Real-time visualisation of object structures for semantic validation

Dietmüller P. R., Jöbstl M., Mühlbacher J. R., Zwicknagl W.

Department of Information Processing and Microprocessor Technology (FIM)

Johannes Kepler University of Linz

Altenbergerstraße 69

A-4040 Linz 

Abstract

This paper describes an approach to a solution of the inherent problem of invisible, rapid changing and complex semantic, appearing in object oriented software systems. Our tool represents the exertion of making semantic validation possible - as an essential improvement of software engineering processes. To take this aim, we demand the following claims.

(1) It is necessary to analyse the object structure at runtime, without any disturbance of the viewed and visualised application. (2) It must be possible to provide specific customised views to establish the context of use. This is primarily the point, where semantics by the viewer is brought in. (3) It is necessary to provide a set of mechanisms to control the visualisation. (4) The manipulation effort of the objects, which have to be visualised, has to be minimised. It must be guaranteed, that the online visualisation is done in real time while the inspected process is being executed.

Semantic validation may be an appropriate way to improve the software maintenance and support the communication. A specific example is, if external coaches and mentors have to introduce users to third party software.

1 Introduction

The basic underlying assumption is, that any additional information on a source code and its associated process(es) is particularly helpful, if this kind of information bridges the gap between inherent and intrinsic information of the program itself and the “outside world”, i.e. the context, including the viewers special needs and interest. This is a step forward to what we call semantic validation. The analysis of source code provides only little semantic information, restricted to what an experienced source code reader can deduce. This static type information is too vague to regard it as appropriate for semantic validation. Modifying and analysing software, especially by persons who haven't been involved neither in the software specification, and design nor in the development phases, is usually very difficult. This problem is not negligible in particular within OOP, where developers heavily depend on definitions and understanding classes. This dependency from third party software suffers from more side effects as the classical one concerning the use of third party procedure libraries. Changed requirements or modifications of objects and classes may change the semantic, a re-validation of the software or its object based components is necessary.

The interaction between changing objects in complex structures is very difficult to comprehend, so our approach is to provide a real-time visualisation tool of object structures to “see” and track changing semantic. Consequently the tool visualises the objects not only according to their static type, it includes runtime information AND the context the individual viewer is interested in.

We identify the following four critical success factors:

(1) Semantic, which we want to make visible, only exists at run-time, so it is necessary to observe the changes "inside" an object and an object structure during run-time (cf. 1.1).

(2) Semantic originates in the mind of the viewer, therefore it is necessary to allow and provide individual views of the structure (cf. 1.2).

(3) The observers interest in semantic may vary during run-time, so it is necessary to provide a mechanism to control the moment of observation (cf. 1.3). 

(4) If it is necessary to manipulate the objects or their visualised equivalents, then the effort to realise this visualisation should be as minimal as possible, also to avoid unexpected side effects (cf. 1.4).

These aspects will be discussed in the following chapters.

1.1 Run-time analysis

Imagine a management system of an embark point, there may be very different goods to be managed. A lightly changed business area or only one accepted order may cause a change of the meaning of the data structure. I.e. the handling of a set of goods changes, if you add some perishable goods to the cargo of a truck or a ship.

The software manages objects, which may have their own properties imaging the real objects. It is not suitable to analyse the properties of a single isolated object, because of the unpredictable interaction, which may occur in the data structure.

1.2 Specific views

Literature on visualisation of data structures is quite rich, good examples can be found in [Bro91], [Sta90] and [DM90]. However we think that the requirements to a visualisation have been risen up, because of the complex nature of instances of objects derived from third party class specifications.

For example take a binary tree: The common visualisation of a tree is a couple of edges and nodes, and a node contents a datum. It may be suitable to use this view to teach the properties of binary trees or to reveal the underlying data-structure, which is used to organise the data, in question. But if a node represents a complex object together with its variables and methods, this visualisation strategy may not be very expressive, if you are focusing on the content of the nodes instead how they are internally organised.

The example above demonstrates that the kind of visualisation may depend on the content of the visualisation and the target group of the visualisation, the observers. So it should be possible for a user to define individual views, possibly a couple of different views to one object structure.


[image: image1.wmf]?

?

?

?

?

?

?

?

?

?

?

?


Figure 1: Three ways to visualise a heap (Queue, tree and stack)

A well-known example for different visualisations of one data structure is a heap. It is traditionally visualised either as a tree or just as a queue with a distinguished element in front. If you are interested only on this “top” element (e.g. with max key) then a representation as a stack might be reasonably although the underlying representation (implementation) of this object basically differs from the common understanding what a stack is. This simply depends on context. To use the tool from the beginning, it should provide a set of standard visualisations, such as trees, queues, etc. But it should be also possible to enlarge the set of visualisation views according to the fields of activity.

1.3 Visualisation control

It isn't always useful to provide a permanent visualisation of a structure. Some phases are determined by a strong fluctuation of objects, and some phases may be boring, so it is necessary to define mechanisms to select the points of interest.

It may be interesting to inspect the structure when the proceeding is reaching a location in the code - this may happen like the well-known concept of a break point. So the visualisation has to be triggered by the code.

Further it may be interesting to be informed about defined changes in the structure, in this case the visualisation has to be triggered by the state of the structure.

Furthermore it should be possible to initialise a visualisation, if the user wants to analyse the invisible structure potentially causing problems.

Summarising the necessary mechanisms, it should be possible to initialise a visualisation by a code- and/or data break point or a user break.

1.4 Manipulation effort

Visualising an object structure means, that there must be information about the individual visualisation of a single object and of the context - the data structure. Adding this information to the objects would cause an unwanted overhead and an interference with unpredictable consequences. It may happen, that you learn about the functionality of the program you manipulated and not about the functionality you wanted to analyse.

Otherwise it should be possible easily to customise a user specific view to a data structure to gain the desired information. Further it should be possible to take more than one view on a structure.

Summarising it up, the tool has to be able to dynamically visualise individual views on several data structures, without an interference of the program's tasks. The visualisation information of the objects and the structure doesn't have to be stored by the objects themselves, it has to be stored "somewhere". The following chapter will explain our concept to serve this purpose.

2 Concept

Analysing the architecture of object oriented designed software systems you often come across with the model view controller concept [Kra88]. The "target group" of programs we want to analyse, is designed in that way, so the following figure shows our extension of the "classic" model-view-controller concept:


[image: image2.wmf]M

C

V

V

1

V

2

V

..

V

n

Program

Visualisation System


Figure 2: Extension of a "classic" model-view-controller concept

The program, which has to be visualised, consists of a model (M), which contains the data. One or more controllers (C) are able to change the models content, they know the model and how to change it. And at last a couple of views (V) visualises the content of the model. 

To fulfil the requirements we insinuated above, it is necessary to manage a couple of views to gain the best view on the objects. These views have to be managed by a Visualisation system to provide a control mechanism (cf. 1.3).

A basic idea of the model-view-controller concept is that a model usually has to manage the views, e.g. the model has to notify a change of a special content, caused by any controller, to the views displaying the information.

By this way, adding more views means adding code to the program. This represents a contradiction to the necessity of keeping the impact on the program as minimal as possible. Looking for a solution we decided to choose another abstraction level to design the visualisation system.

The new requirement caused by these restrictions was a mechanism to get access to the model, without a disturbing impact to the model, so we decide to access the data on the heap. The data-flow will be explained in the following chapter (2.1). In chapter 2.2 the conceptual architecture of the system will be justified and the requirements will be refined.

2.1 Visualisation system - conceptual overview

The component to fill the communication-gap between a visualisation management system and the program is a Heap-Browser. The left part of the figure below shows two programs called program 1 and program 2. They have to be visualised. The runtime system manages the objects the programs are dealing with. Objects on the heap are seen as parts of the model of any program.


[image: image3.wmf]V

1

V

2

V

..

V

n

M

C

V

Program 1

Visualization System

M

C

V

Program 2

Runtime system

Heap-Browser

Vis.-Management


Figure 3: Accessing the data at the heap

The Heap-Browser is responsible for the selection of the objects, it must be able to access the heap at any time to guarantee the real-time visualisation of the objects and the resulting semantic.

Further the Heap-Browser offers the information about the current state of the heap to the Visualisation Management system. The Visualisation Management system is represented to the user by an application. This application administrates the assignment of the adequate visualisation to an object from the heap. These are the three components of the visualisation system - they will be explained in the following chapters.

2.1.1 Heap-Browser

The heap browser scans the heap of the runtime system and determines the type of each object. If it identifies objects belonging to a program, which has to be visualised, these objects are handed down to the visualisation system. So the user may select the objects or structures to visualise and handle them in the defined views of the visualisation system.

Modern operating systems deny the access to the memory of other processes, so the Heap-browser must have partially the functionality of a debugger.

2.1.2 Visualisation Management system

The visualisation management system consists of two main components:

· Visualisation Application

· Visualisation Library

The Visualisation Application has to associate the information about the type of the objects to be visualised (provided by the Heap-Browser) with the visualisation objects provided by the visualisation library.

The reason for the introduction of visualisation objects is the manipulation-avoidance of the visualised programs, it seems to be helpful to define the two kinds of objects exactly:

An Object, which has to be visualised..

· .. is an object of a class which has to be visualised, because it contains interesting data. 

· .. is managed by the program, which has to be analysed.

· .. has to be derived from an abstract base class, which contains a basic functionality to connect the object with a visualisation object.

· .. doesn't know anything about eventually associated visualisation classes and the act of visualisation in common.

A Visualisation object ..

· ..is associated to one defined object, which has to be visualised.

· .. is managed by the Visualisation Management system.

· .."knows" the object to be visualised it is associated to. Further it knows the information of the associated object it has to visualise.

· .. "knows" how to visualise itself.

Further it is necessary to provide structural information, which isn't a property of a single object. To display the data structure tree as a tree, it is necessary to store this information, i.e. an object V referred by the object X and also referring the objects Y and Z may be a part of a binary tree, but it could also be a part of a common graph. It would personate an enormous overhead to store this information with every object, so we decided to introduce a structure object for each data structure.

Structure objects act as a container for the objects of the structure, they provide the information about the layout of the associated window. Further they have to provide management functions, e.g. iterator, management operations, etc.

2.2 Requirements refinement

2.2.1 Run-time analysis

Analysing a program at its runtime means to scan the heap permanent for changed objects. This is done by the Heap-Browser.

2.2.2 Specific views

This requirement may be divided into two abstraction levels: The customisation of visualisation objects and  the customisation of a view, which represents a data structure.

The customisation of visualisation objects: Customising a visualisation object means, that it has to be possible to change the representation of a single object. E.g. one time an object may be represented as a bitmap another times it has to be represented as a number, symbolising the value of the object, etc.

The customisation of the view: Customising a view to a data structure means, that semantic may often arise a set of manipulations done by the user, e.g. the sequence of the objects of a queue is changed by the user to visualise the eventualities of changes. Sometimes it may be seen as a group-wise manipulation of visualisation objects.

It should be useful to manage and visualise every data structure in a separate window of the visualisation system to keep the complexity of a set of objects as small as possible.

Further it should be possible to compress and expand parts of the data structure. That may happen very similar to the handling of the known explorer of Windows based operating systems. 

2.2.3 Visualisation control

The visualisation system has to provide a set of mechanisms to control the visualisation. If the user takes control over the visualisation, it may effect an interrupt of the execution of the program, which has to be visualised. So it is useful to divide possible update mechanisms into two categories:

Update with an interrupt of the execution: Similar to a well known breakpoint mechanism of a development environment; when a specified location in the code is reached, the execution of the program is interrupted. The user has now the possibility to analyse the objects, manipulate parameters of the visualisation of the structure or a single visualisation object. The reaching of a location in the code, the change of specific data, or a user break may trigger this kind of break point.

Update without an interrupt of the execution: In this case the visualisation view is opened in the case of specified triggering events. The reaching of a location in the code, the change of specific data, or a user break may trigger this kind of break point.

The first mechanism provides more possibilities of interaction. E.g. the user may change the representation and the alignment of objects. The second mechanism reduces the impact on the execution. However the user defines the priorities of the analysis, these strategies should be provided by the visualisation system.

2.2.4 Manipulation effort

According to the association of objects to be visualised with visualisation objects, most of the manipulation to visualise the semantic of the data is done at the visualisation system. 

The only restriction at the design of program, which has to be visualised, is that it is necessary to derive the used classes from the abstract base class VisBase. This class has to provide function to support the association between objects to be visualised with visualisation objects at the runtime.

If there appear new requirements to visualise objects or data structures it has to be also possible to add new classes of visualisation objects to the visualisation library. Further the visualisation library has to provide a set of common structures (a queue, a tree, an array or a single object) to use them as a basic input (inheritance) for new visualisation classes.

3 Solution

Due to the presented concept we have needed an object oriented software development environment for developing a prototype to prove the feasibility of our approach. Furthermore the chosen environment with all the constituents should be familiar to us to guarantee an efficient way of support. That’s why we decided to use the programming language Oberon-2 [Moe92] in combination with the Programmer’s Open Workbench (POW!) [MLK97].

Oberon-2 is an object oriented programming language, which supports the realisation of all concepts and techniques necessary for the prototype. Additionally the implementation of POW! were made on our institute and therefore we have unrestricted access to the source code. 

3.1 Heap-Browser 

To visualise a dynamically created object it is necessary to find it and determine it’s actual type and state. For this reason the heap browser searches the dynamic memory allocated by the runtime system for potential objects. Provided with all necessary structural information about the heap this component detects all objects created so far and with the assistance of the type information generated by the compiler the type of the object can be determined.

This dynamic type information is stored in a data structure called “type descriptor”. Every class has a pointer to its type descriptor, which is located right in front of the address of the object’s data.

The run time type information (RTTI) of POW!’s Oberon-2 compiler is an extension of the type descriptor and specifies the structure of an object in a more detailed way. It holds the data type and the name of each field. This information is used by the heap browser to realise the structure and contents of an object and all its properties. RTTI is generated by POW!'s Oberon-2 compiler for every class and is placed right in front of the type descriptor. 

With the knowledge about the exact position of an object on the heap and the position of the necessary type information the heap browser can provide the visualisation system with the actual state of every object needed.

It is clear that the heap browser should have access to the memory of the program which objects it displays. It is necessary to get actual values of fields, for instance. But under normal circumstances programs cannot access memory allocated by another program. Due to security considerations most operating systems denies access to memory of other programs. In Figure 4 two programs, named P1 and P2, are shown that allocated one memory block each, called M1 and M2. In this situation it is not possible for P2 to access the memory block M1. An attempt to do so would lead to a protection violation.


[image: image4.wmf]P1

P2

M1

M2


Figure 4: Memory protection

How can the heap browser access memory of the program it displays. In earlier Windows versions each memory block allocated by a DLL can be accessed by any program that uses the DLL.


[image: image5.wmf]P1

P2

DLL

M


Figure 5: Dynamic Link Library for memory access

Figure 5 shows two programs P1 and P2 that uses a DLL. If the DLL allocates memory both programs can access this memory although one of them didn't allocate it.

Since the Run-Time-System manages the heap and it is implemented as Dynamic Link Library the heap browser can access objects allocated by other Oberon-2 programs. But be aware that the heap browser can  access only such programs which uses the same Run-Time-System-DLL as the heap browser itself.

At this stage we have to point out, that the technical way how DLLs can share common workspace depends on the operating system in question and how the runtime system of the OOP - language is implemented and consequently how the associated Heap browser is being implemented. One solution to this detail has been shown in [MDJ99] already, the above figure reflects the underlying concept and hides implementation details away.

3.2 Visualisation management system

The heap browser is the core of our visualisation tool, because it provides the access to the objects of interest. The utilisation and the management of the obtained information was undertaken from the visualisation management system. Besides it handles all interactive components. There are certain components of the visualisation management system that accomplish the different tasks described in the following chapter.
3.2.1  
3.2.2 The Visualisation Library

This component stores all visualisation classes and the information how objects to be visualised and visualisation objects are linked to each other. For reasons of efficiency we divided in a real time Visualisation library and an extended library. The real time library mainly consists of base classes which provide basic functionality. There are implemented economically to guarantee the possibility of a real time presentation without delay.

In contrast to this the extended library was designed for a supplementary analysis. The visualisation objects of this library are much more special and complex. They provide serialisation and facilitate the observation of an object along the timeline. Further they allow a more detailed insight in the bearing of a program due to the knowledge of certain semantic information.

Both visualisation libraries can easily be extended, which means for every new class which should be visualised an already existing class can be used or a new visualisation class can be created and linked to support the semantic representation as explained in the preceding chapter.

3.2.3 The Visualisation Application

The visualisation application is the main part of the whole visualisation system which combines all other components into one consistent tool. The observable task of the visualisation application is the management of the user interface. Every object has its own window, so its necessary to provide functionality to manage a couple of windows. Furthermore it provides basic functionality to manipulate an object like moving or folding. These menu driven possibilities to interact should give a way to correct the generated image of an object. 

3.2.4 Object management system

The visualisation application also has to administer all visualisation objects created so far. This includes storing the actual state of a visualised object, the allocation of windows and an update mechanism. For this reasons the visualisation management system holds a simple linked list for all visualisation objects. Most of the objects that should be visualised are data structures like lists, trees or graphs. That’s why the Visualisation Application distinguishes between simple objects and objects as instances of complex data structures. Such objects store the references between objects within the data structure in a special matrix called adjacency matrix. This storing mechanism has been described in [MDJ99] already, so we don’t want to go in details just point out that this makes the drawing and update mechanism easier, more efficient and besides it is an uncomplicated way to manage nested objects.

After the selection of objects for a visualisation in real time a certain mechanism of updating the actual state of every object in the visualisation application is needed. The visualisation management system provides two concepts. The first is a time driven update mechanism, which allows the user to determine a certain period of time to suit the refreshing rate to the requirement of the application observed. This mechanism is easy to implement but is not qualified for all kind of problems. In many cases only the change of the state of an object and whether this change effects other objects in a certain extent is interesting. For this cases the system provide a event driven update mechanism. Whenever the state of an object of interest changes, the visualisation management system initiates the update procedure. This means all visualisation objects managed in the object management system receive the actual state of the objects they represent. Afterwards the visualisation objects redraw themselves.

The following figure shows a very individual representation of a tree:

[image: image6.png]FRAME Version 4.03 [_[CIx]
Ele Edt Disply Window Help SETET)

4
P b
% s! %






Figure 6: A visualised tree

The objects in the left subtree display themselves by bitmaps. The objects in the right subtree (and the root object) display themselves with a text and a changing background color, which displays some information: Dark if the object key is odd, bright if the object key is even.

4 Conclusion and Outlook

The individual visualisation of any desired data structure with a minimal modification effort has a couple of  advantages, some of them have been discussed during chapter 1 of this paper. Our tool demonstrates the practicability of our approach.

The major restriction, we discovered during the described project: The memory management of modern operating systems denies the access of programs to the memory allocated by other programs.

This restriction has been bypassed by the use of an development environment, where we had unrestricted access to the source code (cf. Chapter 3).

Further it has to be mentioned that because of the increasing importance of distributed applications, the meaning of the visualisation of distributed data structures is growing. So the extension of the current tool to this requirement may offer very interesting cognitions about data management and communication.





5 Literature

[BM86]
Baecker, R. M. & Marcus, A. (1986). Design Principles for the Enhanced Presentation of Computer Program Source Text. In Proceedings of Human Factors in Computing Systems (CHI `88), (pp. 51-58). New York: ACM Press.

[BM90]
Baecker, R. M. & Marcus, A. (1990). Human Factors and Typography for More Readable Programs. Reading, MA: Addison-Wesley. 

[Bro88]
Brown, M. H. (1988b). Exploring Algorithms Using Balsa II. IEEE Computer, 21(5): 14-36.

[Bro91]
Brown, M. H. (1991). Zeus: A System for Algorithm Animation and Multi-View Editing. In Proceedings of IEEE Workshop on Visual Languages, (pp. 4-9). New York: IEEE Computer Society Press.

[DM90]
Ding Chen, Prabhaker M.:i, A Framework for the Automated Drawing of Data Structure Diagrams, IEEE Transactions on Software Engineering, Vol. 16, No. 5, May 1990

[JS94]
Jerding D. F., Stasko J. T., "Using Visualisation to Foster Object-Oriented Program Understanding", Technical Report GIT-GVU-94-33, Georgia Institute of Technology, July 1994

[Kra88]
Krasner G.E., A cookbook for using the model-view-controller user interface paradigm in SMALLTALK 80. Journal of object oriented programming 1/3, p. 26-49 1988 

[Kre99]
Kreuzeder, Ul. "Pow! - The programmers open workbench", Journal of Systems Architecture, Volume 45.11, May 1999

[Moe92]
Mössenböck H., The Programming Language Oberon-2, Report 160, ETH Zürich, May 1992

[MLK97]
Mühlbacher J. R., Leisch B. , Kirk B. Kreuzeder, Ul., "Oberon-2 Programming in Windows", Springer, 1997 

[RM93]
Reiss St. P., Meyers Scott,:FIELD Support for C++, Report CS-93-03, Department of Computer Science, Brown University, February 1993

[Sta90]
Stasko, J. T., "TANGO: A Framework and System for Algorithm Animation", IEEE Computer, Vol. 23, No. 9, September 1990, pp. 27-39. 

[MDJ99]
Mühlbacher J. R., Dietmüller R. P, Jöbstl M., Extendable Object Visualisation ,Euromicro 99:Proceedings of the 25th Euromicro Conference S 229 – 236, 1999 by IEEE Inc.



















�SEITE \# "'Page: '#'�'"  ��






Page 1

_1015748435.doc


?







?







?







?







?







?







?	







?







?







?







?	







?












_1020677109.doc


Program 1







Vn







V..







V2







V1







C







V







M











Visualization System







Program 2







V







C







M















Vis.-Management







Heap-Browser







Runtime system












_952776889.bin

_1015241173.doc


Program







Vn







V..







V2







V1







C







V







M







Visualisation System












_990533147.doc


V(b)







R







V(c)







V(b)







V(a)







V(c)



















R







V(a)











Adjacency matrix of visualisation object A







List of single objects and data structure objects







..







B







A












_952776073.bin

