Android library supplements the Java SE API by an An-

droid specific API. This section shows the basic concepts of Android as necessary

to understand the implementation of Androgios.

3.1 Architecture

Android is based on a Linux kernel. The kernel provides the drivers and is respon-

sible for security, memory/process management and the network stack. Figure 4

shows Androids main components.

Figure 4: Android Architecture (from [Inc12])

Markus Koppensteiner, BSc Page 23

3 Android

Core part of the Android runtime is the Dalvik virtual machine. For each Android

application a separate Dalvik virtual machine is started, which runs in its own

process. The Dalvik virtual machine is therefore optimized for running multiple

virtual machines concurrently. Although Android applications are written in java,

the Dalvik virtual machine does not use java bytecode, but its own format, the

dex bytecode. This format is required because the Dalvik virtual machine is a

register machine, in contrast to the java virtual machine that is a stack machine.

Dex bytecode is created from java bytecode by the dx-tool which is part of the

Android SDK. A overview of the Dalvik virtual machine can be found in [Nic09]

and [BP10].

Android includes several C/C++ Libraries. These libraries enable Android to

provide capabilities needed by applications such as graphics, database or network

connections. Applications cannot access the libraries directly, but only through

the application framework.

The application framework provides system classes, e.g. for accessing hardware.

Many of these classes are called Manager. All classes of the application framework

are written in java and developers can use them. Some important components are:

• Views like buttons, lists, . . .

• Content Providers to manage the access to data.

• Resource Manager to provide and access e.g. different layouts for different

screen sizes, or language resources.

• Notification Manager to manage user notifications such as displaying icons,

vibrating, or flashing LEDs.

• Activity Manager to interact with different screens of a running application.

Markus Koppensteiner, BSc Page 24

3 Android

The components are described in more detail in section 3.3.

On the applications level reside the actual Apps. This may be both standard

applications shipped with Android and applications developed by third parties.

All applications use the application framework.

3.2 SDK/AVD

Before development for Android can start the Android software development kit

needs to be downloaded and installed. To run Android applications on the devel-

oping machine an Android virtual device is needed. [Inc12] recommends to use

Eclipse in conjunction with the Android Development Tools (ADT) plugin. The

ADT plugin provides e.g. custom XML editors for manipulating the manifest file

or user interface definitions. Guided project setup and support for creating signed

.apk files make developing easier. Appendix C shows how to install the SDK, the

ADT plugin and how to get started with Android programming in detail.

3.3 Android Components

Android components that are used by an application must be declared in a so called

manifest file. An Android application needs a manifest file with the exact name

”manifest.xml”. The manifest file contains information about the application. The

Android system needs this information in order to be able to start and run the

application. Content of the manifest file is e.g.:

• Activities

• Services

Markus Koppensteiner, BSc Page 25

3 Android

• Broadcast Receivers

• IntentFilters

• Permissions

• Minimum API level

Activities, services, and broadcast receivers are explained in the following sections.

They are started by special objects called intents. Intents hold certain information

for the Android system and also for the receiving component. This information is:

component name, action, data, category, extras and flags. The component name

represents the name of the component that should handle the intent. The action

is a string value representing the name of the action to perform. Data represents

the URI of the data to be acted on. Category denotes the kind of the component

that should handle the intent. Extras are used to transfer key value pairs from

sender to receiver. Flags (static defined in the intent class itself) can be set.

Intent filters describe what intents a component wants to receive. For example if

an activity is able to initialize an application it may declare the intent filter shown

in listing 1.

1 <in tent− f i l t e r>

2 <ac t i on android:name=”code android . i n t e n t . a c t i on .MAIN” />

3 <category android:name=”code android . i n t e n t . category .LAUNCHER” />

4 </ intent− f i l t e r>

Listing 1: Intent Filter

Markus Koppensteiner, BSc Page 26

3 Android

3.3.1 Activities

Activities represent screens that enable users to do different tasks. Android appli-

cations typically consist of several activities. One activity must be declared in the

manifest file as the main activity. Further activities can be started by calling the

startActivity(Intent) method.

The lifecyle of activities is shown in figure 5. An activity can be in one of the

states running, paused, or stopped. A state transition always cause the invocation

of a certain callback method. When an activity is newly created the onCreate()

callback method is called. If the activity is the main activity, this will be the entry

point for programming. onCreate() is followed by onStart(), which is called before

the activity becomes visible. After that, two things may happen: First the activity

becomes indeed visible, in this case onResume() is called and the activity is then

in the state running. Second the activity becomes hidden, in this case onPause() is

called and the activity is in the state paused. If an activity is in the state running,

the only following callback method is onPause(). onPause() is called when another

activity should come in the foreground.

Markus Koppensteiner, BSc Page 27

3 Android

Figure 5: Activity Lifecycle (from [Inc12])

After onPause() the activity may directly come in the foreground again. In this

case onResume() is called. The small cycle between onResume and onPause()

is also known as foreground lifetime. If the activity becomes invisible (because

another activity covers it entirely or its about to be destroyed), onStop() is called.

When the user navigates back so that the activity becomes visible again, on-

Restart() is called, followed by onStart(). The cycle between onStart() and on-

Stop() is also known as visible lifetime. If the activity is about to be destroyed,

onDestroy() is called. The cycle between onCreate() and onDestroy() is also known

as entire lifecycle.

Markus Koppensteiner, BSc Page 28

3 Android

In the activity lifecycle unexpected events may happen. Device configuration

changes such as screen orientation cause the android system to call onDestroy(),

immediately followed by onCreate(). To handle such events the methods onSave-

InstanceState() and onRestoreInstanceState() can be used as shown in figure 6.

Figure 6: Activity Instancestate (from [Inc12])

When an activity A starts another activity B, then activity B is pushed on the back

stack (A must already exist on the back stack, since it has already been created)

as shown in figure 7. onStop() has been called on activity A and activity B is in

state running. The topmost activity on the back stack has the focus. When the

back button is pressed, activity B is popped from the back stack and it is about

to be destroyed. Activity A is then brought back to the foreground and its state

changes to running.

Figure 7: Activity Backstack (from [Inc12])

Markus Koppensteiner, BSc Page 29

3 Android

The basic user interface layout of an activity is declared in an xml file. To define

the user interface of the activity, setContentView(int) must be called within the

onCreate() method as shown in listing 2. The parameter ”R.layout.some layout” is

an integer value identifying the xml file to load from. This integer value is created

automatically by the SDK when the project is built (more precisely the class R is

generated, that holds identifiers for all resources).

1 public void onCreate (Bundle savedIns tanceState) {

2 super . onCreate (savedIns tanceState) ;

3 setContentView (R. layout . some layout) ;

4 }

Listing 2: Activity Layout

3.3.2 Services

In contrast to activities, services do not provide a user interface. Services are used

for background tasks. They have to be declared in the manifest file. There are

two forms of services: a started form and a bound form.

• Started: created by calling startService(). This form may run even if the

component that created the service was destroyed.

• Bound: created by calling bindService(). Components can bind to this service

in order to be able to interact with it. Multiple components may bind to a

service. If the last component unbinds, the service will be destroyed.

Services do not create their own thread. However it may be necessary to create a

separate thread within a service for long running tasks such as networking. This

Markus Koppensteiner, BSc Page 30

3 Android

avoids blocking of the main thread and therefore reduces the risk of an ”Application

not responding” error.

Figure 8 shows the lifecycle for both started and bound services. A started service

is created when a component calls startService(). When this service is in state

running there are two ways to destroy it: First the service destroys itself, when the

task is done, by calling stopSelf(). Second a client component calls stopService().

A bound service is created when a component calls bindService(). Clients can

communicate with the service via the IBinder interface. The service stops if there

are no more clients bound to it.

The Android system destroys services when they are stopped. Its worth mentioning

that services can be started and bound at the same time. Although there is no

obvious reason for hybrid services its technically possible and developers should

bear in mind that such a hybrid service will only stop when the stopping conditions

for both service forms are met.

Markus Koppensteiner, BSc Page 31

3 Android

Figure 8: Service Lifecycle (from [Inc12])

3.3.3 Broadcast Receivers

As their name imply broadcast receivers are components that can react on broad-

casts. Broadcasts may be sent by the Android system or by another component

that called Context.sendBroadcast(). They are delivered as Intent Objects. There

are two ways to use a broadcast receiver. First way (static) is to declare it in the

manifest file. In this case the broadcast receiver is registered when the applica-

tion is installed. An application receives broadcasts it has registered for, e.g. it

may declare a receiver for ACTION BOOT COMPLETED in order to start itself

Markus Koppensteiner, BSc Page 32

3 Android

after system reboots. Second way (dynamic) is to implement a subclass of the

abstract baseclass BroadcastReceiver and use it within an activity or service. Such

a receiver exits only for the lifetime of its parent component.

3.3.4 Content Providers

Many applications allow to store or load data. A content provider manages that

data. Using credentials content providers can provide their data to any application.

Content providers are loosely coupled to applications via an interface. Since the

developed software Androgios does not use content providers they are not explained

in more detail here.

Markus Koppensteiner, BSc Page 33

4 Androgios

4 Androgios

Androgios is an Android application, which enables users not only to be informed

about the current network status but also to react on newly appeared problems.

Figure 9 shows the main setup.

Figure 9: System Overview

The Android device is capable to connect to a Nagios server. Since there is no web

service available on Nagios servers by default, Androgios uses the cgi programs

and parses information from HTML results. The gathered information is then

displayed in a way optimized for small screen sizes. Androgios provides most

of the functionality of the standard web user interface. Furthermore, Androgios

allows to filter information, in order to find the host (or service) of interest quickly.

Androgios does not require changes to the Nagios server or to any monitored entity.

This section is structured as follows: First an overview is given about what com-

Markus Koppensteiner, BSc Page 34

4 Androgios

petitor software is available in the Android marketplace. Then an architectural

overview of Androgios gives an idea how Androgios is designed and how it fulfills

its tasks. A detailed description of the concrete implementation builds the main

part. The testing strategy and ideas for future work complete this section.

4.1 Competitor Software

According to c’t article [Rie10] from November 2010, Nagroid and NagMonDroid

were the first Apps available.

Nagroid is a pure problem viewer. Its capabilities are very limited. Hosts and

services can only be shown if they are not OK. In case of problems there is no way

to acknowledge them or to send any external command. However, Nagroid can

start a service that checks for problems and alerts the user if necessary.

NagMonDroid is also very limited. In contrast to Nagroid, NagMonDroid is capa-

ble to display hosts and services in state OK. Problems are not identified reliably.

This is reported in [Rie10] and also in experience reports from the Android mar-

ketplace. A manual refresh is not possible and the service, once started cannot be

stopped (there is a button for stopping the service, but polls and alerts go on).

Additionally there is no support for HTTPS.

Both, Nagroid and NagMonDroid are not further developed, but the problem was

realized by the Android developer community. C’t article [Döl12] reports in march

2012 about the better developed Apps aNag and uNagi.

ANag is capable to handle multiple Nagios servers. When the App is started a list

of configured Nagios servers is displayed. The list entries show how many hosts

and services are in which state. Details can only be displayed for problem hosts

Markus Koppensteiner, BSc Page 35

4 Androgios

and services. The same is true for external commands: only commands regarding

problems, such as to acknowledge a problem, are available.

UNagi is capable to handle multiple Nagios servers too. When it starts it displays

all hosts including their state. Services are display after a click on a host. Details

and external commands are available for hosts and services in all states. UNagi is

probably the most developed Nagios App so far. Drawbacks are that uNagi needs

at least Android 2.2 and only Nagios version 3 is supported.

Table 1 shows the main aspects of the different applications in comparison.

Nagroid NagMonDroid ANag UNagi

Minimum Android 1.1 1.5 1.5 2.2

Multiple Nagios Servers no no yes yes

Display hosts/services with problems yes yes yes yes

Display hosts/services with no problem no yes yes yes

Auto reload yes yes yes yes

Manual Reload yes no yes yes

Commands regarding problems no no yes yes

Other commands no no no yes

Widget no yes yes yes

HTTPS yes no yes yes

Compatible Nagios versions 3.x 3.x 2.x, 3.x 3.x

Table 1: Competitor Software Comparision

4.2 Architecture

In order to satisfy the requirements, a basic architecture has been developed. Fig-

ure 10 views the main aspects of the entire architecture in a simplified way (i.e.

only base classes are shown).

Markus Koppensteiner, BSc Page 36

4 Androgios

Figure 10: Base Architecture

The class NagiosInstance represents a Nagios server. It holds basic information

about this Nagios Server such as the URL and credentials. Furthermore it stores

user preferences related to this Nagios server instance. Whenever new information

from the Nagios server should be fetched, the NagiosInstance class uses its Poller

class. Goal of this action is to crate an updated model of the current network state

and to inform view components about the change. In the first step the Poller gath-

ers the desired information in HTML form using a Fetcher class. Once the HTML

Markus Koppensteiner, BSc Page 37

4 Androgios

representation is available, it needs to be transformed and written in a model class,

since the HTML representation is not a proper way to share information within

Java code. A Parser class is used to fulfill this transformation task. When the

transformation is done, view components have to be informed about the update.

For this reason an update broadcast is sent. Registered broadcast receivers (any

open activity screen, the polling service, or the widget) can then read the updated

model and refresh the information they view. Due to the fact that there are not

only display requirements but also management requirements the NagiosInstance

class can use a CmdSender class to send external commands to the Nagios server.

The MasterController class holds information which is not only of interest for a

particular NagiosInstance, but Application wide. This is e.g. the application Con-

text class, or user preferences such as the poll free interval. The MasterController

is notably able to store multiple NagiosInstance classes. However, the current im-

plementation of Androgios does only support one NagiosInstance. The ability to

store multiple NagiosInstance classes is intended to be used in conjunction with

future improvements, in order to avoid major architectural changes. Another im-

portant issue of the MasterController is to enable and disable the polling service.

The PollingService class gets a reference to the NagiosInstance by using the Mas-

terController. On the basis of the user preference it periodically initiates a poll

as described before. That way the PollingService does not need to inform view

components about updates, this is done automatically by NagiosInstance. The

only issue left is to alert the user in case of network problems. This is done by the

PollingService itself.

Markus Koppensteiner, BSc Page 38

4 Androgios

4.3 Implementation

This subsection describes the concrete implementation of the architecture in a

much more detailed fashion. It also discusses which challenges arose and how they

were solved.

4.3.1 Android Manifest

A manifest file is necessary for each Android application. This file must be located

in the projects root directory. It declares the minimum API Level, user permissions

and each component used. Listing 3 shows Androgios’ manifest file.

1 <?xml version=”1 .0 ” encoding=”utf−8”?>

2 <mani fe s t xmlns :andro id=”ht t p : // schemas . android . com/apk/ r e s / android ”

3 package=”at . jku . koppenste iner . androg ios ”

4 andro id :ver s ionCode=”1 ” android:vers ionName=”1 .0 ”>

5 <uses−sdk android:minSdkVers ion=”3 ” />

6 <uses−permis s ion android:name=”android . permis s ion .INTERNET” />

7 <uses−permis s ion android:name=”android . permis s ion .RECEIVE BOOT COMPLETED” />

8 <uses−permis s ion android:name=”android . permis s ion .VIBRATE” />

9 <uses−permis s ion android:name=”android . permis s ion .ACCESS NETWORK STATE” />

10

11 <a p p l i c a t i o n an dr o id : i c o n=”@drawable/ i c on g r e en ” a n d r o i d : l a b e l=”@str ing /app name ”>

12

13 <a c t i v i t y android:name=” . Androg iosAct iv i ty ” a n d r o i d : l a b e l=”@str ing /app name ”>

14 <in tent− f i l t e r>

15 <ac t i on android:name=”android . i n t e n t . a c t i on .MAIN” />

16 <category android:name=”android . i n t e n t . category .LAUNCHER” />

17 </ intent− f i l t e r>

18 </ a c t i v i t y>

19

20 <s e r v i c e android:name=” . s e r v i c e . P o l l i n g S e r v i c e ”>

21 <in tent− f i l t e r>

22 <ac t i on android:name=” . s e r v i c e . P o l l i n g S e r v i c e ”></ ac t i on>

23 </ intent− f i l t e r>

24 </ s e r v i c e>

Markus Koppensteiner, BSc Page 39

4 Androgios

25

26 <r e c e i v e r android:name=” . widget . AndrogiosWidget ”>

27 <in tent− f i l t e r>

28 <ac t i on android:name=”android . appwidget . a c t i on .APPWIDGET UPDATE” />

29 </ intent− f i l t e r>

30 <meta−data android:name=”android . appwidget . p rov ide r ”

31 a n d r o i d : r e s o u r c e=”@xml/ a n d r o g i o s w i d g e t p r o v i d e r i n f o ” />

32 </ r e c e i v e r>

33

34 <r e c e i v e r android:name=” . s e r v i c e . BootReceiver ” andro id : expor ted=”true ”>

35 <in tent− f i l t e r>

36 <ac t i on android:name=”android . i n t e n t . a c t i on .BOOT COMPLETED” />

37 <category android:name=”android . i n t e n t . category .DEFAULT” />

38 </ intent− f i l t e r>

39 </ r e c e i v e r>

40

41 <a c t i v i t y android:name=”Con f i gAct iv i ty ”></ a c t i v i t y>

42 <a c t i v i t y android:name=”Nav igat ionAct iv i ty ”></ a c t i v i t y>

43 <a c t i v i t y android:name=”Moni tor ingFeaturesAct iv i ty ”></ a c t i v i t y>

44 <a c t i v i t y android:name=”CommentDetailActivity ”></ a c t i v i t y>

45 <a c t i v i t y android:name=”DowntimeDetai lAct ivity ”></ a c t i v i t y>

46 <a c t i v i t y android:name=”DowntimesActivity ”></ a c t i v i t y>

47 <a c t i v i t y android:name=”HostCommentsActivity ”></ a c t i v i t y>

48 <a c t i v i t y android:name=”Hos tDeta i lAc t iv i ty ”></ a c t i v i t y>

49 <a c t i v i t y android:name=”HostGroupsActivity ”></ a c t i v i t y>

50 <a c t i v i t y android:name=”Hos tL i s tAc t i v i t y ”></ a c t i v i t y>

51 <a c t i v i t y android:name=” H o s t L i s t F i l t e r A c t i v i t y ”></ a c t i v i t y>

52 <a c t i v i t y android:name=”HostProblemsActiv ity ”></ a c t i v i t y>

53 <a c t i v i t y android:name=”OutageDeta i lAct iv i ty ”></ a c t i v i t y>

54 <a c t i v i t y android:name=”OutagesAct iv i ty ”></ a c t i v i t y>

55 <a c t i v i t y android:name=”P r o c e s s D e t a i l A c t i v i t y ”></ a c t i v i t y>

56 <a c t i v i t y android:name=”ServiceCommentsActivity ”></ a c t i v i t y>

57 <a c t i v i t y android:name=” S e r v i c e D e t a i l A c t i v i t y ”></ a c t i v i t y>

58 <a c t i v i t y android:name=”Serv i ceGroupsAct iv i ty ”></ a c t i v i t y>

59 <a c t i v i t y android:name=” S e r v i c e L i s t A c t i v i t y ”></ a c t i v i t y>

60 <a c t i v i t y android:name=” S e r v i c e L i s t F i l t e r A c t i v i t y ”></ a c t i v i t y>

61 <a c t i v i t y android:name=”Serv i ceProb l emsAct iv i ty ”></ a c t i v i t y>

62 </ a p p l i c a t i o n>

63 </ mani f e s t>

Listing 3: Manifest

Markus Koppensteiner, BSc Page 40

4 Androgios

Androgios’ manifest file declares API Level 3 as minimum required. An API Level

smaller than 3 is not applicable, because it is the minimum requirement for the

widget (Widgets were introduced with API Level 3).

Then the four permissions INTERNET (to do the polling), RECEIVE BOOT COMPLETED

(to autostart Androgios), VIBRATE (to notify the user) and ACCESS NETWORK STATE

(to detemine available network connections), are declared. Android applications

should not be overprivileged. The tool Stowaway discussed in [FCH+11] (available:

http://www.android-permissions.org/)was used to check if the principle of least

privilege is satisfied. Figure 11 shows the output of Stowaway.

Figure 11: Stowaway output

Additionally all components used by Androgios are declared: The main activity,

the polling service, the widget, the boot receiver and all other activities as discussed

in section 4.3.8.

Markus Koppensteiner, BSc Page 41

4 Androgios

In order to make an activity the main activity, a special intent filter has to be

declared (Listing 3 line 13 to 18). The Widget is declared as an update receiver

(Listing 3 line 26 to 32) in order to enable the widget to get information about

changes in the model.

4.3.2 Model

Network state information which is represented in HTML format needs to be parsed

into a model. This model must be suitable to share the network state informa-

tion between different components. Androgios distinguishes two different models:

The TacticalOverview and the MonitoringModel. The TacticalOverview only con-

sists of information fetched from the tactical overview URL (i.e. tac.cgi). This

information is sufficient to display the start screen, display the widget and also to

determine if important problems arose. Figure 12 shows the composition of the

TacticalOverview model. The HTML file delivered from tac.cgi is also quite small

(typically less than 20kB). Therefore the TacticalOverview is the model used when

the polling service processes its continuous task. Due to the fact that there are

separate models used for overview and detailed data, the polling service and user

initiated polls do not interfere.

Markus Koppensteiner, BSc Page 42

4 Androgios

Figure 12: Tactical Overview Model

The more detailed MonitoringModel showed in figure 13 is used by displaying com-

ponents that need more detailed information. The MonitoringModel essentially

consists of several lists of: hosts, hostgroups, servicegroups, downtimes, comments

and outages as well as a process object which represents the Nagios server pro-

cess. Whenever a specific activity needs certain data in the model, it should not

be necessary to fetch HTML from more than one URL. Therefore lists containing

comments or downtimes are held by the MonitoringModel itself. The fields host

name respectively service name are provided for both cases by Nagios. So there is

no need to build up a big data structure that holds all hosts/services. This would

cause overhead in memory and time complexity. This argument is not true for the

list of services. Nagios does not provide a field for services that would allow to

identify the host it belongs to. However the service list provided by Nagios does

also contain the according host names. For that reason the list of services is not

held by the MonitoringModel, but by the Host class. That way it is implicitly clear

to which host a service belongs and no mapping information has to be maintained.

Markus Koppensteiner, BSc Page 43

4 Androgios

Figure 13: Detailed Monitoring Model

In contrast to the TacticalOverview the MonitoringModel is never complete. It

does only hold information currently needed by the active view. That way the

MonitoringModel can be kept as small as possible and consistency can be ensured

easily. Most parsers create the MonitoringModel from scratch. An exception is

when details of a particular host is parsed. This shall not destroy an already

existing list of hosts. The same is true for services (see also section 4.3.5).

Building a model may take a while. A model is therefore always built within

Markus Koppensteiner, BSc Page 44

4 Androgios

a separate thread to avoid blocking the GUI thread. Android would display an

”application not responding”error message if the GUI thread blocked for more than

5 seconds. Parallel model building arises the problem that changes may occur while

a displaying component wants to read the model. To handle this issue, data held

by a model is never changed after is has been built. For the case that parts of the

current model needs to be preserved while updating, the whole model can be deep

copied by calling the clone() method. This immutability avoids the necessity of

locking while reading. When a model change finishes a broadcast is sent to trigger

an update of UI elements.

4.3.3 Polling

The purpose of polling is to update model and view based on newly fetched data.

The Poller is implemented as an inner class of NagiosInstance. There are two poll

methods implemented: One for polling the TacticalOverview and the second for

polling (a part of) the MonitoringModel. The poll() methods are responsible for

several tasks:

• Check if a network connection is currently available.

• Determine the correct URL.

• Fetch the HTML from that URL.

• Initiate the according parser.

• Send broadcasts to the Widget and other UI elements.

Markus Koppensteiner, BSc Page 45

4 Androgios

Polling of the TacticalOverview: At this point, first the connectivity has to

be checked. The actual connectivity check is implemented in the NagiosInstance

class. In case of no connectivity a flag in the model is set to indicate an unsuccessful

update attempt. Update broadcasts are sent immediately in this case.

A user has to provide a base URL which points to the cgi-bin folder of the Nagios

server. To determine the correct URL for fetching the TacticalOverview is easy. It’s

only baseURL + tac.cgi. In order to fetch the HTML one of two fetcher types may

be used, HTTP or HTTPS. Both types implement the interface Fetcher (see section

4.3.4). Once the HTML representation is known, the TACParser is used to build

the new TacticalOverview (see section 4.3.5). As last step two update broadcasts

are sent. One to inform all activities displaying TacticalOverview information and

another to inform the Androgios widget. All these tasks are performed within

their own thread where fetching, parsing and broadcast sending are synchronized

on the TacticalOverview object.

Polling of the MonitoringModel: This is similar to the polling process of

the TacticalOverview. The main difference is that this method needs a param-

eter of the URL to process. On the basis of this parameter the corresponding

parser can be determined (see also section 2.2 for details on cgi URLs). How-

ever the URL does not always exactly tell what parser should be used or how it

should be initialized. E.g. the URLs for the details of two different hosts are of

course not equal, since the URLs consist of different host names. Nevertheless the

same parser is needed. This can be resolved by only comparing the starting se-

quence(”extinfo.cgi?type=1&host=”) and ignoring the host specific part. A similar

problem is that the URL for the full list of hosts starts with the same sequence as

a filtered list of hosts. Additionally the list of host problems is a special case of the

Markus Koppensteiner, BSc Page 46

4 Androgios

filtered list. To overcome this, the order of the case distinction is important: First

is has to be checked if the URL equals the host problems URL, second is has to

be checked if the URL equals the URL for the full host list and third it has to be

checked if the URL starts with the URL for the full host list. To not respect this

order would cause a wrong initialization of the HostListParser i.e. the constructor

flags problemsOnly and filtered could not be set correctly. The same problems are

true for services and they can be treated the same way.

4.3.4 Fetching

Goal of the Fetcher is to provide a HTML string delivered by the Nagios server.

Due to the fact that Androgios must be able to handle secure and insecure con-

nections, the interface Fetcher is used. This interface only demands to implement

a fetchHTML() method which delivers the HTML string.

HttpFetcher: This implementation needs the URL to fetch and additionally

username / password for authentication purpose. Authentication can be done by

calling the setRequestProperty() method of a HttpURLConnection object. The

”username : password” combination has to be Base64 encoded in basic authenti-

cation mode. Since there is no Base64 encoder available in the Java library the

open source implementation [Heu10] is used.

Tests have shown that HTML could often not be fetched at the first attempt, espe-

cially when the mobile network connection is in use. The reason for this behavior

is not entirely clear but only an observation. Therefore by default HTML fetch-

ing is tried three times. This procedure improves the rate of successful attempts

significantly.

Markus Koppensteiner, BSc Page 47

4 Androgios

HttpsFetcher: This implementation needs an additional parameter which sig-

nals if self signed certificates should be accepted. By default the Java HttpsURL-

Connection class does not accept self signed certificates. However, self signed

certificates are widely used, especially for ”internal” websites. To accept those cer-

tificates two things need to be done: First a TrustManager has to be installed. This

is done when the corresponding user preference is set (or read on startup). Second

a HostnameVerifier has to be set that accepts the host name. Since the permanent

import of new root certificates is currently not supported by Android (at least not

on ”non-rooted” devices) an ”all accepting” host name verifier is implemented in a

SSLHelper class. The setHostNameVerifier() method of the HttpsURLConnection

object is called only if the according flag is set. In case of a certificate related error

a SSLException is thrown.

4.3.5 Parsing

A parser has to transform HTML represented information in a model. Every pars-

ing process involves only one HTML string. The following HTML representations

have to be parsed:

• TacticalOverview

• Host list

• Host groups

• Host details

• Service list

• Service groups

Markus Koppensteiner, BSc Page 48

4 Androgios

• Service details

• Outages

• Comments

• Downtimes

• Nagios process

For maintainability reasons a separate parser for each HTML representation is

implemented. However, representation differences due to different Nagios versions

have to be handled by one parser. The parsers extend an abstract base class called

Parser. Subclasses of Parser must implement the method updateModel().

No parser may alter an existing model. Each parser needs to create a new model

and set the according field in the NagiosInstance when the whole new model is

created. That way a model update appears as an atomic operation and displaying

components do not need to get a lock on the model. For displaying components it

is sufficient to store their own reference to the model (see also section 4.3.8). Most

parsers do not need to preserve old model information. This is however not true

for host detail respectively service detail parsers. Both extend an already created

list of hosts/services. To ensure that, once created, a model is immutable in those

cases, it is necessary that parsers are able to create deep copies of the model. All

classes belonging to the model therefore implement the clone() method.

For the actual parsing the open source library jsoup is used. Jsoup is distributed

under the MIT license. It allows to create a DOM easily and extract data, using

DOM traversal, CSS selectors or jquery like methods, according to [Hed12]. The

complete API reference of jsoup can be found at the jsoup homepage.

Markus Koppensteiner, BSc Page 49

4 Androgios

4.3.6 Sending External Commands

A prerequisite for sending external commands is to have the line ”check external commands=1”

in the Nagios server configuration. Otherwise the Nagios server would reject all

commands sent. External commands are sent to the Nagios server via HTTP

POST method. In order to create the correct POST data string, the utility

class PostDataBuilder has been implemented. It is capable to provide POST data

strings for all the external commands demanded by the management requirements

in section A.

The correct format of the commands is not well documented. The tables 2 and

3 are available in [Bar09] and show possible values for the parameter ”cmd typ”

which indicates what command should be executed. (Androgios does not imple-

ment all commands shown.)

Global Parameter Start/Enable Stop/Disable

NOTIFICATIONS 11 12

SVC CHECKS 35 36

ACCEPTING PASSIVE SVC CHECKS 37 38

HOST CHECKS 88 89

ACCEPTING PASSIVE HOST CHECKS 90 91

EVENT HANDLER 41 42

FLAP DETECTION 61 62

PERFORMANCE DATA 82 83

Table 2: Command Types for global parameters(from [Bar09])

Markus Koppensteiner, BSc Page 50

4 Androgios

Command Host Service HostGroup ServiceGroup

ADD HOST COMMENT 1 - - -

DEL HOST COMMENT 2 - - -

DEL ALL HOST COMMENT 20 - - -

ADD SVC COMMENT - 3 - -

DEL SVC COMMENT - 4 - -

DEL ALL SVC COMMENT - 21 - -

ENABLE ACTIVE SVC CHECK 15 5 67 113

DISABLE ACTIVE SVC CHECK 16 6 68 114

SCHEDULE SVC CHECK 17 7 - -

ENABLE ACTIVE HOST CHECK 47 - 103 115

DISABLE ACTIVE HOST CHECK 48 - 104 116

SCHEDULE HOST CHECK 96 - - -

ENABLE HOST NOTIFICATIONS 24 - 65 111

DISABLE HOST NOTIFICATIONS 25 - 66 112

DELAY HOST NOTIFICATIONS 10 - - -

ENABLE SVC NOTIFICATIONS 28 22 63 109

DISABLE SVC NOTIFICATIONS 29 23 64 110

DELAY SVC NOTIFICATIONS 19 9 - -

ACKNOWLEDGE PROBLEM 33 34 - -

REMOVE ACKNOWLEDGE 51 52 - -

ENABLE PASSIVE HOST CHECKS 92 - 107 119

DISABLE PASSIVE HOST CHECKS 93 - 108 120

ENABLE PASSIVE SVC CHECKS - 39 105 117

DISABLE PASSIVE SVC CHECKS - 40 106 118

SCHEDULE HOST DOWNTIME 55 - 84 121

DEL HOST DOWNTIME 78 - - -

SCHEDULE SVC DOWNTIME - 56 85 122

DEL SVC DOWNTIME - 79 - -

ENABLE EVENT HANDLER 43 45 - -

DISABLE EVENT HANDLER 44 46 - -

ENABLE FLAP DETECTION 57 59 - -

DISABLE FLAP DETECTION 58 60 - -

Table 3: External Command Types (from [Bar09])

Markus Koppensteiner, BSc Page 51

4 Androgios

The parameter ”cmd typ” is not the only required one. ”cmd mod” is always set to

the value 2 which means the command is immediately committed, without further

confirmation. Additional parameters depend on the command itself.

Host commands always require the parameter ”host” to indicate the host name.

The following host commands require additional parameters:

ADD HOST COMMENT:

”com data” is an arbitrary string value representing the comment. ”com author”

indicates who has written the comment. Androgios uses the login name from

its configuration for this parameter. ”persistent” indicates whether the comment

should remain once the acknowledgement is removed. Its value is either ”on” or

the parameter is omitted.

DEL HOST COMMENT:

”com id” identifies a particular comment. Its an integer value delivered from the

Nagios server.

SCHEDULE HOST CHECK:

”start time”is a date string indicating when the check should be executed. ”force check”

indicates if Nagios will force a check of the host regardless of both, what time the

scheduled check occurs and whether checks for the host are enabled or not. Its

value is either ”on” or the parameter is omitted.

ACKNOWLEDGE HOST PROBLEM:

”com data”, ”com author” and ”persistent” are treated the same way as when

adding a host comment. ”sticky ack”indicates to disable notifications until the host

recovers. Its value is either ”on” or the parameter is omitted. ”send notification”

indicates whether an acknowledgement notification is sent out by the Nagios server.

Markus Koppensteiner, BSc Page 52

4 Androgios

Its value is either ”on” or the parameter is omitted.

DISABLE/ENABLE HOST NOTIFICATIONS:

”ptc” indicates whether the command should be propagated to child hosts. Its

value is either ”on” or the parameter is omitted.

SCHEDULE HOST DOWNTIME:

”com author” and ”com data” are treated the same way as when adding a host

comment. ”start time” and ”end time” are date strings indicating the downtime

period. ”fixed” indicates whether the downtime starts at a given time (fixed) or

at the time when the host becomes unavailable (flexible). Its value is either ”0”

(flexible downtime) or ”1” (fixed downtime). ”hours” and ”minutes” indicate the

duration of a flexible downtime. Both are omitted in case of a fixed downtime.

”childoptions” indicates how to handle child hosts. Its value is either ”0” (do

nothing), ”1”(schedule triggered downtime for all child hosts) or ”2”(schedule non-

triggered downtime for all child hosts).

DEL HOST DOWNTIME:

”down id” identifies a particular downtime. Its an integer value delivered from the

Nagios server in the downtime list.

DISABLE/ENABLE ACTIVE SVC CHECK

DISABLE/ENABLE SVC NOTIFICATIONS:

These commands affect all services running on the host. The parameter ”ahas”

indicates whether the command should affect the host too. Its value is either ”on”

or the parameter is omitted.

SCHEDULE SVC CHECK:

Does also affect all services running on the host. Both parameters, ”start time”

Markus Koppensteiner, BSc Page 53

4 Androgios

and ”force check”, are treated the same way as when scheduling a host check.

Service commands always need the parameters ”host”and ”service”to indicate host

name and service name. The commands SCHEDULE SVC CHECK, ACKNOWL-

EDGE SVC PROBLEM and SCHEDULE SVC DOWNTIME require the same

additional parameters as the corresponding host commands do.

4.3.7 Date Formats

Nagios supports four different date formats. It is important to recognize that the

Nagios documentation does not correspond with the actual implementation.

The following formats are documented:

• us (MM/DD/YYYY HH:MM:SS e.g. 06/30/2002 03:15:00)

• euro (DD/MM/YYYY HH:MM:SS e.g. 30/06/2002 03:15:00)

• iso8601 (YYYY-MM-DD HH:MM:SS e.g. 2002-06-30 03:15:00)

• strict-iso8601 (YYYY-MM-DDTHH:MM:SS e.g. 2002-06-30T03:15:00)

Nagios does implement the following formats:

• us (MM-DD-YYYY HH:MM:SS e.g. 06-30-2002 03:15:00)

• euro (DD-MM-YYYY HH:MM:SS e.g. 30-06-2002 03:15:00)

• iso8601 (YYYY-MM-DD HH:MM:SS e.g. 2002-06-30 03:15:00)

• strict-iso8601 (YYYY-MM-DDTHH:MM:SS e.g. 2002-06-30T03:15:00)

Markus Koppensteiner, BSc Page 54

4 Androgios

Androgios must format date parameters according to the Nagios configuration, in

order to ensure that commands work properly. This is done by the DateHelper

class. This issue additionally requires the user to configure the correct date format

in the Androgios configuration.

4.3.8 Activities

Most activities in Androgios are used to present model information to the user.

All these activities have the same user interface design and similar needs regarding

the handling of model updates. For this reason these activities are subclasses of

the abstract base class AbstractModelActivity.

AbstractModelActivity implements a model update receiver. This receiver is regis-

tered when the activity is created and unregistered when the activity is destroyed.

A reference to the NagiosInstance is also stored in the base class. Every activ-

ity needs a standard menu, that is also implemented here. The standard menu

includes buttons for refreshing, starting the configuration activity and for en-

abling/disabling the polling service. Two methods are responsible for handling

updates: update() that does only update the activities viewing components with-

out altering the model and poll(url) that initiates the polling process. As shown

in figure 14 after an initiated poll has finished, a broadcast is received and the

receiver calls the update() method. When the activity is created a decision has to

be made which of the both methods should be called. The poll(url) method may

also be called when the user presses the refresh button from the standard menu

when the activity is in running state.

Markus Koppensteiner, BSc Page 55

4 Androgios

Figure 14: Typical Life Cycle

AbstractModelActivity implements for both update() and poll(url) small parts that

are always treated equally such as setting header texts. Subclasses have to extend

both methods according to their specific needs. The decision of which of the

two methods have to be called after instantiation, has to be implemented by the

subclasses too.

Main task of the subclasses that extend AbstractModelActivity is to display the

model information. Each subclass has therefore its own BaseAdapter implementa-

tion (as inner class) to fill a ListView. An extension of BaseAdapter needs to im-

plement the following methods: getCount(), getItem(position), getItemId(position)

and getView(position,...). The most interesting method here is getView(position,...).

It specifies what to display at the given position. In this method the model is ac-

cessed in order to create a proper View. The maximum position is determined by

Markus Koppensteiner, BSc Page 56

4 Androgios

the return value of getCount(). Android does not allow to alter data that is used to

compute list entries from within another thread (if Android detects such situations

an IllegalStateException is thrown). However, the time intensive procedures for

fetching and parsing are done from within separate threads. To avoid unexpected

changes in data each adapter has its own reference to the model. This reference is

never changed. Whenever the update() method is called, a new adapter is instanti-

ated. The new adapter is then set on the ListView. Although the NagiosInstance

class provides constants for the URLs it may be necessary to append parameters

such as a host name. This must be implemented in the poll(url) method.

Some activities allow to send external commands. These activities have a slightly

different layout of the user interface: They implement a Spinner (the Android

version of a drop down list) to choose a command and a button at the bottom

to finally send the command. To fill the Spinner with proper commands another

implementation of BaseAdapter is used. The listener for the button that sends the

command needs to read what command is chosen. As pointed out in section 4.3.6

there are several commands that need additional parameters. Therefore the button

listener displays a custom dialog to ask the user which parameter values should

be used. When all parameter values are known the utility class PostDataBuilder

is used to create the correct parameter string and finally the command is sent

using the sendCmd(Postdata) method of the NagiosInstance. After the message

is sent the result message from the Nagios server is presented to the user. This

information helps the user to decide if he should retransmit the command (in

case of an error) or if he should do a refresh after a few moments. Nagios uses a

queue to process commands, therefore it may take some time until the command

is processed. Therefore it is not possible to refresh automatically in a reliable way.

Host and service lists can be filtered by Nagios itself. The GET parameters host-

Markus Koppensteiner, BSc Page 57

4 Androgios

statustypes, servicestatustypes, hostprops and/or serviceprops have to be

appended to the URL in order to tell Nagios to do so. The parameter values are

integer types. The tables 4, 5, and 6 show the meaning of the integer values.

Value Meaning

1 PENDING

2 UP

4 DOWN

8 UNREACHABLE

Table 4: Host Status Types

Value Meaning

1 PENDING

2 OK

4 WARNING

8 UNKNOWN

16 CRITICAL

Table 5: Service Status Types

Value Meaning

1 in scheduled downtime

2 not in scheduled downtime

4 acknowledged

8 not acknowledged

16 checks disabled

32 checks enabled

64 eventhandler disabled

128 eventhandler enabled

256 host flap detection disabled / service flap detection enabled

512 host flap detection enabled / service flap detection disabled

1024 flapping

2048 not flapping

4096 notifications disabled

8192 notifications enabled

16384 passive checks disabled

32768 passive checks enabled

65536 passive check result

131072 active check result

Table 6: Host/Service Properties for filtering

Androgios uses separate activities to ask the user about the filter criteria. These

activities simply present checkboxes for choosing the criteria. The checkboxes can

Markus Koppensteiner, BSc Page 58

4 Androgios

be transformed into the correct integer values, as shown in listing 4. Since all

the values are a power of two, they can be added to combine them. Nagios treats

combinations in status types and properties differently: While multiple selection in

status types are treated as logical OR, multiple selection in properties are treated

as logical AND. An example: if hoststatustypes is set to 6 (2..UP, 4..DOWN) the

resulting list will contain hosts that are either in state UP or in state DOWN, the

result increases the more selections are made. On the other hand if hostprops is set

to 3072 (1024..FLAPPING, 2048..NOT FLAPPING) the resulting list is empty,

because no host can have both properties at the same time.

1 public stat ic int getFi l terParam (CheckBox [] checkBoxes){

2 int param = 0 ;

3 for (int i =0; i<checkBoxes . l ength ; i ++){

4 i f (checkBoxes [i] . i sChecked ()){

5 param += 0x1<<i ;

6 }

7 }

8 return param ;

9 }

Listing 4: Creating Filter Parameters

4.3.9 Resources

Resources such as different layouts or images sould always be stored separately to

ensure that they can be maintained without changes in the source code.

The Androgios project places different resource types in specific subdirectories of

the projects ”res” folder. The structure looks as follows:

Markus Koppensteiner, BSc Page 59

4 Androgios

androgios/

src/

...

res/

drawable/

icon_green.png

widget_background.png

...

layout/

abstract_model_cmd_layout.xml

abstract_model_layout.xml

main_activity_layout.xml

androgios_widget_layout.xml

...

raw/

msg.wav

values/

downtime_types.xml

preference_values.xml

strings.xml

xml/

androgios_widget_providerinfo.xml

config.xml

The drawable folder contains graphics such as icons in different colors and the

background image of the widget.

Markus Koppensteiner, BSc Page 60

4 Androgios

The layout folder contains definitions for different activity layouts. Layouts are de-

fined in XML and describe how all the UI elements are nested. Activities that offer

to send external commands share the same layout (abstract model cmd layout.xml)

and activities that only show model information also share a common layout

(abstract model layout.xml). All other activities have their own layout

(e.g. main activity layout.xml). A layout must also be defined for the widget

(androgios widget layout.xml).

The raw folder only contains the audio file to play when the user has to be alerted.

The XML files in the values folder provide strings that have to be displayed any-

where. Downtime types.xml provides two string arrays that are used to fill the

two spinner elements of the dialog that is shown when the user schedules a new

downtime for a host or a service. Preference values.xml provides string arrays

that are used when the user configures poll interval or the Nagios date format.

Strings.xml provides all other strings displayed in Androgios, except the strings

displayed within the preferences activity (these strings are defined in xml/con-

fig.xml). Androgios does not display any strings that are written directly in the

source code. Putting string values in resource files brings the advantage that in-

ternationalization can be done in a simple way. Section 5.1 describes how to add

further languages. In order to use the string provided as resource, subclasses of Ac-

tivity have a getString(resID) method. The resource ID comes from the generated

class R, described in section 3.3.1. For more convenience the setText() method of

TextView objects is overloaded so that it accepts resource IDs.

The XML folder contains the androgios widget providerinfo.xml that essentially

defines what layout resource has to be used for the widget. The config.xml file

provides the information needed to create the layout of a PreferenceActivity auto-

Markus Koppensteiner, BSc Page 61

4 Androgios

matically. This may also include sub-activities.

4.3.10 Preferences

The following preferences are available to the user:

• Nagios URL to the cgi-bin folder (Text)

• Nagios User (Text)

• Nagios Password (Text/Pwd)

• Accept self signed certificates (Boolean)

• Polling interval (ListEntry)

• Nagios date format (ListEntry)

• Play sound (Boolean)

• Vibration (Boolean)

• Alarm on update failed (Boolean)

• Use mobile network (Boolean)

• Poll free interval (DateTime 2x)

• Alarm free interval (DateTime 2x)

• Auto start after reboot (Boolean)

Android provides the base class PreferenceActivity. This class can be used to

create configuration related activities easily. Androgios’ ConfigActivity extends

Markus Koppensteiner, BSc Page 62

4 Androgios

this base class. The layout can be created by calling the addPreferencesFromRe-

source(R.xml.config) method. The only functionality that is automatically pro-

vided by this activity is that changes are stored on the sd-card of the Android de-

vice. Therefore the ConfigActivity adds for each preference an OnPreferenceChange-

Listener. This is necessary to be able to react on preference changes immediately,

without the need of an Androgios restart.

The resource file config.xml defines all preferences displayed. Androgios uses

different kinds of preferences:

• EditTextPreference - stores a freely selectable string

(e.g. Nagios URL)

• ListPreference - stores a from a list chosen string value

(e.g. Nagios date format)

• CheckBoxPreference - stores a boolean value

(e.g. Accept self signed certificates)

• TimePreference - stores a string that represents a time value

(e.g. Poll free interval start/end)

The elements PreferenceCategory and PreferenceScreen may be used to organize a

PreferenceActivity. A PreferenceCategory adds a header, a PreferenceScreen adds

a sub-activity. Listing 5 shows an excerpt of the file config.xml and how to in-

tegrate the preference elements. An example for every kind of preference used in

Androgios is present in the excerpt. Self defined preferences, such as the TimePref-

erence must be specified with their fully qualified name.

Markus Koppensteiner, BSc Page 63

4 Androgios

1 <Pre f e r enceSc reen xmlns :andro id=”ht t p : // schemas . android . com/apk/ r e s / android ”>

2 <Pre ferenceCategory a n d r o i d : t i t l e=”Nagios ”>

3 <EditTextPre ference andro id :key=” c o n f i g u r a t i o n n a g i o s u r l ”

4 a n d r o i d : t i t l e=”Nagios Url ” a n d r o i d : d i a l o g T i t l e=”Url (cg i−bin) ”

5 andro id :d ia logMessage=”Spec i f y the u r l po in t ing to your nag ios cg i−bin d i r e c t o r y ”

6 andro id :de f au l tVa lue=”h t tp : // l o c a l h o s t / cg i−bin / nag ios3 ” a n d r o i d : s i n g l e L i n e=”true ”/>

7 . . .

8 <CheckBoxPreference a n d r o i d : t i t l e=”Accept Se l f S i gned Cert ”

9 andro id :key=” c o n f i g u r a t i o n a c c s e l f c e r t ”

10 android:summaryOff=”do not accept ”

11 android:summaryOn=”accept ”></ CheckBoxPreference>

12 . . .

13 <L i s t P r e f e r e n c e andro id :key=” c o n f i g u r a t i o n p o l l i n t e r v a l ”

14 a n d r o i d : e n t r i e s=”@array/ p o l l I n t e r v a l s E n t r i e s ”

15 a n d r o i d : t i t l e=”P o l l i n g I n t e r v a l ”

16 andro id : ent ryVa lues=”@array/ p o l l I n t e r v a l s V a l u e s ”

17 andro id :de f au l tVa lue=”300 ”></ L i s t P r e f e r e n c e><L i s t P r e f e r e n c e

18 a n d r o i d : e n t r i e s=”@array/ dateFormatEntries ”

19 andro id : ent ryVa lues=”@array/ dateFormatValues ”

20 a n d r o i d : t i t l e=”Nagios Date Format ”

21 andro id :key=”c o n f i g u r a t i o n d a t e f o r m a t ”

22 andro id :de f au l tVa lue=”i so8601 ”></ L i s t P r e f e r e n c e>

23 . . .

24 <Pre f e r enceSc reen a n d r o i d : t i t l e=”Alarm Free I n t e r v a l s ”

25 android:summary=”manage alarm f r e e i n t e r v a l s ”>

26 <Pre ferenceCategory a n d r o i d : t i t l e=”Po l l Free I n t e r v a l ”>

27 . . .

28 <at . jku . koppenste ine r . androg ios . u t i l . TimePreference

29 a n d r o i d : t i t l e=”Star t Time”

30 andro id :key=” c o n f i g u r a t i o n p o l l f r e e s t a r t ”

31 andro id :de f au l tVa lue=”00 :00 ”></ at . jku . koppenste ine r . androg ios . u t i l . TimePreference>

32 . . .

33 </ Pre f e r enceSc reen>

34 . . .

Listing 5: Excerpt of config.xml

The TimePreference extends the base class DialogPreference. It presents a TimePicker

to the user and persists the chosen value as a string value when the dialog is closed.

That way time preferences can be set more convenient and syntactically incorrect

Markus Koppensteiner, BSc Page 64

4 Androgios

entries can be avoided.

On Android startup it is necessary that the stored values are read. This is done

by the MasterController and discussed in section 4.3.11.

As already mentioned OnPreferenceChangeListeners are responsible for handling

changes. Two types of preferences may be distinguished. The first type applies to

Androgios, all preferences that are not child of the PreferenceCategory ”Nagios”.

The second type applies to a specific NagiosInstance. These are all preferences

that are child of the PreferenceCategory ”Nagios”. The MasterController provides

public variables for setting first type preferences. The NagiosInstance provides

public variables for setting second type preferences.

4.3.11 MasterController

The MasterController handles application wide issues. It is implemented as single-

ton. This ensures that only one instance is created and that the MasterController

is available from each point of code.

As a central component the MasterController manages all NagiosInstances. Al-

though there is only one NagiosInstance supported currently, the MasterController

holds a list of NagiosInstances. The getActiveNagiosInstance() method returns a

reference to the first entry. The list is intended for future use. Supporting multiple

NagiosInstances is discussed in more detail in section 5.1.

The ApplicationContext can be obtained via the method getAppCtx(). The An-

droid API provides many methods, that need a Context object as an argument,

e.g. when displaying a toast message (the Android version of a pop up window).

Dealing with Context objects is hard when they are needed outside of Activities

Markus Koppensteiner, BSc Page 65

4 Androgios

(extensions of the Activity class have their own method to get a context object).

Providing the ApplicationContext at a central location simplifies this issue. The

component that starts Androgios must set the ApplicationContext at the Master-

Controller. This can be either the main Activity or the BootCompleteReceiver that

starts the polling service after a reboot.

The MasterController also provides convenience methods for starting, stopping

and restarting the polling service. The ApplicationContext is used to start or stop

a service.

Alarm free and poll free intervals are handled by the MasterController. Meth-

ods for setting start- and end times and also to enable or disable these intervals

are implemented. Whether the current time is within one of these intervals can

be determined by the usage of the method withinAlarmFreeInterval() or within-

PollFreeInterval(). Both methods check whether the current time is within the

corresponding interval and in addition it checks whether it is enabled. Only if

both is the case, these methods will return true.

The MasterController must read the Androgios configuration on startup and set

all variables accordingly. This cannot be done when the singleton is instanti-

ated, because the ApplicationContext is not known, but required at this point of

time. Since the Androgios starting component sets the ApplicationContext, this

call can be used as trigger to read the configuration. A call of PreferenceMan-

ager.getDefaultSharedPreferences(appCtx) reads the configuration from file. This

returns a SharedPreferences object that allows to get the configuration entries via

methods such as getString(String key, String defValue) or getBoolean(String key,

String defValue). Once the configuration entries are known, the corresponding

variables in the MasterController or NagiosInstance are set.

Markus Koppensteiner, BSc Page 66

4 Androgios

4.3.12 Polling Service

The polling service initiates regular model updates based on the users configu-

ration. In addition it is responsible for alerting the user via a notification icon,

sound, or vibration.

The user should be alerted as soon as a problem is detected. This requires to

wake up Android from stand-by. A service cannot do this by itself. Androids

AlarmManager class can be used to schedule future tasks even if Androgios is not

running and Android is in stand-by. The static method AlarmManager.set(int

type, long triggerAtTime, PendingIntent operation) allows to schedule a future

task. If the task is already scheduled, the first will be canceled. The type Alar-

mManager.ELAPSED REALTIME WAKEUP is used to ensure Android will not

remain in stand-by. To calculate the trigger time SystemClock.elapsedRealtime()

is used, it includes time elapsed in stand-by. System.currentTimeMillis() is not

ideal, because this time can be altered by calling setCurrentTimeMillis(long) so

this time may jump unpredictably. The PendingIntent to perform when the trigger

time is reached is simply the polling service itself.

When the polling service is started first time, it only sets the AlarmManager

accordingly. When it is started next time, a polling thread is started. This thread

first checks if the current time is within a poll free interval. If this is the case it

will not make sense to schedule the next poll within this interval, due to energy

efficiency reason. Therefore the next poll is scheduled at the end of the poll free

interval. If the current time is not within a poll free interval, the polling service

initiates a poll and sets the AlarmManager for the next check time. In addition a

BroadcastReceiver is registered that handles the result as soon as the model update

is available.

Markus Koppensteiner, BSc Page 67

4 Androgios

The preference ”alarmOnUpdateFailed” and the TacticalOverview are of interest

when an update broadcast is received. The alerting procedure is executed in two

cases: First if the polling was unsuccessful and the user set the preference to be

alerted in this case. Second if the polling was successful and an important problem

occurred. In case of unimportant problems, such as acknowledged problems, the

user will not be altered. If there is no important problem an eventually displayed

notification icon will be removed at this time.

The alerting procedure is implemented in the method doAlarm(). A notifica-

tion icon is always displayed, because it will not disturb a user. Vibration and

sound depend on the user preferences. Androids NotificationManager class helps

to display icons on the status bar. To send an icon to the status bar a No-

tification object and an identification number is needed. If a notification icon

with the same id is sent a second time, the old icon will be replaced. There-

fore it cannot happen that the status bar is flooded with many icons with the

same meaning. The notification id is also used to remove a certain icon. A

Notification object allows to set a PendingIntent. Androgios uses this feature

to start the main activity when the user clicks at the icon. While Notification

objects can be instantiated, the NotificationManager can be obtained by call-

ing getSystemService(Context.NOTIFICATION SERVICE), this method is inher-

ited from Service. A Vibrator object can be obtained similarly by calling get-

SystemService(Context.VIBRATOR SERVICE). For playing sounds RingtoneM-

anager.getRingtone(Context context, Uri ringtoneUri) returns a Ringtone object.

The user may want to start the polling service automatically with Android. This

feature is implemented in the class BootReceiver. It is registered as broadcast

receiver in the Androgios manifest for the action ”BOOT COMPLETED”. If it

receives this action and the corresponding preference is set to true, it will set the

Markus Koppensteiner, BSc Page 68

4 Androgios

ApplicationContext at the MasterController and enable the polling service.

4.3.13 Widget

The Androgios widget provides the time of the last model update and a quick

overview of the host/service health and of outages. When the user clicks at the

widget Androgios is started.

Widgets must extend the base class AppWidgetProvider. The Androgios widget

implements the callback method onReceive(Context c, Intent i). This method

must ensure, that all displayed widgets are updated, because there may be more

than one widget on the Android home screen. Multiple widgets will display the

same information in the current implementation. In future multiple widgets could

display different Nagios instances, see also section 5.1. To find out how many

widgets are displayed, the AppWidgetManager.getAppWidgetIds() method can be

used. It returns an array of widget IDs that are bound to the AppWidgetProvider.

To start Androgios when the user touches a widget click handlers need to be set.

This is done by calling setOnClickPendingIntent() on a RemoteViews instance.

The PendingIntent (which is actually the main activity) is then executed as soon

as a click event occurs. Because the number of displayed widgets may vary between

update broadcasts (e.g. the user added an additional widget meanwhile), this

procedure is done on each update.

4.3.14 NagiosInstance

NagiosInstance is the class that supports all actions related to a Nagios Server,

such as polling, sending commands or handling the network connection. It serves

Markus Koppensteiner, BSc Page 69

4 Androgios

as a wrapper around specialized classes like Fetcher, Parser, CmdSender and so

on.

The NagiosInstance holds information about a Nagios server: the URL to the cgi-

bin folder and credentials to log in (username and password). Besides this basic

information, it also stores the polling interval, the date format configured at the

Nagios server and if to accept self signed certificates in case of SSL connections.

The NagiosInstance finally provides the model that is built by a poll operation.

Poll operations are done in a separate thread to not block the GUI. In addition

to the base URL to the cgi-bin folder, an extension of the URL is required by

the poll(extURL) method. NagiosInstance provides the URL extension as publicly

accessible, static constants. The concatenation of base- and extended URL is the

URL from where to fetch the HTML string. The extended URL is additionally

used to determine what parser has to be instantiated. When the HTML is fetched

and the correct parser is known, the actual parsing is done. Two errors may occur:

A SSLException while fetching or a ParserException while parsing. In both cases

two fields of the model are set accordingly: updateSuccessful and errorCause. This

information is used by GUI elements to determine if a model is accurate. The final

step of the poll operation is to send a broadcast that informs about the model

update.

The NagiosInstance allows to send external commands. This is also done in a sep-

arate thread. Callers of the sendCmd() method must provide a proper command

string to send. The utility class PostDataBuilder helps to create the command

string. The correctness of the command string is not checked at this point. The

command string is simply passed to the Nagios server. The Nagios server returns

a success or error message in HTML form. Since it is unpredictable when the

Markus Koppensteiner, BSc Page 70

4 Androgios

resulting HTML is returned from the Nagios server, the sendCmd() returns only a

message that the command has been sent. When the response of the Nagios server

is available, it is displayed as toast message.

Both operations, polling and sending commands, require a network connection.

Without checking the connectivity before doing one of the operations, waiting for

timeouts and retries could cause long waiting times for the user and a waste of

energy resources. In addition a user may prefer to not use mobile connections but

only WIFI due to cost reasons. These checks are done in the checkConnectivity()

method. Android provides a ConnectivityManager and a NetworkInfo class to do

this task as shown in listing 6.

1 private boolean checkConnect iv i ty (){

2 ConnectivityManager cm = (ConnectivityManager) MasterContro l l e r . g e t In s tance ()

3 . getAppCtx () . getSystemServ ice (Context .CONNECTIVITY SERVICE) ;

4 NetworkInfo i n f o = cm. getAct iveNetworkInfo () ;

5

6 i f (MasterContro l l e r . g e t In s tance () . useMobileNetwork){

7 return i n f o !=null && i n f o . i sConnected () ;

8 } else {

9 return i n f o !=null && i n f o . i sConnected () &&

10 i n f o . getType () != ConnectivityManager .TYPE MOBILE;

11 }

12

13 }

Listing 6: Connectivity Check

4.4 Testing

The testing of a newly developed application is crucial to increase the confidence

that the application works as expected. The most error prone components of

Markus Koppensteiner, BSc Page 71

4 Androgios

Androgios are the parsers and the graphical user interface. These are tested in

an automated way. Androgios is also tested manually, e.g. in the case of sending

external commands.

JUnit is suitable to test the parsers. The unit tests were not executed against a

running Nagios server. This would require to fetch HTML before the actual test

could be done and would therefore be very slow. In addition it would be hard

to predict what exactly is delivered by the Nagios server. To test the different

parsers delivered HTML files were collected and stored locally on the file system.

These locally stored files can be read fast and it is clear how the model should

look like after parsing a file. Each unit test follows the same structure: First read

a specific file from the file system, second use the proper parser to build the model

and third check if the model finally holds the corresponding information. Changes

of a parser can be checked for side effects with very little effort. When a new bug

becomes known it is easy to append a further test case to avoid this bug in future.

To test the graphical user interface the tool ”Monkey”was used. These tests aim to

find errors provoked due to unexpected user interaction. Monkey creates random

user events and is therefore well suited to find such bugs. It is a command line

tool delivered with the Android SDK. The syntax is documented at [Inc12] in the

”Tools” section and looks basically as follows:

$ adb shell monkey [options] <event-count>

The command adb shell starts a remote shell in the running emulator, so mon-

key is executed there. Important options are -p <package.name> that constrains

monkey to only visit activities defined in this package and -s <seed> that allows

to generate the same random events more than once for debugging reasons. If an

unhandled exception is thrown during the test, monkey will stop running at this

Markus Koppensteiner, BSc Page 72

4 Androgios

point. A stack trace is logged in such cases.

In addition to the automated tests, Androgios is also tested manually in form of

field tests. One problem in testing Androgios is that Nagios servers may be con-

figured very differently. However, common Nagios configurations can be covered

by doing field tests. With field tests errors such as a wrong date format imple-

mentation (due to an incorrect Nagios documentation) or a GUI bug that only

arises when no ServiceGroup is configured were discovered. The feedback of the

users also gave some usability related hints. That way user expectations, such as

what happens if a certain element is clicked, could be considered and implemented.

Based on this knowledge e.g. shortcuts from the main screen to the host list (or

problem list in case of problems) were implemented.

4.5 License

Androgios is distributed under the open source license GPL, GNU General Public

License, V2 or later (http://www.gnu.org/licenses/gpl.html).

Third party libraries are JSOUP [Hed12] and Base64 Coder [Heu10]. JSOUP,

licensed under MIT is GPL compatible, Base64 Coder is multi licensed among

others under GPL v2 or later.

Markus Koppensteiner, BSc Page 73

5 Conclusions

5 Conclusions

To make Nagios usable on Android devices is an interesting topic. It is a way to

make daily practice of monitoring responsible IT stuff easier. Previously available

software have shortcomings, especially in the management part. Androgios, that

meets all the requirements demanded in section A, results in an improved benefit

for the users.

Although Androgios can keep up with competitor software, there are possibilities

to further improve Androgios, as mentioned in section 5.1. Androgios takes this

into account by its architecture that allows the implementation of further features

without major changes. Future work therefore will only require limited effort.

Androgios is already useful in practice. It is easy to learn how to use Androgios,

because its user interface design is inspired by the well known Nagios web user

interface. More importantly it covers the major aspects that are of interest re-

garding the work with Nagios and therefore Androgios fulfills its purpose to aid in

the daily work. Table 7 summarizes the features of Androgios.

Androgios

Minimum Android 1.5

Multiple Nagios Servers no

Display hosts/services with problems yes

Display hosts/services with no problem yes

Auto reload yes

Manual Reload yes

Commands regarding problems yes

Other commands yes

Widget yes

HTTPS yes

Compatible Nagios versions 2.x, 3.x

Table 7: Androgios Features

Markus Koppensteiner, BSc Page 74

5 Conclusions

5.1 Future Work

There exist several ideas how to improve or extend Androgios. The following para-

graphs describe basic ideas and steps necessary to implement the improvements.

External Commands Androgios does not implement all possible external com-

mands. It is obvious that providing missing external commands would improve

Androgios’ benefit. Missing commands are mainly commands regarding host- and

servicegroups, such as scheduling downtimes for all hosts in a hostgroup, or en-

able/disable active checks of all services in a servicegroup.

Additional commands can be implemented as follows: If an activity does not

display the Spinner element to choose a command, it will be necessary to change

the layout resource. The command name must be added to the adapter that fills

the Spinner. The click listener for the ”send” button must be edited. In particular

the case that the new command is chosen must be added. It may be necessary

to show a dialog to ask the user for additional parameters. The PostDataBuilder

must be extended by a method in order to be able to create a proper command

string. When the command string is built, the NagiosInstance can be used to send

the command.

Multiple Nagios Instances Currently there is only one NagiosInstance sup-

ported. In large networks maybe more than one Nagios server is running. To

support multiple NagiosInstances, there are at least changes in the GUI, the user

preferences, the polling service and the MasterController necessary.

The GUI must provide the possibility to choose the NagiosInstance that should be

handled currently. This NagiosInstance has to be marked in the MasterController

Markus Koppensteiner, BSc Page 75

5 Conclusions

so that it is able to return the proper object when the method getActiveNagiosIn-

stance() is called. An additional activity that displays an overview of all configured

NagiosInstances may be desirable. The polling service must initiate polls on all

NagiosInstances, because the user wants to be alerted in case of problems, re-

gardless on what server they were detected. Finally it is necessary to extend the

preference activity so that as many NagiosInstances as wanted can be configured.

Multiple Alarm- and Poll free intervals To provide multiple alarm- and

poll free intervals would be another improvement. It is expected that the single

intervals implemented yet will be used mainly during night hours. However there

are additional time spans where it is desirable that Androgios is quiet, e.g. during

meetings or on weekends.

Implementing this feature would require to adapt the the preference activity so

that additional intervals can be configured. The MasterController methods that

check a given time for these intervals would have to be adapted too.

Reporting The web user interface of Nagios provides reporting functionality

that is not yet taken into account in Androgios. Possible are e.g. reports on

trends, availability, alerts or notifications. Figure 15 shows a sample report on

trends.

Markus Koppensteiner, BSc Page 76

5 Conclusions

Figure 15: Nagios Report on Trends

The report uses HTML <map> tags on the image. Information within these tags

may be parsed, or converted to an image in order to present the report on Android.

Localization The user interface language of Androgios is english by default.

However users may prefer to use Androgios in their natural language.

Androgios has strings that are displayed externalized in the resource files res/-

values/strings.xml and res/xml/config.xml. These are the default resources.

In order to provide localized resources, the adopted XML files must be put in

sub folders that are named according to the following scheme: res/values-

<qualifier>/strings.xml and res/xml-<qualifier>/config.xml. For the ger-

man language e.g. this would result in the files res/values-de/strings.xml and

res/xml-de/config.xml. These additions are easy to do, but it must be con-

sidered that data provided by the Nagios server is displayed without translation.

Therefore localization would also require to change the language of the Nagios

server. Changing the Nagios server language will not require changes in the parsers.

Markus Koppensteiner, BSc Page 77

Appendices

A List of Requirements

Androgios should be able to show and manage Nagios from android devices. This

means that the requirements of the application can be divided into display re-

quirements and management requirements. Additionally there are separate re-

quirements for the polling service, which polls continuously for current network

problems, and also for a widget, that should give a quick overview of the network

status.

A.1 Display Requirements

Required information on the Start Screen

• The host- and service health in percent.

• The number of outages.

• The number of hosts which are in status UP, DOWN, UNREACHABLE or

PENDING.

• The number of services which are in status OK, CRITICAL, WARNING,

UNKNOWN or PENDING.

• The background color should indicate if there is no problem (green), there

are unimportant problems (yellow) or there are important problems (red).

Markus Koppensteiner, BSc Page 78

Required information about Hosts

• A list of all monitored hosts and their status.

• A hostgroup overview with host/service status summary for each group.

• Detailed information about a particular host.

• A list of all problem hosts and their status.

• A list of hosts and their status after application of a custom filter. Filter

criteria can be host status types and host properties.

Required information about Services

• A list of all monitored services and their status.

• A servicegroup overview with host/service status summary for each group.

• Detailed information about a particular service.

• A list of all problem services and their status.

• A list of services and their status after application of a custom filter. Filter

criteria can be service status types and service properties.

Required information about Downtimes

• A list of all scheduled downtimes including host-/service name, start time

and end time.

Markus Koppensteiner, BSc Page 79

• Detailed information about a particular downtime including host-/service

name, entry time, author, comment, start time, end time, type, duration

and downtime ID.

Required information about Comments

• A list of all host comments including host name and comment.

• A separate list of all service comments including service name and comment.

• Detailed information about a particular comment including host-/service

name, entry time, author, comment, comment ID, persistent, type and ex-

pires.

Required information about Outages

• A list of all outage causing hosts including the number of affected hosts and

services.

• Detailed information about a particular outage including severity, host, state,

notes, state duration, number of affected hosts and services.

Required information about Monitoring Features

• Overview with flap detection, notifications, event handlers, active/passive

checks.

Markus Koppensteiner, BSc Page 80

Required information about the Nagios Process

• Detailed information about the Nagios core process.

A.2 Management Requirements

Required commands regarding Hosts

• Enable/disable active checks

• Re-schedule next host check

• Start/stop accepting passive checks

• Acknowledge host problem / remove acknowledgement

• Start/stop obsessing over this host

• Enable/disable notifications

• Schedule host downtime

• Enable/disable notifications for all services

• Schedule check of all services

• Enable/disable checks of all services

• Enable/disable event handlers

• Enable/disable flap detection

• Delete all host comments

Markus Koppensteiner, BSc Page 81

Required commands regarding Services

• Enable/disable active checks

• Re-schedule next service check

• Start/stop accepting passive checks

• Acknowledge service problem / remove acknowledgement

• Start/stop obsessing over this service

• Enable/disable notifications

• Schedule service downtime

• Enable/disable event handlers

• Enable/disable flap detection

• Delete all service comments

Required commands regarding Comments

• Delete particular host comment

• Delete particular service comment

Required commands regarding Downtimes

• Delete particular host downtime

• Delete particular service downtime

Markus Koppensteiner, BSc Page 82

Required commands regarding the Nagios Process

• Shutdown the Nagios process

• Restart the Nagios process

• Enable/disable notifications

• Start/stop executing service checks

• Start/stop accepting passive service checks

• Start/stop executing host checks

• Start/stop accepting passive host checks

• Enable/disable event handlers

• Enable/disable flap detection

• Start/stop obsessing over services/hosts

• Enable/disable processing performance data

A.3 Polling Service Requirements

• Polls continuously the network state. The polling interval should be config-

urable. The usage of (probably costly) mobile network connection should be

avoidable per configuration.

• Ensures to alert the user on problems (via sound, vibration and notification

icon).

• A poll free interval should be definable.

• An alarm free interval should be definable.

Markus Koppensteiner, BSc Page 83

A.4 Widget Requirements

• Should display if last poll was successful.

• Should display host problems.

• Should display service problems.

• Should display outages.

A.5 Non-functional Requirements

• Androgios must run without changes to the Nagios server.

• Nagios version 2.x and 3.x should be supported.

• Smallest Android Version as possible.

• HTTPS shall be supported.

• Androgios shall run on mobile phones and tablets.

Markus Koppensteiner, BSc Page 84

B Androgios Installation

Androgios requires Android 1.5 or higher. Androgios is not yet available at the

Google Marketplace. Therefore the installation of Non-Market-Applications must

be allowed. An arbitrary file manager is needed to access the installation file

”androgios.apk”

The installation steps are:

• Store ”androgios.apk” somewhere on the SD card.

• Using the file manager open ”androgios.apk”.

• Read the permissions required and click install.

After the first launch at least the URL to the Nagios cgi-bin folder and the creden-

tials must be configured. The configuration activity can be opened by pressing the

(hardware) menu button and then choosing ”Configuration”. In order to ensure

that external commands are sent correctly, the Nagios date format should also be

configured properly.

In many cases the acceptance of self signed certificates (SSL) and the usage of

mobile networks will have to be enabled. Both are disabled by default.

A sample configuration can be seen in appendix D, picture (i). This configuration

can be used for testing Androgios. It refers to a publicly available Nagios test

instance (the password is like the username ”nagiosadmin”).

Markus Koppensteiner, BSc Page 85

C Android development with Eclipse

Androgios was developed on Ubuntu 11.04 (64 bit) in conjunction with the Eclipse

IDE. This Appendix describes how to get started with development and how to

export a signed application package (apk file).

Under the assumption that Eclipse is already installed, the first step to get started

is to install the ”Android Development Tools” (menu: Help - Install New Soft-

ware...) from https://dl-ssl.google.com/android/eclipse After the installa-

tion of the Android Development Tools, a new project type ”Android Project” is

available. On 64 bit Ubuntu the ”ia32-libs” (ia32 shared libraries for use on amd64

and ia64 systems) are necessary. They are available in Ubuntu’s default package

sources.

In the menu ”Window” the entry ”Android SDK and AVD Manager” is now avail-

able. This window is used to download and install SDK platform packages for

certain API levels (see figure 16).

Figure 16: Android Virtual Device Manager

When the desired SDK is installed, an Android Virtual Device can be created (see

Markus Koppensteiner, BSc Page 86

figures 17 and 18). Android projects can be run on available virtual devices.

Figure 17: Android Virtual Device Manager

Figure 18: Android Virtual Device Manager

The Android Development Tools provide a wizard that supports the export of an

Android project into an installable application package. Figure 19 shows where the

wizard is located in the projects context menu. To sign the application package the

location of a keystore and the name of a key is required. The wizard supports the

creation of both when needed. Keys need not to be signed by a CA, the only issue

Markus Koppensteiner, BSc Page 87

is that the Android Market currently requires certificates to be valid until 2033.

According to [Inc12], ”A validity period of 25 years or more is recommended.”

Figure 19: Export an Android Project

Markus Koppensteiner, BSc Page 88

D Androgios Screenshots

(a) Main Activity (b) Host List

(c) Host Details (d) Host Commands

Markus Koppensteiner, BSc Page 89

(e) Scheduling a Host Downtime (f) Host Groups

(g) Monitoring Features (h) Widget and Alert Icon

Markus Koppensteiner, BSc Page 90

(i) Nagios Instance Config (j) Androgios Config

(k) Free Intervals (l) Choosing a Time

Markus Koppensteiner, BSc Page 91

References

[Bar09] Wolfgang Barth. Nagios - System und Netzwerkmonitoring. Open

Source Press, Munich, 2009.

[BP10] Arno Becker and Marcus Pant. Android 2 - Grundlagen und Program-

mierung. dpunkt.verlag, Heidelberg, 2010.

[Cor12] Oracle Corporation. Java se 6 api specification.

http://docs.oracle.com/javase/6/docs/api/, 2012.

[Döl12] Mirko Dölle. Fernüberwacht. c’t Magazine, 5/2012:176–178, March

2012.

[Ent12a] Nagios Enterprises. Nagios exchange website.

http://exchange.nagios.org/, 2012.

[Ent12b] Nagios Enterprises. Nagios website. http://www.nagios.org/, 2012.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David

Wagner. Android permissions demystified. In Proceedings of the 18th

ACM conference on Computer and communications security, CCS ’11,

pages 627–638, New York, NY, USA, 2011. ACM.

[Hed12] Jonathan Hedley. Jsoup parser. http://jsoup.org/, 2012.

[Heu10] Christian Heureuse. Base64coder. http://www.source-

code.biz/base64coder/java/Base64Coder.java.txt, 2010.

[Inc12] Google Inc. Android developers guide.

http://developer.android.com/guide/index.html, April 2012.

Markus Koppensteiner, BSc Page 92

[Nic09] Carlo U. Nicola. Einblick in die dalvik virtual machine.

http://www.fhnw.ch/technik/imvs/publikationen/fokus-report/2009,

2009. Fachhochschule Nordwestschweiz, Hochschule für Technik.

[Rie10] Götz Rieger. Nagios to go. c’t Magazine, 23/2010:150–155, November

2010.

Markus Koppensteiner, BSc Page 93

Acknowledgements

I would like to thank all contributors to the success of this thesis and all professors

who did gave support during the time of my study.

Special thank goes to Michael Sonntag, the referee of this theses, who gave me an

interesting topic and the opportunity to solve it independently.

In addition, I want to thank my colleague Phillip Lengauer for his valuable infor-

mation in several discussions.

Markus Koppensteiner, BSc Page 94

CURRICULUM VITAE

Markus Koppensteiner, BSc

Zur Person

Name Markus Koppensteiner

Anschrift Freytagstraße 6, A-4020 Linz

Telefon +43 676 6800239

E-Mail markus.koppensteiner@aon.at

Geburtsdatum 23.01.1977

Familienstand ledig

Staasbürgerschaft Österreich

Führerscheinklassen A,B,C

Ausbildung

seit 03/2010 Studium zum Dipl.Ing. in Netzwerke und Sincherheit in Linz

03/2007 - 02/2010 Studium zum BSc in Informatik in Linz

09/2004 - 07/2006 Berufsreifeprüfung in Linz

02/1998 - 02/2001 Krankenpflegediplomausbildung in Innsbruck

08/1992 - 04/1994 Lehre Großhandelskaufmann in Linz

09/1991 - 07/1992 HAK in Linz

09/1987 - 07/1991 Hauptschule in Linz

09/1983 - 07/1987 Volksschule in Linz

Markus Koppensteiner, BSc Page 95

Berufliche Aktivitäten

seit 03/2009 Studentischer Mitarbeiter im Lehrbetrieb, JKU

02/2002 - 03/2009 DGKP im KH der Barmherzigen Schwestern Linz

10/1995 - 02/2002 Sanitätsunteroffizier beim österreichischen Bundesheer

Markus Koppensteiner, BSc Page 96

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel

nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche

kenntlich gemacht habe. Die vorliegende Masterarbeit ist mit dem elektronisch

übermittelten Textdokument identisch.

Linz, am 10. Juli 2012

Markus Koppensteiner

Markus Koppensteiner, BSc Page 97

	Introduction
	Network Monitoring
	Nagios
	Monitoring Features

	Nagios Webinterface - CGI

	Android
	Architecture
	SDK/AVD
	Android Components
	Activities
	Services
	Broadcast Receivers
	Content Providers

	Androgios
	Competitor Software
	Architecture
	Implementation
	Android Manifest
	Model
	Polling
	Fetching
	Parsing
	Sending External Commands
	Date Formats
	Activities
	Resources
	Preferences
	MasterController
	Polling Service
	Widget
	NagiosInstance

	Testing
	License

	Conclusions
	Future Work

	Appendices
	List of Requirements
	Display Requirements
	Management Requirements
	Polling Service Requirements
	Widget Requirements
	Non-functional Requirements

	Androgios Installation
	Android development with Eclipse
	Androgios Screenshots
	References
	Curriculum Vitae
	Eidesstattliche Erklärung

