
Exercise generation by group models for autonomous web-based learning 
 

Michael Sonntag 
Institute for Information Processing and Microprocessor Technology, 

Johannes Kepler University Linz 
Altenbergerstr. 69, 4040 Linz, Austria 

e-mail: sonntag@fim.uni-linz.ac.at 
 
 

Abstract— Creating exercises for learners requires signifi-
cant time. This is one reason, beside difficulties of discussing 
individualized tasks in a classroom setting, why often only 
few exercises are created and posed to all learners alike. In 
web-based autonomous learning the setting problem is re-
moved, while simultaneously demand for individualized ex-
ercises, comparable to adaptive learning material, increases. 

A model is proposed for assembling exercises from inde-
pendent elements and creating an exemplary solution along-
side. Here the cold-start problem is especially problematic, 
as opposed to learning material no sensible default-view ex-
ists. This difficulty can be reduced by integrating a group 
model, i.e. the history of results or actions of other learners. 

This paper presents an implementation of the model for gen-
erating cases for learning in the legal area. The web-based 
user interface of such an online system is very important to 
render comparing the learners' solution with the exemplary 
one simple, allowing correction by peers as well. The current 
implementation state as well as planned extensions is de-
scribed. 

Adaptivity, web-based learning, case generation 

I.  INTRODUCTION 
Learning is an individual activity of each person. Yet 

typically tasks and examples as basis for learning are given 
to everyone identically. This is especially prevalent at uni-
versities and schools, where online "classes" consist of 
many students and few teachers: the higher the ratio of 
learners per teachers is, the less individualized teaching, 
and therefore learning too, becomes.  

One possibility to reduce this problem is adapting 
learning content to the individual person, called adaptivity 
 [2]. Many approaches have been examined or are currently 
under development or in testing for adapting the learning 
material or its delivery: showing or hiding specific ele-
ments for which prerequisites have not been completed or 
which are already known well or might be especially inter-
esting for this particular learner. The difficulty is, that in 
this area only "negative" adaptation is possible. Material 
which does exist can be restructured or removed, but no 
new content can be generated automatically if a lack is 
discovered by the system. 

However, adaptivity is also possible in the area of ex-
ercises, where the focus lies on the production of individu-
alized content, producing different tasks for every student 
to work on to test or extend their knowledge. While in 
conventional teaching in a class setting every-one must 
receive the same task so discussions of the result can be 
understood by everyone, this does not apply to E-Learning 

where each learner works individually, usually through a 
web interface. Examples for this are adaptive tests, quiz-
zes, etc. Regarding exercises problems are similar, but in 
contrast to the learning material itself also new elements 
may be generated at least in some cases; e.g. when training 
"adding small numbers" the example might be parameter-
ized to allow arbitrary numbers. Contrastingly the explana-
tion how to add two numbers suffers from the problem 
described above. As exercise, two numbers may be gener-
ated randomly and must be added by the learner. The com-
puter can easily verify whether the answer is correct ac-
cording to its own internal representation of the formula 
and perhaps even identify common pitfalls (and explain 
them with other pre-defined textual content). 

While parameterizing examples is useful, it still suffers 
from the pedagogical shortcoming that for best learning 
results the task difficulty should match the learner's 
knowledge. Only then full adaptivity has been reached: 
selection of an example, variation of its content, and a 
matching level of difficulty in both. In the mathematical 
area this could mean automatic selection of count and "dif-
ficulty" of operators present in an equation. 

Adaptivity usually suffers from the important cold start 
problem. At the beginning of a course no formal and ex-
plicit information about knowledge, preferences etc. of the 
participants exists. For instance questionnaires or tests may 
be used for obtaining such data, but are rather disliked by 
users. Another option is transferring a general competency 
level ("good/average/weak student") from previous courses 
or other information sources. This difficulty occurs for 
each learner separately, even if others have already much 
experience in this course, as adaptivity is based on an indi-
vidualized view. In web-based learning this is especially 
common, as asynchronicity is one of its key advantages. 

Reducing this problem is possible through basing adap-
tivity in addition on a "group model". While for the first 
user the cold start problem still exists, users entering the 
course later will find a generalized base for adaptivity 
based on their predecessors. Obviously, this will not match 
them perfectly, but it does model specific aspects of a 
course applying to all learners of a course alike: 

•  Weaknesses in the material or the presentation by 
the teacher, resulting in general difficulties under-
standing a specific area 

•  Identification of sections which are hard and 
should therefore be practiced extensively 

•  General progress of learners, allowing to give 
students hints whether they are falling behind 

•  Aggregated proficiency of the class, showing the 
teacher the learners "readiness" for closing the 
class or a final examination 



While models of individual users cannot be reused be-
tween classes, a group model does apply to different learn-
ers in the same course, further reducing the cold start prob-
lem in subsequent classes. 

In this paper a system for generating exercises for indi-
vidual learning by students based on a combination of a 
user and a group model is described. The next section de-
scribes the approach generically and presents an example 
where the system has been implemented and is currently 
undergoing evaluation in a real course. Ideas for further 
work and conclusions follow a section on related work at 
the end. 

II. GENERATING EXERCISES BASED ON MODELS OF 
SINGLE USERS AND GROUPS 

The basic approach adopted here is closely related to 
Intelligent Tutoring Systems [5] and can be described as 
follows: all exercises consist of elements which are as-
signed an exemplary solution and a difficulty label. The 
latter metadata is derived from the user and the group 
models as described below. These elements are then sorted 
according to their difficulty and a function selects several 
of them. Finally they are combined to form the complete 
task for the learner. In parallel to the generation of the task 
its solution is assembled to provide feedback to learners. 

A. Exercise selection based on the individual learning 
history of a learner 
To select or assemble exercises based on this approach, 

some prerequisites must be met. Firstly, elements should 
be freely combinable, at least generally. This means, they 
are independent and selecting one does not preclude or 
require selecting others. If this cannot be guaranteed fully, 
the approach may still be possible but must take place 
stepwise, verifying after each step whether a complete task 
can still be generated, respectively whether the current 
selection set remains consistent. 

Secondly, every element must be annotated with a dif-
ficulty level for the specific user (not generally for all us-
ers!) the task is being generated for. This includes elements 
not yet seen or worked on by the user. For those a default 
value, perhaps set by the designer, may be useful. This is a 
significant problem, especially for areas where learners 
will complete only few larger exercises as then little basic 
information exists. To reduce especially this difficulty a  
group model should be integrated. 

Thirdly, difficulty should be additive. If e.g. four in-
stead of two problems are selected, the resulting task 
should approximately double in difficulty. If not, task gen-
eration is still possible but the difficulty must be modeled 
separately and it may be impossible to generate tasks of a 
specific target level. 

Finally, the result of the generated exercise must be 
calculable through the problem selection. If no exemplary 
solution can be shown to users, such a system would not 
be very useful as a human teacher would have to correct 
the learners' solutions. This is undesirable in computer 
education and even more difficult than conventional teach-
ing as each exercise would be different. 

Elements are selected for inclusion from the sorted list 
randomly. This is important so learners actually receive 
individual cases: an incentive for discussing them between 
learners and preventing copying solutions. To integrate the 

difficulty and generate "easy" or "difficult" exercises, the 
distribution of the selection must be modified from a flat 
uniform random function to a weighted one. Its shape can 
integrate a general difficulty level: if didactics requires 
generating a simple or complex task, problems should be 
selected predominantly from the matching end of the list. 

The probability can for example be linearly distributed 
(see Fig. 1: lines 1 and 3 for generating easy respectively 
difficult tasks, and line 2 for a completely random selec-
tion). Based on experiences from extensive testing it be-
came apparent, that these linear distributions result in quite 
good coverage of the problem area, but simultaneously 
exhibit relatively little concentration on problematic areas. 
So if more focusing is desired, exponential probability (see 
lines 4 and 5) should be considered. On the other hand this 
may lead to an incorrect focus. If the first task is marked as 
difficult for a user, regardless of the reason, only very 
similar tasks will be created from then on, potentially leav-
ing out important other areas which might then not be 
tested at all. Balancing this probability curve is therefore 
an important and pedagogical decision and depends on the 
subject area and the variability of available elements. 

B. Integrating group learning history 
When no difficulty level for an element for a certain 

user can be ascertained, the group history becomes impor-
tant. If other users have already worked on it in exercises 
they completed, a general difficulty level exists. It meas-
ures how complicated the element is or how much/little the 
typical learner knows about it and is therefore a good first 
approximation. 

Another advantage of the group model is, that learners 
rarely take the same course twice, so the detailed in-
formation on their knowledge is largely useless after its 
successful completion. Through the group model aggre-
gated data can be transferred to the next batch of learners 
and improves continuously. Care must be taken, however, 
when the course content changes: whether the group model 
is still at least partially (recalculation from individual re-
sults) valid, or whether it must be restarted from scratch. 

The integration of the group model into the element se-
lection process could be used as a backup only, i.e. when 
no individual assessment exists yet, like for the first exer-
cises (cold start problem). However, it can be useful al-
ways, as e.g. a good result in a difficult area might have 
been just single a lucky guess. Continuous integration, 
although to a lesser degree, ensures that problematic areas 
are covered in detail even for knowledgeable students, 
improving the validity of the individual user models. 

1 3 

2

Elements sorted by ascending difficulty 

4 5

Selection probability 

Figure 1. Selection probability for elements 



The danger of incorrect focusing is larger here as com-
pared to using a single user model only. A self-reinforcing 
cycle occurs faster because of the larger number of tasks 
generated and the fact, that examples are often generated in 
batches. E.g. at the course start all students will more or 
less simultaneously generate their first task with the same 
group model. So if these are very similar (strong focusing; 
see Fig. 1 lines 4 and 5), after completion the group model 
will cover only a small part of the element space, but this 
quite well. Therefore this model's influence should be less 
compared to the user model. An exception is the start of a 
new, and therefore empty, user model: the results from the 
first tasks allow only a rough assessment and so the group 
model (based on a larger number of feedback circles) 
should take precedence there. 

)1(**)1(

)1(**

UG

GU
G

UG

UG
U

SDSD
SDSDDF

SDSD
SDSDDFD

+
−

+−

+
+
−

+=
 (1) 

One possibility to achieve this is integrating not only 
an average difficulty level (DU and DG for user and group 
difficulty; value between 0.0 and 1.0), but also its standard 
deviation (SDU and SDG). The difference of these two de-
viations can be used for weighting the values as for exam-
ple in (1), resulting in a total difficulty level D between 0.0 
(easy) and 1.0 (very difficult), taking into account the "cer-
tainty" of the models. The influence of the group model 
can be adjusted with the factor F. A value of 0.5 results in 
both user and group model having the same weight, while 
1.0 or 0.0 would mean that the group, respectively the 
user, model is ignored completely. 

C. Overall difficulty 
This approach allows adjusting the resulting difficulty 

of the exercises generated as well: the number of elements 
combined into an exercise determines its difficulty (see 
additivity of difficulty above). Obviously, a lower bound is 
necessary to avoid creating trivial tasks. But an upper 
bound is required as well to prevent overly complex exer-
cises and reduce the probability of two elements producing 
unforeseen consequences when occurring together, e.g. 
when elements cannot be guaranteed to be always inde-
pendent. Similarly didactic decisions can be incorporated, 
like defining a difficulty curve; for instance simple at the 
start and a constant higher level later. Even meta-
adaptivity is possible, determining the number of problems 
from the (lack of) success at previous tasks. 

D. Self-assessment as feedback cycle 
This method of individualized exercises requires a cor-

rection element in the feedback cycle, as just generating 
problems, perhaps accompanied by an exemplary solution, 
cannot update the user model. Typically correction by an 
expert (teacher, coach etc.) is not an option, so only self- or 
peer-assessment can be expected. In both instances a com-
puter-generated solution is a prerequisite and support for 
the correction is necessary. The other option for the feed-
back cycle would be observing the user's behavior. How-
ever, here no relevant action to monitor occurs. Users read 
the exemplary solution and compare it mentally with their 
own. No indicative action takes place. As explicitly asking 

users is typically disliked by them (additional work they 
see little reason for), the user interface is very important 
here. It must be as simple and fast as possible to perform 
and enter this assessment, or users will evade it. 

III. EXEMPLARY IMPLEMENTATION: LEGAL CASE 
GENERATOR 

Creating legal cases  for students to solve requires a lot 
of work, so typically only few are developed and given to 
all learners as an exercise alike. This can be ameliorated 
through a generator for producing individualized cases for 
learning on demand based on user and group models. The 
problem space, an international proceeding regarding the 
ownership of domain names (UDRP, [3]), has been mod-
eled hierarchically in an ontology. The generator adap-
tively composes an exercise, a case plus its exemplary so-
lution, from several small individual elements; in this case 
text fragments. Its inner working has been described in [6] 
and is therefore omitted here. 

Regarding the requirements defined above, the follow-
ing difficulties can be identified for this case study: inde-
pendence of elements does not exist fully, as not every text 
fragments may occur with every other in one case. For 
instance, a domain holder cannot request two different 
amounts of money simultaneously. Because of this, gen-
eration must employ a backtracking algorithm. Whenever 
a new element is selected for inclusion, it is verified 
whether the resulting case is still valid. If not, it is removed 
from both the case and the list of available elements and 
another one is chosen from the latter. The second require-
ment of full difficulty annotation is fulfilled through the 
user and group models. Additionally, as the text fragments 
are categorized in a hierarchy, generalization is possible 
(see below). The third element, additive difficulty, applies 
too. As each text fragment is an independent problem with 
a separate solution the overall difficulty of a case is the 
sum of the difficulties of the elements it consists of. 

The generator was implemented in Java and was inte-
grated into the learning platform Sakai as a "tool". 

A. Use case: Learners 
Usage by learners is planned as follows: 
1. Users initiate case generation based on the user 

and group model through the web interface. Actual 
generation of the case is delayed as long as possi-
ble (e.g. no automatic generation of the first case 
in advance) to take advantage of the group model. 

2. The user reads the case as a complete single text 
(which parts are separate elements is not dis-
closed) and can solve it directly - or copy it to an-
other location for offline solving. Whether the so-
lution developed afterwards consists of full sen-
tences or just a few words is up to the learner. 

3. The solution is entered/copied into the platform 
and stored. Later changes are not allowed, as this 
would require retroactively modifying user and 
group models. Personal annotations are a possibil-
ity to ameliorate this restriction. 

4. The exemplary solution is made available to the 
user, who compares it to his own solution. He may 
align both texts through drag&drop (see below) 
and assigns correctness and completeness values 
for each constituent problem element. 



5. The user can now generate a new case. Alterna-
tively she can review old cases, seeing her own 
and the generated solution as well as her markings 
and the alignment. 

B. User and group models 
Both user and group models are overlays of the prob-

lem structure. This means, for every problem class (from 
which text fragments may be selected) a representation 
exists in every user model and once in the global group 
model. For each class correctness and completeness in the 
form of mean value and standard deviation is stored. Cor-
rectness represents the absence of errors in the solutions 
created by the learners. It is used to calculate the difficulty 
according to the proposition that a class is the more diffi-
cult, the less elements from it have been solved correctly in 
the past. This is not necessarily equivalent, as e.g. the dura-
tion required for solving is not taken into account. A 
learner might always produce perfect results, but for some 
classes it might take much longer  Therefore these are 
more difficult. However, time is a very difficult aspect to 
measure in web applications, as students might read the 
case, work on other things and then solve it, work on it 
offline etc., rendering any measurement suspect. Com-
pleteness is not used in the selection algorithm currently, 
but is requested for investigation as an alternative or future 
enhancement of the standard deviation. 

Because of the structural equality between problem 
space and user/group model, the difficulty of a text ele-
ment for a certain user can be derived as follows: from the 
text element the class it belongs to is looked up. For this 
class the data in both the user and group models are re-
trieved. From these then the final difficulty is calculated 
(see (1) above). If for the class in question no matching 
value is present in the user or group model, generalization 
takes place. 

Generalization is performed by aggregating the values 
of all child classes and assigning the result temporarily to 
the parent class, i.e. difficulties of detail classes determine 
the difficulty of their general parent class. In the current 
version there is no "attenuation", i.e. the mean value of all 
child classes is the derived value of the parent class. A 
more complex formula would be possible, taking into ac-
count e.g. the increasing uncertainty of multi-level gener-
alization or the coverage of the children (like reducing 
completeness for children from which few/no elements had 
been included in exercises yet or artificially increasing 
their standard deviation). 

A by-product of generalization is a kind of overall self-
assessment of the learner. At the top of the class hierarchy 
a value emerges describing the whole tree below, i.e. cor-
rectness and completeness of solving all kinds of problems 
in this subject area. While obviously this cannot be used 
for assigning marks, it provides an approximate general 
assessment for the learner and allows comparisons be-
tween them, in this way showing a rough measure of 
knowledge as compared to them. 

C. Web user interface 
E-Learning typically takes place over the web. So to 

prevent media breaks, presentation of the tasks, solving 
them, and their correction should take place there too. 
While this seems to be simple, the approach described here 

requires an elaborate interface as exercises and solutions 
consist of several independent elements. Each of the text 
fragments should be assessed separately, and ideally the 
whole exercise in addition. 

Consequently a different presentation of the exercise at 
various stages of its lifecycle follows. While at first it is 
shown only as a composite (full case in a single paragraph; 
theoretically sentences from several fragment might be 
interleaved), for correction the individual parts must be 
identified and separated from their integration (a single 
paragraph per fragment) so their independent marking be-
comes possible. Obviously, this can only be done for the 
task itself and the generated solution (for both of which a 
formal model exists), but not the learner's solution. 

It may be didactically useful to allow learners to align 
their solution with the exemplary one, e.g. by matching 
segments of their solution to the corresponding elements of 
the exemplary one. Drag&drop is a useful metaphor here. 
Users mark a part of their result and drag it to the area 
showing the matching part of the task or the exemplary 
solution. Additionally they assign each element (on the 
exemplary solution side, not on theirs) a value for correct-
ness of the answer. This can then be used to update user 
and group models. Rendering options for this value are 
sliders (adjusting correctness), text fields (percentage en-
try; this one is used in the evaluation), or radio buttons 
(selecting a rough correctness level). 

The user interface of the implementation is exemplified 
here by the life cycle of a learning case. First a new case is 
generated and shown for solving (see Fig. 2, top). After 
entering the learner's own solution, an applet for the com-
parison is available. This technique was chosen as it is 
much simpler there to implement drag&drop as compared 
to JavaScript, especially in a browser-independent, effi-
cient, and fast way (see Fig. 2, center; applet only exclud-
ing the surrounding Sakai UI). Additionally, further proc-
essing, like natural language parsing, can be added there in 
the future easily through libraries. 

Whenever the user clicks on an element in the case or 
the exemplary solution area, the two textboxes in the mid-
dle change content and color. These are used for marking 
correctness and completeness of each fragment. Addition-
ally the corresponding parts in the case and the exemplary 
solution are highlighted in bold (as well as in the student 
solution if already assigned by the learner). In this way the 
"current" element is always clearly indicated. If the general 
part of the solution is clicked, the textboxes are disabled. 
Later this state may be used for values describing the case 
as a whole (which has not been used in the evaluation to 
reduce the work for learners). After completion the result 
can be reviewed in HTML (Fig. 2, bottom) or again in the 
applet (link in top row), but then only in a read-only ver-
sion where no further modifications are possible. This fa-
cilitates reviewing previous solutions; however to keep the 
user and group models consistent, no changes are possible 
any more. 

IV. FURTHER WORK 
Although the system has been completed, work on en-

hancements is continuing. In the summer term an evalua-
tion is being performed and extensions are planned or al-
ready under development. 



A. Evaluation 
The generator within the learning platform is currently 

being evaluated in a course. There participants are split in 
two groups: the first one learns the subject area in a con-
ventional way by receiving full real decisions, while the 
second one uses generated cases. Based on a detailed log-
ging of the activities, a questionnaire after the course, and 
the results of the final examination, which will include a 
hand-crafted case from the generator's subject area, the 
usefulness of this system for learning will be evaluated. 
Through the exam the learning outcome (effectiveness) 

can be distinguished, while the questionnaire evaluates 
acceptance and provides hints for improvement, especially 
regarding the web-based user interface. 

B. User interface improvements 
The user interface will be improved by the ability of 

users to review their own user model. Whether manual 
modifications of it will be allowed has not yet been de-
cided. Visualization will show the basic data, i.e. the class 
hierarchy annotated with the direct/derived values. To im-
prove one-look comparison between the own and the 
group model, color coding is planned: if in the same range 

Figure 2.  Display of generated case and area for entering the learner's solution (top), applet for comparing own and exemplary solution (center), 
and view of case, exemplary, and learner solution (bottom)



as the group model, yellow color can be used, for better 
areas green, and for worse ones red. Combined with the 
generalization through the class hierarchy the top-most 
color therefore provides a quick assessment of overall pro-
gress. For this only elements covered in exercises com-
pleted by this user may be included. Otherwise a group 
model transferred from a previous term would always 
mark all students as lacking at the beginning. 

In addition graphical feedback is planned: one possibil-
ity is a "smiley" with the degree of happiness/sadness de-
termined by the correctness and its transparency by the 
completeness (coverage of the area). This allows a very 
fast and informative feedback. E.g. a perfectly completed 
course should result in a clear smile, while a problematic 
area not yet covered in depth would be represented by a 
sad and faded image. 

Finally, display of the completed case (Fig 2. bottom) 
will be extended. The text fragments a case consists of 
already contain metadata on their source, i.e. from which 
real-world decision they were excerpted from. This will be 
integrated so learners can access further information if 
desired after completing the assessment of their own solu-
tion. The alignment of learner and exemplary solution 
from the comparison applet will be shown through color-
ing there as well. Correctness and completeness assigned 
to the own solution can be added to the exemplary solution 
– as there each constituent element is a single paragraph, 
while in the learner solution it might consist of several 
independent parts. 

V. RELATED WORK 
A similar approach to the one presented here is 

PROSA [4] (PROblem Situations in Administrative law). 
This is an intelligent tutoring system to train the matching 
of legal rules to actual cases, i.e. the case solving process. 
Cases for learning are developed manually and selected by 
the student according to a difficulty rating. Students then 
select legal rules or precedent cases, decompose them into 
components, and match facts from the case description to 
them. The system provides information on whether the 
solution is already complete or which elements are incom-
plete or incorrect. However, no generation of cases takes 
place. In contrast to the approach described here, cases are 
not created automatically and there is no real solution: The 
focus is on the procedure of handling a case. 

Another approach is described in [8], which covers the 
comparatively tiny area of "the gain of property by a third 
party in good faith" as a subject. In includes a case genera-
tor, which select some facts according to the competency 
level of the student. A case text generator then derives the 
descriptions in natural language from them. Accordingly, 
every case has the same structure and only differs in the 
facts. Learning is then performed by the system asking 
questions about the case, the learner selecting questions for 
the computer to answer, or stepwise solving. This differs 
significantly from the approach here, where users must 
solve the case independently and where a much wider va-
riety of problems is covered through employing an ontol-
ogy of a larger subject area. 

A somewhat similar area is arguing with cases [1]. 
There cases are annotated according to whether they are 
similar to another one, can serve as (counter-)examples to 
a different case, whether they are bad, medium or good 

arguments etc. Students then receive a case and must select 
cases to cite for various arguments (for, against, best case 
…) in a dialogic setting. Here again cases are created 
manually from real decisions. An advantage is, that be-
cause of the extensive classification and the limited ques-
tions automatic correction is possible. 

VI. CONCLUSIONS 
We have described a general method for automatically 

generating exercises for learners to work on individually. 
The selection is based on the learning history of the indi-
vidual the task is generated for as well as a collective his-
tory. Such a system is especially useful with a web inter-
face, as then the comparison of the learner solution with an 
exemplary one need not be done by the learner himself, but 
could also be performed by someone else, e.g. another 
learner (peer coaching [7]). The system has been imple-
mented and is currently under evaluation, where a special 
focus is put on the integration of the group model (whether 
it brings advantages and which kind of parameters, e.g. 
selection probability distribution, works best) and the web-
based user interface. 

Further research is necessary in the following areas: 
generation of cases can be improved through better inte-
gration of the separate elements, i.e. a more natural flow of 
cross references like "he", "the complainant" etc. between 
them, as well as the integration of more grammar elements, 
reducing the need for specially crafted wording to be cor-
rect in every possible combination. Another aspect offer-
ing room for improvement is the (technically simple) ad-
justment of the overall difficulty: whether it should be 
static, dynamic according to the user and group learning 
progress or success, predefined according to a didactic 
model, or perhaps adjustable by the learner. 

An interesting research topic would be to investigate, 
how a single group model compares to separate smaller 
group models, perhaps created or derived according to the 
general proficiency level ("weak students" group) or their 
learning styles (visual/auditory/tactile learners). 

Natural language parsing might be used for providing 
first hints which part - sentence, phrase, or paragraph – 
could match a certain part of the exemplary solution. 
Through this the effort needed for aligning user and exem-
plary solution could be reduced. This would be easier if the 
learner solution were structured as well, or if a structure 
could be derived from it. In that area existing approaches 
of case analysis could help. 

ACKNOWLEDGMENT 
This publication is a result of the research project 

"ASCOLLA – Adaptive Support for Collaborative E-
Learning", which is being funded by the Austrian Science 
Fund (FWF; P20260-N15). 

 

REFERENCES 
[1] K. D. Ashley and V. Aleven, Towards an Intelligent Tutoring 

System for Teaching Law Students to Argue with Cases. 
Proceedings of the 3rd international conference on Artificial 
intelligence and law. ACM 1991, pp. 42-52 

[2] F. Kareal and J. Klema, Adaptivity in e-learning, in A. Méndez-
Vilas, A. Solano, J. Mesa, and J. A. Mesa (Eds.), Current 
Developments in Technology-Assisted Education, Formatex 2006, 
pp. 260-264 



[3] ICANN: Uniform Domain-Name Dispute-Resolution Policy. 
http://www.icann.org/udrp/udrp.htm 

[4] A. J. Muntjewerff and J. A. Breuker, Evaluating PROSA, a system 
to train solving legal cases, in J.D. Moore, C. L. Redfield and W. 
L. Johnson (Eds.), Artificial Intelligence in Education. AI-ED in 
the Wired and Wireless Future. IOS Press 2001, pp. 278 - 285. 

[5] T. Murray, Authoring Intelligent Tutoring Systems: An Analysis of 
the State of the Art. International J. of Artificial Intelligence in 
Education (1999), 10, pp. 98-129 

[6] M. Sonntag, Adaptive Legal Case Generator for Self-Study, in J. 
Luca, and E. Weippl (Eds.), Proceedings of ED-MEDIA 2008. 

World Conference on Educational Multimedia, Hypermedia & 
Telecommunications. Chesapeake: AACE 2008, pp. 5432-5437 

[7] M. Sonntag and A. Paramythis, Adaptive feedback for legal E-
Learning, in M. Auer (Ed.), The Future of Learning - Globalizing 
in Education. Wien: Kassel University Press 2008 

[8] G. Span, LITES, an intelligent tutoring system for legal problem 
solving in the domain of Dutch Civil law, in Proceedings of the 4th 
international conference on Artificial intelligence and law. ACM 
1993, pp. 76-81 

 


	I.  Introduction
	II. Generating exercises based on models of single users and groups
	A. Exercise selection based on the individual learning history of a learner
	B. Integrating group learning history
	C. Overall difficulty
	D. Self-assessment as feedback cycle

	III. Exemplary implementation: legal case generator
	A. Use case: Learners
	B. User and group models
	C. Web user interface

	IV. Further work
	Evaluation
	B. User interface improvements

	V. Related work
	VI. Conclusions
	Acknowledgment
	References


