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Abstract— The IMS Learning Design specification, a widely 
known language for modelling collaboration scripts, has been 
criticized for a number of shortcomings and general lack of 
support for comprehensive adaptation features. We propose 
concrete extensions to the specification, aiming to alleviate de-
ficiencies by specifically addressing (group) collaboration con-
texts, flexible service specification, fine-grained event handling 
and a wide range of adaptive interventions to support learners. 
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I.  INTRODUCTION 
According to learning theorists, learning is a social ac-

tivity, which can benefit from a collaborative setting [1]. In 
collaborative learning situations, certain interactions among 
learners can trigger learning mechanisms. Problem solving in 
a group with distributed knowledge, cognitive and real con-
flict between members, mutual questioning and discussion 
leading to collective sense-making and ultimately shared 
agreement and understanding can result in improved learning 
outcomes [2]. There is, however, no guarantee that beneficial 
interactions occur, even less so in distance learning, where 
lack of or limited ‘real-world’ contact amongst learners can 
negatively influence social- and group learning- patterns [3]. 
Especially in collaborative e-learning, support is needed to 
increase the probability that the desired interactions occur, 
because teams may not have worked together before, are 
usually formed for a comparatively short time, and individ-
ual learning goals are predominant. One way to support 
learners is by scaffolding their interaction in order to get 
group work going, mitigate disorientation and reduce cogni-
tive load [4]. Possible support strategies range from anticipa-
tively structuring the collaborative process (to favour the 
emergence of productive interactions), to retroactively regu-
lating interactions, like tutors do [5]. One strategy along this 
continuum is to provide a detailed specification of the ‘col-
laboration’ contract in a scenario, which sets up systematic 
differences among learners in order to trigger contentious 
interactions, or to make rich interactions for exchanging 
complementary knowledge necessary [2]. Such a scenario is 
commonly called a ‘collaboration script’ [5]. 

In computer-supported collaborative learning (CSCL), so 
called CSCL scripts [6] exist as computational representa-
tions of collaboration scripts. They contain instructions 

specifying how members of a group should interact and col-
laborate to attain a task [7]. Static scripts, however, represent 
idealized scenarios and there is a danger of over-scripting 
[5], where fruitful collaboration is impeded by an overly co-
ercive script. To adjust scripts at run-time, reduce its scaf-
folds over time (fading) and target the real needs of (groups 
of) learners, adaptive collaboration scripting has been pro-
posed [8],[9] and found to be an effective method [10]. 

The most widely known formalization for CSCL scripts 
is the IMS Learning Design (IMS LD) specification [11], a 
learning process modelling language intended to formally 
describe designs of teaching-learning processes for a wide 
range of pedagogical approaches [12]. Still, IMS LD has 
been criticized both for insufficient expressiveness in aspects 
of the collaborative learning process [6], and for the absence 
of constructs that are vital in supporting adaptivity [13]: The 
language provides insufficient support to model group-based, 
synchronous collaborative learning activities and collabor-
ation contexts [6]. The definition of services for providing, 
amongst others, collaboration facilities has been found to be 
rather inflexible [14] with support for only a limited number 
of service types, poor modelling of their characteristics, lack 
of insight into them once they have been instantiated and no 
means to manipulate them via adaptation interventions. IMS 
LD is also missing an event model and has only very few 
functions to modify a collaboration process at run-time [13]. 

This paper builds upon that criticism, as well as on exten-
sions of the specification, that have already been developed 
(section II) or proposed in the literature (section III). We 
present a comprehensive set of modifications and additions 
to IMS LD, aiming to address many of its shortcomings and 
lay the foundations for improved support for adaptivity in 
CSCL scripts through: environments as representations of 
collaboration contexts (section IV); a flexible service speci-
fication (section V); a fine-grained event model (section VI); 
and, adaptation actions for modifying a scripted scenario at 
run-time (section VII). Section VIII summarizes the goals 
that can be achieved through the proposed amendments, and 
provides an outlook on issues to be tackled in future work. 

II. IMS LD INFORMATION MODEL EXTENSIONS 
In order to address the general shortcomings of IMS LD 

and those precluding its effective use in supporting collabor-
ative and adaptive learning (see section I), certain extensions 
to both its information model and its run-time behaviour 
have already been developed and described in detail [15]. As 

2010 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4278-2/10 $26.00 © 2010 IEEE

DOI 10.1109/INCOS.2010.68

145

2010 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4278-2/10 $26.00 © 2010 IEEE

DOI 10.1109/INCOS.2010.68

145



these extensions form the basis for the work presented here, 
their most important aspects will be summarised in the re-
mainder of this section.  

A simplified model of the run-time objects and their in-
ter-relations can be seen in Fig. 1. Elements added to or 
changed from IMS LD are shown in gray. The specification 
has been extended as follows: Groups can be explicitly mod-
elled (group), either statically or via specifying constraints 
for run-time creation of dynamic groups. Group members 
can share group-specific properties and an environment that 
acts as a common group workspace. A choice of different 
policies gives control over the grouping of participants for 
populating groups at run-time (grouping). For roles, proper-
ties and shared workspaces can be specified as well. Casting 
participants into roles is now possible at run-time via policies 
similar to those for grouping (casting). Grouping and casting 
operations can be sequenced by means of two new activities: 
grouping-activity and casting-activity. 

 
 To avoid having to rely on the semantics of properties 

for representing results of individual and group work, arte-
facts can be modelled explicitly, and their flow between 
learning activities is expressed by referencing them as input-, 
output- or transient- artefacts. Coupled with permissions, this 
defines how they progress in the script process and who can 
contribute. 

The new sequencing model supports running multiple ac-
tivity instances according to the social plane (one per class, 
group, individual), employs transition and scene elements 
for arbitrary sequencing of activities and uses workflow se-
mantics for synchronizing and splitting the flow of action. A 
script can have multiple story containers (corresponds to 
IMS LD element play), which can each have multiple scene 
elements (correspond to combination of act and role-part). 
Scenes are connected by (conditional) transitions to form a 
directed graph, which leads from the start scene to the end of 
the story. Scenes tie actors (members of one or more role ob-
jects) to activities and specify the granularity of instantiation: 

one instance for all actors, one instance per specified group 
or one instance per actor. With this mechanism, collaboration 
contexts for groups can be created at the process level. 

To implement advanced adaptation features in a script, 
knowledge of its run-time state is required. The proposed ex-
tensions to IMS LD feature a run-time model with fine-
grained access to all elements of the script (see [15]). This 
model also contains pure run-time data, such as information 
on participants. Access to the run-time model is possible 
through new expressions, which made some operators obso-
lete (e.g., users-in-role) and new ones necessary (e.g., run-
time-value). More flexible and readable definitions of adap-
tation rules are made possible through an event handling 
mechanism with event-condition-action (ECA) semantics 
(event-handler). These event objects and the range of new 
action objects for run-time scenario adaptation will, amongst 
other extensions, be described in detail in this paper. 

III. RELATED WORK 
A number of extensions have been proposed in recent 

years to address shortcomings of IMS LD (see section I) and 
provide missing functionality. IMS LD lacks explicit col-
laboration contexts other than collaboration via a so-called 
“conference service”. Miao et al. [6] have proposed running 
multiple instances of activities, if required by the respective 
social plane (one per role/group/person) to allow, for exam-
ple, groups to work in parallel on the same problem. Their 
work, however, describes only how this changes the process 
model and not how this is reflected in the environments, 
which make up the other part of collaboration contexts (see 
section IV). In a similar effort, Hernández-Leo et al. [16] 
have proposed the “groupservice” for specifying collabor-
ation spaces with communication facilities, interaction con-
straints, floor control policies, different interaction para-
digms and awareness features. This approach provides many 
features missing in IMS LD, but suffers from the same limi-
tation as the original specification: the actual collaboration 
happens outside the script’s specification and control [17]. 

The problem of flexible service specification has been 
addressed by Valentin et al. [18] in their Generic Service 
Integration approach. It allows automatic service selection 
according to keywords specifying the expected service be-
haviour, author-defined alternative services, and explicit 
permission specification. Permissions are defined for differ-
ent actions (read/write/admin) and object types (contribution, 
context), which, considering the wide range of possible ser-
vices, is rather inflexible. Collaboration contexts are created 
by specifying the appropriate multiplicity (one-per-group, 
one-per-user, one-for-all, one-per-role) of a service but are 
not reflected in the process model. The possibility to specify 
an action that should be performed after a service has been 
closed hints at rudimentary event handling. A complete event 
model has not been included in any extension proposal yet. 

With regard to adaptation, Miao et al. [6] propose to ex-
tend IMS LD with operations concerning activities, artefacts, 
roles, groups, persons, transitions, environments and rela-
tions between them. For creating re-usable fragments of 
“code” they propose to support action and expression de-
claration.  Other suggestions for adaptation actions include 

 

Figure 1.  Object model (partial). New objects in gray. 
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invoking system facilities, manipulating the system state 
(e.g., initiating communication sessions) [19], varying the 
group size, recommending or assigning (changes in) roles for 
participants, modifying the activity structure (e.g., adding / 
removing / reordering tasks) and determining the availability 
of elements (activities, services, artefacts) [13]. 

IV. ENVIRONMENTS 
In IMS LD, activities are performed in the context of en-

vironments, containing learning objects (external resources), 
services (programmatic resources like a conference service) 
and other environments. In the original specification, each 
environment in the script source translates to one instance of 
that environment at run-time. Every participant in an activity 
is placed in that same environment specified for the activity. 
As IMS LD does not aim to support (group) collaboration, it 
does not need to provide different environment instances for 
different groups of participants in the same activity. 

In the extended learning design model, similar to the ori-
ginal one, environments can be declared for learning activi-
ties and scenes, to specify a work context for when activities 
are instantiated. In order to support collaboration contexts at 
various levels, the number of scene instances can be config-
ured in the extended specification: one for all actors, one per 
participating group, or one per person. Therefore, an envi-
ronment defined for the learning activity and/or scene merely 
acts as specification for the individual environment instances 
created for each scene instance. If an environment is speci-
fied in both activity and scene, the components of the two are 
merged in the environment instance. 

The instantiation mechanism is also used in the context 
of groups and roles. Independent of activities and scenes, 
each group and role can have an environment as its own 
“workspace”. For groups it can, for example, contain com-
munication and awareness facilities. Members of roles might 
benefit from a description of the role’s obligations and tasks. 
These environments can be specified for each group and role 
individually. Alternatively, environments declared in group-
ings or castings act as specifications for the environment in-
stances to create for each assembled group or casted role. 

In the real world, as an instructional scenario proceeds, 
items such as learning material, assignment results and feed-
back accumulate. This can simultaneously happen at three 
main levels: for each single participant, in groups, and in the 
class. In the extended IMS LD model, this behaviour is mim-
icked: The contents of environments encountered during the 
run of a learning design script are accumulated at each level, 
on which they were introduced. For a scene, of which only 
one instance is run (i.e., class context), the contents of the 
scene and activity environments are added to the workspace 
of each role that is specified as an actor in that scene. With 
one instance per group, the environment is added to each 
group’s workspace, and when running one instance per per-
son, the environment is added to each personal workspace. 

Both the merging of scene/activity environments and the 
aforementioned accumulation mechanism require the defini-
tion of precedence rules. Like in the original IMS LD speci-
fication, parts of an environment can be hidden or made visi-
ble via the static description or by adaptation rules. Preced-

ence of such properties is defined by a partial ordering of the 
relevant objects, shown in Fig. 2: Settings for environments 
of objects further to the right have precedence over settings 
made in the context of objects to the left. Environment set-
tings of a learning-activity are overridden by those in a 
scene, which in turn are overridden by those for specific in-
stances of a scene. Role and group environment instance set-
tings take precedence over settings in the environments of 
their casting or grouping policies. Precedence for roles, 
groups and persons follows the specificity of these objects. 

 
Changes made to a more general environment specifica-

tion can propagate to specific environment instances, if they 
have not been overridden there. Fig. 2 shows how changes 
are propagated between objects from left to right: Changes to 
a scene’s environment specification, for example, propagate 
to instances of that scene, and possibly to role, group or per-
sonal workspaces. For instance, changing the visibility of an 
item in a grouping’s environment affects the workspaces of 
all groups originating from the grouping. This mechanism 
allows for managing many environment instances at once. 

As discussed before, in the script source only templates 
for environment instances are specified. They can be refer-
enced via an identifier in the static description of the learning 
design. At run-time, multiple environment instances can be 
created from each template. To access these instances, the 
get-instance operator is introduced. It requires a static refer-
ence to an environment and a run-time reference to one of 
the objects in Fig. 2, and returns the instance created from 
the template as it is used for the specific object, allowing ad-
aptation actions to target individual instances. 

V. SERVICES 
As mentioned in section I, the definition of services in 

the IMS LD specification has been criticized as being rather 
inflexible. To support the plethora of services existing in to-
day’s learning and collaboration platforms, a generalizable 
approach to specifying the requirements for the requested 
service is needed. Additionally, the wide range of possible 
applications coupled with a diverse set of functions provided 
by the underlying tools mandate a fine-grained permission 
model. In the extension to the IMS LD model, the service 
definition specifies a service type, optional parameters, per-
missions and (optionally) references to definitions of other 
services that could serve both as alternatives if instantiating 
the original service fails, or as a hint for possible adaptations. 

A. Service Type Specification 
There are four ways of specifying the choice of service 

by its type: First, a service registered with the run-time en-
gine can be referenced by a descriptor like service:chat. Cer-
tain standard services that can be found in most learning plat-
forms have been defined under the general service prefix 
(service:wiki, service:chat, …) The engine is expected to 

 
Figure 2.  Environment precedence and propagation relation 
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support these services directly and map them to appropriate 
implementations. When a script author wants to use services 
of a certain platform (e.g., because they provide required 
functionality), platform-specific services can be specified. 
They must be registered with the run-time engine and can be 
referred to by a descriptor with prefix and service name cho-
sen by the administrator. By convention, the name of the 
platform should be used as prefix (e.g., sakai, blackboard) 
and a general tool name (e.g., forum, wiki) or the name of a 
specific product (e.g., wimba, elluminate) as the service 
name. If multiple services provide the desired functionality, a 
list of these can be specified in the script. Each will be 
looked up in the engine’s registry and the first one matching 
will be chosen. This allows for first requesting very specific 
services and falling back to more general ones later. 

The second possibility of specifying the requested service 
type is by setting constraints and letting the run-time engine 
find a suitable service automatically. Constraints are either 
hard (must not be violated) or soft (may be violated, but the 
constraint solver still tries to avoid that). They can be priori-
tized by giving them a weight in the range of 0 to 1. If no 
weight is given, a default of 0.5 is used. The constraints can 
be broadly classified into the following categories: 

• function: possible values are communication, aware-
ness, coordination, consensus, cooperation and col-
laboration. These categories are not mutually exclu-
sive. For instance, a forum is primarily a communi-
cation service, yet can still provide support for other 
tasks. The degree of support for each function must 
be set when registering a service with the engine. 

• interaction: synchronicity (synchronous, asynchron-
ous), interaction mode (implicit via mediating arte-
fact, explicit direct interaction) [20] and multiplicity 
(1-to-1, 1-to-some, 1-to-many, many-to-many). 

• action coordination: required modes of coordination 
between actors. Specific labels referring to certain 
strategies will need to be specified. At the moment, 
possible constraints are free (users interact freely), 
moderated (contributions are moderated) and various 
floor control policies (see section VII.C). 

• awareness: required indicators for social awareness 
(peer presence, motivational state, attitude, individ-
ual and group communication activities, …) [21], 
group-structural awareness (peers’ roles, responsi-
bilities, positions, status, …) [22], action awareness 
(interaction with shared resources, location and fo-
cus of current activity, …) and activity awareness 
(shared plans, rationale, task dependencies, …) [21]. 

• modality of interaction (communication) as either 
text, graphics-2d, graphics-3d, audio or video. 

• artefacts: type of item supported for viewing or cre-
ation specified on three levels: atomic (simple text, 
rich text, hypertext, image, video, sound), compound 
(e.g., presentation, animation) or via MIME types. 

• shared environment: features of the service’s 
workspace like degree of what-you-see-is-what-i-see 
(relaxed, strict) [20] or tele-pointer support [23]. 

• privacy: features like the possibility for data hiding 
(controlling the visibility of contributions to peers) 

[20], availability of a private workspace in addition 
to the shared workspace [24], support for anonymous 
participation or completely hidden participation. 

• technical: number of supported users (arbitrary, 
minimum, maximum) and session persistence (none, 
partial-history, full-history, results-only) 

The third possible way of specifying the service type is 
by directly referencing the service via a URI. This can be a 
URL with the service being independent from the run-time 
engine, not managed by it and no back-flow of (event) data. 
Alternatively, engines could support control and event fea-
tures via, e.g., web service- or REST-style interface(s).  The 
fourth way to specify a service type makes human interven-
tion possible. Using the three other service specification 
methods, a set of service choices can be prepared. At run-
time, a human participant must choose one to be instantiated. 

In IMS LD, all services have to be instantiated before the 
script is started. This early binding is still possible when the 
service has been specified via a registered descriptor or di-
rectly via a URI, and, under certain conditions, also for ser-
vices defined by constraints. Late binding of services, one of 
the prerequisites for adaptation, is applied when constraints 
refer to run-time information (e.g., supported users con-
straint set to number of participating users), or when the ser-
vice should be selected manually. In the later case, an adap-
tation rule might take over this task and use knowledge about 
the participants to tailor the service choice to their needs. 

B. Service Functions 
For specifying the permissions of roles in relation to a 

service (see section V.C), modelling the events that a service 
can generate (see section VI.B), and defining how adaptation 
actions can control it (see section VII.C), a model of the ser-
vice’s functionality is required. The run-time engine, where 
each supported service has to be registered, needs to know 
which functions a service provides to its users. In particular, 
the engine needs: a name for referring to the function; a way 
to effect function-specific permissions; instrumentation to be 
notified upon function use; and (optionally) an interface to 
call the function with any required parameters. To keep the 
integration and configuration effort at a reasonable level, and 
prevent over-specifying the interface to services, a small set 
of general functions has been created. The basic functionality 
of any service should be mapped to these baseline functions: 

• new: create content item/contribution/utterance 
• read: perceive content/contribution/discussion 
• revise: change existing content 
• delete: delete content/contribution 
• moderate: publish item on behalf of somebody else 
• communicate: reply, comment, out-of-band com-

munication (e.g., text chat in whiteboard) 
• create/remove section: manage sub-division of (in-

teraction) space provided by service 
• enter/leave section: access to sub-workspace 
• archive: persist/export the content/results 

Additional functions exist for synchronous services: 
• start/end session: manage time-limited provision of 

(interaction) space in service 
• enter/leave session: access to (interaction) space 
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If the service supports floor control, then the following 
functions can be used to model the primitives for expressing 
various policies [20]: request-floor, release-floor, assign-
floor, revoke-floor. 

The functionality of tools commonly found in LMSs can 
be mapped to the above functions. For example in a wiki, 
one can create (new), view (read), edit (revise) or delete 
pages (delete), moderate contributions (moderate), comment 
on pages (communicate), manage/access topical areas (sec-
tion), and export content (archive). In an A/V conferencing 
tool, one can make an utterance (new), manage speakers 
(moderate), converse in a text chat (communicate), man-
age/access meetings (session), manage/enter private rooms 
(section) and export a session (archive). Other functions of a 
service that cannot be readily mapped to general functions 
(e.g., vote in a polls tool) must be separately registered with 
the run-time engine. Other than that, there is no difference in 
usage between a general and a service-specific function. 

C. Permission Specification 
Instead of relying on fixed categories such as observer, 

participant, moderator and conference-manager, as defined 
in IMS LD, an approach for fine-grained control over which 
role may perform which function is proposed. Permissions 
are defined for specific functionality of a service, referred to 
by an identifier: prefix.service-name.function[.own|.any]. 
Prefix and service name correspond to the values used to 
specify the type of service to instantiate (see section V.A). 
The function name (see section V.B) defines the context of 
the permission, an optional own or any can differentiate be-
tween the right to, for instance, revise one’s own blog posts 
or modify anyone’s posts. For each function, a positive (al-
low) or a negative (deny) permission can be created. 

Permissions are assigned to one or more roles in the 
script. They can be specified by either defining a set of them 
“from scratch” or by using (and possibly extending or over-
riding) a service-specific profile that provides reasonable de-
fault permissions. Each service can have any number of pro-
files, identified by a name (e.g., reader, tutor) and comprised 
of defaults that this profile represents. For the general ser-
vices under the service prefix, appropriate profiles are de-
fined in the specification. For other services, profiles have to 
be defined via configuration mechanisms of the run-time en-
gine. When using a service in a script, instead of having to 
create a complete set of permissions, a profile can be refer-
enced and extended/overridden with custom permissions. 

Due to the way that the service type can be specified (see 
section V.A), it may not be known at design time which ser-
vice will be instantiated. Functionality identifiers seem to be 
service-specific, but specifying permissions is still possible: 
One approach is to define permissions for the functions of all 
services that can potentially be instantiated. This works, for 
example, when using a list of registered service descriptors 
for requesting a service. In cases where the set of possible 
services is not known a priori, wildcards in the function 
name can be used for the prefix and the service name. The 
function identifier *.*.delete.any would represent the permis-
sion to delete any content element in any service on any plat-
form. With *.blog.delete.any this can be constrained to just 

blog services, and with general.*.delete.any to any service in 
the set of general services described in the specification. 

Permissions are inherited throughout the hierarchy of 
roles. This allows for giving a limited set of permissions to 
general roles like learner or staff and providing extra permis-
sions to more specific roles like group-leader or administra-
tor. To resolve conflicts arising when permissions are both 
inherited and defined in a role, there are two resolution rules: 
deny permissions have precedence over allow permissions; 
and permissions with more specific identifiers override those 
with more wildcards or a wildcard at more general positions. 

VI. EVENT MODEL 
Fundamental to adaptation rules are the criteria that need 

to be fulfilled to trigger the rule’s action(s). In IMS LD, rules 
are expressed as conditions, which are triggered by Boolean 
expressions referring to properties. Some problems exist 
with this approach: First, all state changes where an action 
should be triggered need to be recorded in properties, with a 
property required for each dimension of the state model. In 
complex scripts, this requires a large number of properties, 
although most of the information would be contained in the 
run-time state of the script engine anyway. Second, the prop-
erties contain no semantic information about their purpose, 
except in their name, which cannot be used for automatic in-
ferences. As a consequence, conditions lack semantics as 
well. Third, properties and conditions form an unstructured 
base of state and adaptation information, which makes them 
difficult to understand and use, and might create perform-
ance problems when many conditions have to be evaluated 
every time a property’s value changes. Fourth, values of 
properties can only be changed upon completion of certain 
script components (activities, act, play, method) completes, 
or users change them manually. This represents a big restric-
tion on the types of state changes that can be detected at all.  

To address these shortcomings, extensions to IMS LD 
have been proposed, replacing the on-completion hook (in 
activities, acts, plays and methods) with a general event-
condition-action (ECA) handler concept [15]. Each event 
handler can process events specific to the context in which it 
is specified, can have a filter expression to specify the exact 
conditions when it triggers actions, and has a list of actions 
(see section VII) to perform once triggered. This approach 
provides the following benefits over the original model: state 
changes do not need to be modelled in properties but can be 
“detected” by appropriate event handlers; the set of possible 
events has defined semantics, which allows reasoning about 
them by components other than the event handlers them-
selves; event handlers are defined at the element which they 
monitor, which models their semantic relation and improves 
readability; finally, event handlers can be defined for most 
elements of a learning design script, which allows for fine-
grained reactions to state changes (see sub-section VI.A). 

A. Script Events 
Script events originate from the objects shown in Fig 1 

with an asterisk (*), which are those elements for which 
event handlers can be defined. Possible script events are: 
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• activity, scene-instance, scene, story: started, paused, 
resumed, cancelled, completed, completed-
repeatable, participant-joined/-left 

• transition: fired 
• learning-activity: artefact-delivered 
• artefact: created, read, updated, (un)locked, deleted 
• role: member-added/-removed, subrole-added/-

removed, property-added/-removed 
• group: member-added/-removed, subgroup-added/-

removed, property-added/-removed 
• casting: permitted-methods-shown, started, casted, 

casted-with-exceptions, review-started, rejected, fin-
ished, finished-with-exceptions 

• grouping: permitted-methods-shown, started, 
grouped, grouped-with-exceptions, review-started, 
rejected, finished, finished-with-exceptions 

• learning-object: reference-changed 
• service: (un)deployed, participant-joined/-left 
• environment: learning-object-added/-removed, ser-

vice-added/-removed 
These events have been chosen to cover practically all 

relevant changes in the state of the individual objects. 
IMS LD provides a way to complete activities (and the 

elements for sequencing them) after a time limit. This ap-
proach has been generalized with so-called timers. For each 
element that can produce events, timers can be specified to 
trigger a timer event, which can in turn trigger arbitrary ac-
tions via an event handler. Optionally, timers can be defined 
to trigger recurrently with a certain frequency, either until a 
certain time or for a certain number of triggerings. Timers 
can be used, for example, to set the state of an activity after 
some time, like in IMS LD; to regularly give feedback to 
participants; to rotate roles in a group every week; etc. 

B. Service Events 
Events returned from a service are closely related to its 

functionality. Registered general and service-specific func-
tions (see section V.B) define, which events exist for a ser-
vice. There is a wide range of possible data that can be re-
turned from a service by an event. To prevent over-
specification, only a reference to the service, a timestamp, 
the participant causing the event, and (if applicable) identifi-
ers for the section and the affected object in the service’s 
workspace are mandated. Modelling mechanisms requiring 
more detailed information should be kept outside the script 
source, where they can have custom interfaces to services, 
receive a wide range of data and employ arbitrarily complex 
algorithms to create user and group models. Via a connection 
with the run-time engine, these mechanisms could populate 
the run-time model of a script with their models. 

VII. ADAPTATION ACTIONS 
The original IMS LD specification provides only a lim-

ited number of actions: showing/hiding objects, changing the 
value of properties and giving feedback. Comprehensive 
support for adaptive interventions, however, requires a wide 
range of additional actions in order to effect meaningful 
changes on the execution of a learning design. The necessary 
actions can be broadly categorized into the following classes: 

• object adaptations: creating, modifying and destroy-
ing objects (group, scene, artefact, …) 

• relation adaptations: modifying attributes of objects 
or processes in relation to other objects or processes 
(membership, ownership, permissions, visibility, …) 

• control flow adaptations: starting, stopping, modify-
ing (e.g., new branches) the script process 

• environment adaptations: managing services and 
performing human-like actions in the environment 

• adaptation control: managing the adaptations them-
selves (conditions, event handlers, actions, …) 

These actions cover the life cycle of objects, relations be-
tween them, control of active processes, adaptations of ex-
ternal services and basic building blocks for meta-adaptivity. 
Three of the classes will now be described in more detail. 

A. Object Adaptations 
Adapting objects as such deals with managing their life 

cycle and adjusting those attributes and parameters at run-
time that do not represent relations to other objects. This fo-
cuses on the properties of objects that are self-contained, yet 
may still show effects outside the object itself or may be 
constrained by external circumstances. 

Any object except learning-design and person objects 
can be created at run-time by adaptation actions. Mandatory 
attributes and relations according to the specification ([11], 
[15]) must be provided as parameters to the creation action; 
optional attributes may be provided as well. When calling the 
create-role action, for example, title and type are mandatory, 
and references to detailed information on the role, as well as 
to a role environment, are optional. When a role environment 
is specified, this also has an effect outside the target of the 
adaptation action: an environment instance is automatically 
created to serve as shared environment for role members. 

Most attributes of objects can be modified at run-time, 
yet some constraints exist: first, multiplicities of attributes 
must be respected (e.g., mandatory ones must not be “re-
moved”); second, the new value must be in the range of valid 
values; third, some attributes can only be changed when the 
object is in a certain state: for example, changing which 
groups should be assembled by a grouping only works before 
the grouping has started. If an action violates such a con-
straint, an exception is generated. Script designers can define 
mechanisms to detect exceptions and react accordingly. Due 
to lack of space, the exact workings of exceptions in the con-
text of a learning design script can not covered in this paper. 

 Destroying objects is theoretically possible, yet in prac-
tice they are often tightly interconnected (see Fig. 1), requir-
ing prior “detachment”. Constraints may prevent objects 
from being destroyed, for example when they are part of an 
ongoing process (e.g., running scene-instance). Checking all 
constraints and severing all connections to other objects 
would require a lot more operations than a single action, and 
may not be feasible to specify at design-time without de-
tailed knowledge of the specific situation. One approach of 
removing objects from the immediate context of a run, but 
leaving them in place to retain referential integrity, can work 
as follows: Alternatives to the object can be prepared at de-
sign-time or at run-time. For example, an alternative role or a 
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path in the sequencing of the story can be provided. The al-
ternatives need to be connected to objects just as the original 
ones, so in our example the new role must be added as actor 
to all the places where the original role was used, and the al-
ternative path may be connected to the main path via condi-
tional transitions. The next step is to transfer the “active” 
elements to the alternative object or make sure that this is 
done during the rest of the script run. For roles, this means 
moving the members to the new role. The new sequencing 
path can be activated by making sure that conditional transi-
tions from preceding scenes direct the control flow along it, 
instead of along the original path. What remains is replacing 
any references to the original object (e.g., in conditions) with 
ones to the new one. Ideally, the object would be ready for 
destruction afterwards, but this step is not always necessary.  

B. Relation Adaptations 
Adaptations to the relations between objects deal with all 

the attributes of objects that link them to other objects. The 
relations that can be adapted can be categorized as follows: 

• containment: method!story!scene!scene-instance, 
environment!learning-object/service/environment, 
property-group!property/property-group 

• hierarchy: role!sub-role, group!sub-group 
• membership: role!person, group!person 
• task: scene!activity, scene-instance!activity 
• actor: scene!role, scene-instance!role/group/person 
• environment: activity!environment, scene!…, 

scene-instance, person, role, casting, group, grouping 
• sequencing: scene!transition!scene 
• ownership: person!property, grouping!property, 

group!property, role!property, casting!property 
• permissions: service!role, artefact!role 
• artefacts: learning-activity!artefact 
• visibility: learning-activity!artefact,  

                environment!learning-object/service 
Relations are managed by a set operation and, depending 

on the multiplicity, by an add and a remove operation. Role 
members, for example, can be defined by set-members, or 
changed, one by one, with add-member and remove-member. 

C. Environment adaptations 
In IMS LD, services are “black boxes” that can be neither 

monitored nor manipulated. However, a lot of the interaction 
happens in the environment, specifically in services. There-
fore, adaptively supporting users of services is a way to ad-
vance from collaboration establishment to active collabor-
ation process support [13]. It can be achieved by tuning ser-
vice functionality and operations to its users, and by effect-
ing actions that would be normally performed by a human. 

Adaptation can first happen when the service is auto-
matically selected, taking into account needs and character-
istics of participants and groups. While a service is running, 
the permissions of roles can be adapted, for example to give 
a group leader moderation rights. Permissions can also be 
used to selectively enable specific functionality. If, for in-
stance, replies can be disallowed in a forum service, this can 
be used to emulate a brainstorming tool. As customary, par-
ticipants can then only create new postings with ideas but 

cannot (directly) comment on ideas. Later, reply permissions 
may be granted, to allow a discussion of the collected ideas. 

Coordination mechanisms like floor control can influence 
the interaction in communication and collaboration tools. 
The floor control policy of a service may be changed in order 
to make interaction more free-form and minimize the scaf-
folding, or, conversely, to switch to a more coercive policy. 
Examples of policies are [20]: a moderator assigns the floor 
to a contributor who returns it after use; the current floor 
holder passes the floor to a contributor who requested it; all 
floor requests are queued and upon floor release the first one 
in the queue receives it. The first two policies (and possibly 
others as well) can be specified with appropriate permissions 
for the request-floor, release-floor, assign-floor, revoke-floor 
functions (see section V.B). Policies that have a state (e.g., 
the queue in the third one) require explicit support from the 
service. Policies must be specified in the service interface 
and may be enacted by an action like set-floor-control-
policy. Alternatively, directly calling a service’s assign-floor 
or revoke-floor actions allows for direct intervention. 

In services for synchronous interaction, means to start 
and end sessions and invite participants would allow to set 
up ad-hoc communication/collaboration contexts. For exam-
ple, if it has been detected that a group needs help, a com-
munication session (e.g., chat) could be started and its mem-
bers and an instructor could be automatically invited. 

Performing adaptive interventions in the environment in 
a manner akin to that of human operators (e.g., a tutor) can 
be used to provide feedback and content scaffolding. This 
requires adaptation actions that directly put content into run-
ning services. A full specification of all functions for manag-
ing content in a service would result in over-specification, 
yet some functions of certain services can be called from in-
side a script. This applies especially to the general functions 
new (create content item) and create-section (create sub-
divisions like conference rooms, forum topics). Actions call-
ing these functions with appropriate parameters could ex-
press interventions like: give feedback or advice in a text 
chat, for example in the form of advice phrases like “Invite 
others to participate” or “Reflect with teammates about …” 
[25]; provide structures like forum topics or folders in a file 
space to help participants organize their collaboration; pro-
vide content scaffolding by creating new (example) items in 
a glossary or (template) pages in a wiki; etc. 

VIII. SUMMARY AND OUTLOOK 
In this paper, we have presented extensions to IMS LD 

that aim to allow for better expressing collaboration scripts 
and more comprehensive adaptation behaviour. For repre-
senting collaboration contexts, we have extended the envi-
ronment model to support workspaces for whole classes, in-
dividual groups and single users. A flexible service model 
has been introduced, which allows fine-grained service selec-
tion and permission configuration. With an event model, a 
wide range of state changes in run-time objects and services 
can be detected and used to trigger actions. Finally, adapta-
tion actions have been introduced for manipulating objects 
and their relations at run-time, and for effecting interventions 
in collaboration environments, specifically in services. 
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In order to ascertain the expressiveness and suitability of 
the extensions in practice, we are currently assessing them 
against a representative set of existing scripts and collabor-
ation patterns. The results of this evaluation will guide fur-
ther extension efforts. For future iterations of this informa-
tion model, we will address the following aspects: an excep-
tion handling mechanism for dealing with unforeseen situa-
tions and for increasing execution robustness of scripts; 
actions for control flow adaptations and adaptation control as 
well as support for provisional adaptation decisions; a for-
malism for creating expressions and action declarations to 
allow re-using sets of actions and expressions across the 
script; and control structures (loop, branch) and transactional 
processing semantics for sequencing of adaptation actions. 

Parallel to this, we have started to implement the specifi-
cation in an executable model, with run-time components 
capable of running the script, and services, user interface and 
infrastructure provided by the Sakai e-learning platform [26]. 
This prototype will then be employed in real-world student-
based evaluations, where we will seek to establish the impact 
of the newly enabled types of adaptive support on the col-
laborative learning process. After thus providing the founda-
tion for adaptive collaboration scripting, we will turn our at-
tention towards developing tools that allow authors to exploit 
the potential of both the specification and the engine. 

ACKNOWLEDGMENTS 
The work reported in this paper has been supported by 

the “Adaptive Support for Collaborative E-Learning” 
(ASCOLLA) project, financed by the Austrian Science Fund 
(FWF; project number P20260-N15). 

REFERENCES 
[1] J. Roschelle and S. Teasley, “The construction of shared knowledge 
in collaborative problem solving,” Computer-Supported Collaborative 
Learning, C. O'Malley, Ed.,  Berlin: Springer, 1995, pp. 69–97. 
[2] P. Dillenbourg, “What do you mean by collaborative learning?,” 
Collaborative-learning: Cognitive and Computational Approaches, P. 
Dillenbourg, Ed.,  Oxford: Elsevier, 1999, pp. 1–19. 
[3] A. Paramythis and J.R. Mühlbacher, “Towards New Approaches in 
Adaptive Support for Collaborative e-Learning,” Proceedings of the 11th 
IASTED International Conference,  Crete, Greece: 2008, pp. 95–100. 
[4] J. Zumbach, J. Schönemann, and P. Reimann, “Analyzing and 
supporting collaboration in cooperative computer-mediated 
communication,” Proceedings of th 2005 conference on Computer support 
for collaborative learning: learning 2005: the next 10 years!,  Taipei, 
Taiwan: International Society of the Learning Sciences, 2005, pp. 758–767. 
[5] P. Dillenbourg, “Over-scripting CSCL: The risks of blending 
collaborative learning with instructional design,” 2002. 
[6] Y. Miao, K. Hoeksema, H.U. Hoppe, and A. Harrer, “CSCL Scripts: 
Modelling Features and Potential Use,” Proceedings of the 2005 
Conference on Computer Support for Collaborative Learning - Learning 
2005: The next 10 Years!,  Taipei, Taiwan: International Society of the 
Learning Sciences, 2005, pp. 423–432. 
[7] A.M. O’Donnell and D.F. Dansereau, “Scripted Cooperation in 
Student Dyada: A Method for Analyzing and Enhancing Academic 
Learning and Performance,” Interaction in Cooperative Groups: The 
theoretical Anatomy of Group Learning, R. Hertz-Lazarowitz and N. 
Miller, Eds.,  London: Cambridge University Press, 1992, pp. 120–141. 
[8] N. Rummel, H. Spada, and S. Hauser, “Learning to collaborate while 
being scripted or by observing a model,” International Journal of 
Computer-Supported Collaborative Learning,  vol. 4, 2009, pp. 69–92. 

[9] N. Rummel, A. Weinberger, C. Wecker, F. Fischer, A. Meier, E. 
Voyiatzaki, G. Kahrimanis, H. Spada, N. Avouris, E. Walker, K. 
Koedinger, C. Rosé, R. Kumar, G. Gweon, Y. Wang, and M. Joshi, “New 
challenges in CSCL: Towards adaptive script support,” Proceedings of the 
8th International conference of the Learning Sciences, Utrecht, Netherlands: 
International Society of the Learning Sciences, 2008, pp. 338–345. 
[10] S. Demetriadis and A. Karakostas, “Adaptive Collaboration 
Scripting: A Conceptual Framework and a Design Case Study,” Complex, 
Intelligent and Software Intensive Systems, International Conference,  Los 
Alamitos, CA, USA: IEEE Computer Society, 2008, pp. 487–492. 
[11] IMS Global Learning Consortium, Inc., “Learning Design 
Specification (Version 1.0 Final Specification),” 2003. 
[12] R. Koper and B. Olivier, “Representing the Learning Design of 
Units of Learning,” Educational Technology & Society, vol. 7, 2004, pp. 
97–111. 
[13] A. Paramythis, “Adaptive Support for Collaborative Learning with 
IMS Learning Design: Are We There Yet?,” Proceedings of the Adaptive 
Collaboration Support Workshop, held in conjunction with the 5th 
International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH'08),  Hannover, Germany: 2008, pp. 17–29. 
[14] M. Caeiro, L. Anido, and M. Llamas, “A Critical Analysis of IMS 
Learning Design,” Proceedings of CSCL 2003, Bergen, Norway: 2003, pp. 
363–367. 
[15] F. König and A. Paramythis, “Towards Improved Support for 
Adaptive Collaboration Scripting in IMS LD,” Sustaining TEL: From 
Innovation to Learning and Practice – Proceedings of the 5th European 
Conference on Technology Enhanced Learning Sustaining (EC-TEL 2010), 
M. Wolpers, P.A. Kirschner, M. Scheffel, S. Lindstädt, and V. Dimitrova, 
Eds.,  Barcelona, Spain: Springer-Verlag, 2010, pp. 197–212 (in press). 
[16] D. Hernández-Leo, J.I. Asensio-Pérez, and Y.A. Dimitriadis, 
“Computational Representation of Collaborative Learning Flow Patterns 
using IMS Learning Design,” Educational Technology & Society, vol. 8, 
2005, pp. 75–89. 
[17] F. Jurado, M. Redondo, and M. Ortega, “Specifying Collaborative 
Tasks of a CSCL Environment with IMS-LD,” Cooperative Design, 
Visualization, and Engineering, 2006, pp. 311–317. 
[18] L. de la Fuente Valentin, Y. Miao, A. Pardo, and C. Delgado Kloos, 
“A Supporting Architecture for Generic Service Integration in IMS 
Learning Design,” Times of Convergence. Technologies Across Learning 
Contexts, 2008, pp. 467–473. 
[19] A. Paramythis and A. Cristea, “Towards Adaptation Languages for 
Adaptive Collaborative Learning Support,” Proceedings of the First 
International Workshop on Individual and Group Adaptation in 
Collaborative Learning Environments (WS12) held in conjunction with the 
3rd European Conference on Technology Enhanced Learning (EC-TEL 
2008). CEUR Workshop Proceedings, ISSN 1613-0073, online CEUR-
WS.org/Vol-384/,  Maastricht, The Netherlands: 2008. 
[20] W. Reinhard, J. Schweitzer, G. Völksen, and M. Weber, “CSCW 
Tools: Concepts and Architectures,” Computer, vol. 27, 1994, pp. 28–36. 
[21] J.M. Carroll, D.C. Neale, P.L. Isenhour, M.B. Rosson, and D.S. 
McCrickard, “Notification and awareness: synchronizing task-oriented 
collaborative activity,” International Journal of Human-Computer Studies,  
vol. 58, May. 2003, pp. 605–632. 
[22] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace Awareness 
in Real-Time Distributed Groupware: Framework, Widgets, and 
Evaluation,” Proceedings of HCI on People and Computers XI, Springer-
Verlag, 1996, pp. 281–298. 
[23] C.A. Ellis, S.J. Gibbs, and G. Rein, “Groupware: some issues and 
experiences,” Communications of the ACM,  vol. 34, 1991, pp. 39–58. 
[24] C. Ellis and J. Wainer, “A conceptual model of groupware,” 
Proceedings of the 1994 ACM conference on Computer supported 
cooperative work,  Chapel Hill, North Carolina: ACM, 1994, pp. 79–88. 
[25] M.D.L.A. Constantino-Gonzalez, D.D. Suthers, and J.G.E.D.L. 
Santos, “Coaching Web-based Collaborative Learning based on Problem 
Solution Differences and Participation,” International Journal of  Artificial 
Intelligence in Education,  vol. 13, 2003, pp. 263–299. 
[26] Sakai Foundation, Sakai Project,  http://www.sakaiproject.org. 

152152


