
Closing the Circle: IMS LD Extensions
for Advanced Adaptive Collaboration Support

Florian König, Alexandros Paramythis
Institute for Information Processing and Microprocessor Technology (FIM)

Johannes Kepler University
Altenbergerstraße 69, A-4040 Linz, Austria

{koenig, alpar}@fim.uni-linz.ac.at

Abstract—This paper, the third in a series, completes the pres-
entation of a proposed set of modifications and extensions to
the IMS Learning Design specification with the goal of ena-
bling better support for adaptivity in collaborative learning
settings. The extensions presented here target advanced adap-
tation features that build upon previous work and include:
adapting control flows; controlling adaptations on a meta-
level; human involvement in adaptation decisions; “transac-
tional” action processing; loops and branches for controlling
action execution; declaration of re-usable action sequences and
complex expressions; and mechanisms for exception handling.

Keywords—collaborative learning; adaptive support;
learning design; IMS LD; extension; adaptation actions; control
flow; adaptation control; provisional adaptation decision;
exception handling

I. INTRODUCTION
Learning is regarded by many theorists as a social ac-

tivity that can benefit from a collaborative setting [1]. In col-
laborative learning situations, certain interactions (such as
discussion, mutual questioning, joint problem solving, con-
flict, collective sense-making and shared agreement) can
trigger learning mechanisms and result in improved learning
outcomes [2]. There is, however, no guarantee that beneficial
interactions occur, even less so in distance learning, where
lack of or limited ‘real-world’ contact amongst learners can
negatively influence social- and group learning- patterns [3].
Especially in collaborative e-learning, support is needed to
increase the probability that the desired interactions occur,
because teams may not have worked together before, are
usually formed for a comparatively short time, and individ-
ual learning goals are predominant. One way to support
learners is by scaffolding their interaction in order to get
group work going, mitigate disorientation and reduce cogni-
tive load [4]. Collaboration scripts [5] are an instance of
such a scaffolding strategy. They provide a detailed specifi-
cation of the collaboration contract in a scenario, and aim to
set up systematic differences among learners in order to trig-
ger contentious interactions, or to make rich interactions for
exchanging complementary knowledge necessary [2]. For
computer-supported collaborative learning (CSCL), col-
laboration scripts are modelled and enacted via external,
computational representations, termed CSCL scripts [6].
These contain instructions specifying how members of a
group should interact and collaborate to attain a task [7].

Static collaboration scripts, however, represent idealized
scenarios and there is a danger of impeding fruitful collabor-
ation by an overly coercive script (over-scripting) [5]. One
strategy of adjusting scripts to learners and groups is to re-
duce its scaffolds over time in a process called fading [8],
once learners have a good understanding of how to collabor-
ate effectively. To adjust scripts at run-time in general and
target the individual needs of learners and groups, adaptive
collaboration scripting has been proposed [9],[10] and found
to be an effective method [11].

The most widely known formalization for CSCL scripts
is the IMS Learning Design (IMS LD) specification [12], a
learning process modelling language intended to formally
describe designs of teaching-learning processes for a wide
range of pedagogical approaches [13]. Still, IMS LD has
been criticized both for insufficient expressiveness in aspects
of the collaborative learning process [6], and for the absence
of constructs that are vital in supporting adaptivity [14]: the
language provides limited support to model group-based,
synchronous collaborative learning activities and collabor-
ation contexts [6]; the specification of services for providing,
amongst others, collaboration facilities has been found to be
rather inflexible [15]; IMS LD is missing an event model to
monitor state changes and trigger adaptations, and it has only
very few functions to modify a collaboration process at run-
time [14]; artefacts can not be explicitly specified; IMS LD
exposes no run-time model for querying state information
and effecting changes; the activity sequencing model has
been found to be constraining [16] and difficult to under-
stand [17]; and, there is no mechanism to handle exception
states that may arise at run-time.

Based on extensions of IMS LD that have already been
developed (section II) or are proposed in the literature (sec-
tion III), we present modifications and additions to the speci-
fication, aiming to address the aforementioned shortcomings
and improve support for adaptivity in CSCL scripts. Specifi-
cally, the amendments deal with actions for adapting the con-
trol flow (section IV.A), control of adaptations on a meta-
level (section IV.B), human involvement in adaptation deci-
sions (section V), transactional action processing, loops and
branches for controlling action execution (section VI), de-
claration of re-usable action sequences and complex expres-
sions (section VII) and mechanisms for exception handling
(section VIII). Section IX summarizes the goals attainable
through the proposed extensions, and provides an outlook on
issues to be worked on in future iterations.

2010 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4278-2/10 $26.00 © 2010 IEEE

DOI 10.1109/INCOS.2010.83

421

2010 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4278-2/10 $26.00 © 2010 IEEE

DOI 10.1109/INCOS.2010.83

421

II. EXTENSIONS TO IMS LD
In order to address shortcomings of IMS LD precluding

its effective use in supporting collaborative and adaptive
learning (see section I), certain extensions to both its infor-
mation model and its run-time behaviour have already been
developed and described in detail [18],[19]. As these exten-
sions form the basis for the work presented here, their most
important aspects will be summarised in the remainder of
this section. A simplified model of the run-time objects and
their inter-relations can be seen in Fig. 1. Elements added to
or changed from IMS LD are shown in gray. The scripting
capabilities have been extended as follows: Groups can be
explicitly modelled (group), either statically or via
specifying constraints for run-time creation of dynamic
groups. Group members can share group-specific properties
and an environment that acts as a common group workspace.
A choice of different policies gives control over the grouping
of participants for populating groups at run-time (grouping).
For roles, properties and shared workspaces can be specified
as well. Casting participants into roles is now possible at run-
time via policies similar to those for grouping (casting).
Grouping and casting operations can be sequenced by means
of two new activities: grouping-activity and casting-activity.

To avoid relying on the properties for storing individual
and group work results, artefacts can be modelled explicitly,
and their flow between different learning activities is ex-
pressed by referencing them as input-, output- or transient-
artefacts. Coupled with permissions, this defines how they
progress in the script process and who can contribute. For
collaboration context provision, the service specification has
been enhanced to support a wide range of services, con-
straint-based auto-selection and fine-grained permissions.

In the new model, the method can have multiple story
containers (corresponds to the IMS LD element play), which
can each have multiple scene elements (correspond to com-
bination of act and role-part). Scenes tie actors (members of
role objects) to activities (learning-activity, grouping-
activity, casting-activity) and are instantiated at various
granularities: one scene-instance for all actors, one per group
or one per actor. In combination with environments, which
may provide communication and collaboration services, col-
laboration contexts for groups and classes can be created at
the process level. Scenes are connected to each other via
transition objects, allowing for arbitrary sequencing of ac-
tivities and making loops possible. Workflow semantics are
used for splitting and synchronizing the flow of action.

To implement advanced adaptation features in a script,
knowledge of its run-time state is required. The proposed ex-
tensions to IMS LD feature a run-time model with access to
all elements of the script. This model also contains pure run-
time data, such as information on participants. Data from the
run-time model can be used in expressions, which made
some operators redundant (e.g., users-in-role) and new ones
necessary (e.g., runtime-value). More flexible and expres-
sive definitions of adaptation rules are made possible through
an event handling mechanism with event-condition-action
(ECA) semantics (event-handler). Each object in Fig. 1
shown with an asterisk can be monitored by an event han-

dler. Events are also generated by services; this allows react-
ing to behaviour of participants in external tools. Event han-
dlers can trigger a multitude of new adaptation actions,
which can manage the life-cycle of objects (creation, de-
struction), their attributes and relation to other objects, and
can intervene in the environment, to enable and disable re-
sources and services, or to directly control external services.

III. RELATED WORK
IMS LD provides some support for adapting a scenario,

of which Towle and Halm [20] give an overview. Four areas
where a scenario can be tailored to individual learners are
identified: available resources (environment), sequencing of
activities (method), different rights and obligations (roles),
and actual tasks to perform (activities). The description of
how to implement these adaptations, however, already shows
limitations of IMS LD like the difficulty to express complex
adaptations, hard-coded and unstructured adaptation rules, no
possibility for re-using rules and lack of a run-time model.

A number of extensions have been proposed in recent
years to address shortcomings of IMS LD discussed in sec-
tion I. Berlanga and García [21] present a framework which
covers tests on learning style and knowledge, student model-
ling, and strategies for tailoring a scenario to individual stu-
dents expressed in adaptation rules. Zarraonandia et al. [22]
describe an approach for introducing small variations into
learning design scripts at design- and run- time. The pro-
posed adaptation actions modify activities, environments, the
structuring of these elements, resources, properties, and
completion criteria. Advanced adaptations like the introduc-
tion of new roles or acts, complex conditions and major
structural changes are, however, not discussed.

To improve support for collaborative scenarios, Miao and
Hoppe [23] propose an extension for modelling groups, rely-
ing on operations for creating/deleting groups, member man-
agement and run-time state queries. A mechanism for defin-
ing complicated expressions and actions is introduced, and

Figure 1. Object model (partial). New objects in gray.

422422

the need for a loop control structure for action declarations is
put forth. The authors also advocate a semi-automated ap-
proach for involving humans in adaptation decisions.

Miao et al. [6] present a comprehensive collection of
ideas on how to improve support for adaptive collaboration
scripting. The proposed extensions include explicit model-
ling of artefacts, a more flexible sequencing model with
workflow semantics, means to access more run-time state
information and contexts for social interaction. With regard
to adaptation, the authors propose to extend IMS LD with
operations concerning activities, artefacts, roles, groups, per-
sons, transitions, environments and relations between them.

Other suggestions for adaptation actions in the literature
include varying the group size, recommending or assigning
(changes in) roles for participants, modifying the activity
structure (e.g., adding / removing / reordering tasks), deter-
mining the availability of elements (activities, services, arte-
facts) [14], invoking system facilities and manipulating the
system state (e.g., initiating communication sessions). Para-
mythis and Cristea [24] also present some more requirements
for adaptation languages in the area of collaboration support,
none of which are supported by IMS LD: workflow- or pro-
cess- based reasoning, temporal operators, policies for
grouping, and support for “provisional” adaptation decisions.

IV. ADAPTATION ACTIONS
The original IMS LD specification provides only a lim-

ited number of actions: showing/hiding objects, changing the
value of properties and giving feedback. Comprehensive
support for adaptive interventions, however, requires a wide
range of additional actions in order to effect meaningful
changes on the execution of a learning design. The necessary
actions can be broadly categorized into the following classes:

• object adaptations: creating, modifying and destroy-
ing objects (group, scene, artefact, …)

• relation adaptations: modifying attributes of objects
or processes in relation to other objects or processes
(membership, ownership, permissions, visibility, …)

• control flow adaptations: starting, stopping, modify-
ing (e.g., new branches) the script process

• environment adaptations: managing services and
performing human-like actions in the environment

• adaptation control: managing the adaptations them-
selves (conditions, event handlers, actions, …)

These actions cover the life-cycle of objects, relations be-
tween them, control of active processes, adaptations of ex-
ternal services and basic building blocks for meta-adaptivity.
Two of these classes will now be described in more detail.

A. Control Flow Adaptations
Adapting the control flow deals with modifying the se-

quencing of activities in scenes and stories, instantiation and
completion of sequencing elements, and controlling their
run-time state. In our model, transitions sequence the scenes
in a story by connecting them and modelling simple sequen-
ces, branches or joins of the control flow, and loops. Possible
adaptations to transitions are: setting a condition, to make the
transition conditional; modifying an existing condition; and
removing the condition, to convert to an unconditional tran-

sition. Depending on a scene’s configuration of how its out-
going control flow is split among the transitions connecting
it to subsequent scenes (single outgoing, multiple outgoing,
all outgoing), there are constraints on the number of required
conditional and unconditional transitions [18]. If, for in-
stance, the control flow should be split to all subsequent
scenes, only unconditional transitions can be used. Con-
versely, when adaptively changing the flow split mode for
the outgoing control flow of a scene, the types of outgoing
transitions may have to be adjusted as well. These actions
need to be executed in combination (see section VI), so as
not to violate constraints. Another adaptation action is re-
quired to change how many preceding scenes (one, multiple,
or all) need to transfer the control flow to start a scene.

Collaboration contexts are formed by creating one in-
stance of a scene for all participants (class context), for each
group of a set of groups (group context), or per participating
person (personal context). This instantiation configuration
may be changed by an adaptation action, but only before a
scene has started. In the case of group contexts, a set of
groups or a reference to a grouping is needed as parameter.

Completion criteria can be changed at run-time for activi-
ties, scenes, scene instances, stories and the method. After
the action has been performed, the respective element can
become immediately completed if the criterion is fulfilled.

Finally, there are adaptation actions to directly control
the state of the control flow: start, pause, resume, complete,
and cancel. Depending on the object on which they are ap-
plied, they have different effects. Pausing, resuming, com-
pleting and cancelling a story also performs that operation on
the (running) scenes it contains and propagates to scene in-
stances. Starting a story works at any time and causes it to
run in parallel to and independent from other stories. Starting
a scene creates the scene instances, instantiates the envi-
ronment, transfers existing artefacts from preceding activities
according to the specification and starts activities whose con-
trol mainly rests with the system and not the participants
(grouping-activity, casting-activity). Scene instances can be
started individually in the context of a running scene but re-
quire a list of actors. Pausing a scene (instance) disables the
associated event handlers, suspends the timers [19], locks the
artefacts currently used in it, and makes the state change
visible to participants. Resuming a scene (instance) reverses
this process. Completing a scene stops all its instances,
marks it as complete, notifies the participants that the scene
has been completed and passes the control flow to its outgo-
ing transition(s), which (depending on the sequencing con-
figuration) lets participants continue the story. Cancelling a
scene works in the same manner but marks it as cancelled.

B. Adaptation Control Actions
These actions are very different from the others, because

they do not adapt those parts of a learning design script that
directly influence its participants but rather modify the speci-
fication and run-time enactment of adaptive interventions
themselves. They are necessary for effecting meta-adaptivity
(i.e., adaptation of a system’s own adaptive behaviour), also
referred to as a second-level adaptation cycle [25]. There are
multiple ways of influencing adaptivity in a script.

423423

Conditions, as defined in IMS LD, are a set of if-then-
else rules, and cannot be enabled or disabled at run-time, ex-
cept by using a custom local property (e.g., rule5-enabled) to
explicitly control this aspect. By introducing container ele-
ments for such rules, referring to individual (sets of) condi-
tions becomes possible. Run-time access to these containers,
coupled with actions to enable and disable them, allow for
basic modifications of a script’s primary adaptation logic.

In order to support reacting to more state changes, struc-
ture the rule base and improve semantics, an event handling
mechanism has been introduced [18]. At run-time, event-
handler objects can be created and added to (and removed
from) objects that support them (scene, role, service, etc.)
Enabling and disabling event handlers works like it does for
rules. For triggering them, event objects can be created and
“injected into” objects supporting event handlers or directly
into a specific event handler. Depending on its filter expres-
sion, a handler will react by executing its actions.

For implementing adaptation control actions, a meta-
model of the script, its rules, event handlers and actions is
needed. It also has to be noted, that these actions only pro-
vide the infrastructure for realizing interventions. The com-
plex problem of assessing the resulting effects and the rea-
soning processes required for deciding when and how to
modify the adaptation strategy are not part of this work.

V. PROVISIONAL ADAPTATIONS
Script authors may want to express that some adaptations

are not automatically enacted, but are left for a human (e.g.,
a teacher) to decide. These decisions can be binary (enact
specific action or not) or multi-valued (enact one of many
choices). This approach is similar to what Dieterich et al.
[26] term user-controlled self-adaptation: the system takes
the initiative, creates and presents an adaptation proposal to a
user who decides, and the system takes over again to execute
the user’s choice. The difference here is, that participants do
not necessarily decide about adaptations that influence them-
selves but also those that influence others.

In order to make adaptations provisional, the respective
actions can be ‘wrapped’ in a container element, that speci-
fies details like who is asked and what happens if this person
did not respond. Any list of actions can be made provisional
and used like a normal action in, for instance, conditions or
event handlers. It is possible to specify a single list of ac-
tions, which would allow choosing whether to enact this se-
quence or not, or a set of choices of different lists of actions,
from which one can be chosen. Each action list needs to have
a (human-readable) description that explains its intention and
effect. The whole provisional action may have a description.
In combination with context information by the system, these
descriptions are used to generate the information presented to
the decision makers, who are identified via their roles. The
following modes of decision are currently supported:

• one member of the role(s) can decide alone;
• all members of the role(s) have to agree: either eve-

rybody, or all members who are currently online;
• a simple majority of role members suffices: again,

either all or just the members who are online.

One problem with provisional adaptations is that they
may never be reacted upon, because notifying the decision
makers was not possible, they did not respond, or they could
not agree. To remedy such problems, a timeout can be de-
fined, after which one of the following fallback options can
be put into effect: the adaptation is cancelled altogether; a
default choice (specified in the choice of actions) or the de-
fault option of the single action (execute/do not execute) is
enacted; the decision is escalated to a different role and a
new timeout starts with different fallback options.

Like other elements of the model, provisional adaptations
can be adapted (see section IV.B). Before they are activated,
the choice of actions can be changed. They can also have
event handlers, through which state changes can be moni-
tored and acted upon. While running, the list of roles tasked
with the decisions, the decision mechanisms and the fallback
action definition can be changed. Other possible actions in-
clude cancelling a provisional adaptation, enacting the de-
fault, triggering escalation or escalating to a different role.

VI. ACTION CONTROL STRUCTURES
In a lot of cases, action execution is constrained in a vari-

ety of ways, mostly to ensure referential integrity between
script elements. There are, however, operations required dur-
ing adaptation, where the individual steps would violate such
constraints but the end result is valid again. An example of
this is mentioned in section IV.A, where a change to the se-
quencing configuration of a scene requires specific transi-
tions to originate from it, but modifying those transitions can
only happen in other, subsequent actions. Modifying the
transitions beforehand would also not work, because this
would again violate the constraints of the sequencing con-
figuration. In order to make this adaptation possible, actions
can be grouped in an action block. Each action block works
like a transaction: it is regarded as an atomic operation,
which either completes in its entirety or fails because its ac-
cumulated effects violate constraints, which are only checked
after executing the block. Action blocks contain nested ac-
tions and can be used in all places where actions can be used.

Advanced control over the execution of sets of adaptation
actions requires two structures known from traditional pro-
gramming languages: branches and loops. For modelling
branches, the structure of the original IMS LD conditions
[12] can be reused, because it already specifies the required
if-then-else scheme, where a Boolean expression is evaluated
and the actions in the respective branch are called. With
loops, a list of actions can be repeated as long as an expres-
sion evaluates to true. The while-do scheme is used.

VII. COMPOSITE ACTIONS AND NAMED EXPRESSIONS
Compared to the original IMS LD specification, many

adaptation actions and expression operators have been added
in the extensions proposed so far, in order to increase the ex-
pressiveness and modelling capabilities of learning design
scripts [18],[19]. The majority of those, however, work at a
rather low level, dealing with just one object and performing
one operation (not counting the effects from those on other
objects). For instance, adding a branch with a scene to an ex-

424424

isting control flow requires: creating the scene, connecting it
with transitions to the scene where the branch occurs and to
the scene where the branched control flow should join the
main one again, and setting the transition conditions so that
the desired actors get to the new scene. Even this simplified
description already shows that atomic operations need to be
combined to result in meaningful, higher-level effects. For
this reason, we propose to extend IMS LD with means to
create composite actions and named expressions as combina-
tions of other (composite) actions and (named) expressions.
This makes it possible to define often-required operations
once and re-use them across a script. Authoring tools or run-
time engines could also provide libraries of such operations.

Composite actions require a unique name with which
they are invoked, a list of actions to perform and (optionally)
parameters. When invoked, the actions are performed in se-
quence. Parameters allow abstracting the declaration from
concrete situations in which the action is used. Each param-
eter has a name, a type and a flag which specifies whether it
is mandatory. For optional parameters a default value can be
given, which is used when no value is provided by the caller.
Parameters can be accessed inside the declaration like any
run-time model data item [18] via its name in the special, lo-
cal scope $params (e.g., $params.paramName).

Named expressions are declared in a similar manner. The
only difference is that instead of the list of actions, the re-
spective expression needs to be declared. Parameters can be
used as well. Upon invocation, the named expression is ev-
aluated and its result is returned.

VIII. EXCEPTION HANDLING
With the shift to more adaptive and dynamic learning de-

sign scripts, a lot of data is processed at run-time and actions
may constantly modify the scenario. These operations can
lead to situations and states that were not anticipated while
authoring the scenario and could result in a lock-up or termi-
nation of the script. Similar to event handlers [18], we pro-
pose to extend IMS LD with a mechanism to handle those
exception states. There is, however, an important difference
between events and exceptions: Events can be handled when
the script author deems it important or helpful for detecting
state changes. Exceptions, on the other hand, cannot be left
unhandled; there must be at least a default handler. If, for
instance, the instantiation of a service (e.g., chat tool) fails,
this could be handled by trying a different service or chan-
ging the scenario so that the service is not needed any more.
If no such custom exception handling was defined, a default
handler must take appropriate actions such as stopping the
script and notifying an administrator. Exception handlers can
be defined for individual objects; this provides them with
maximum context and intercepts problems immediately
where they appear. Default handlers can also be specified for
the whole script, and, as a last resort, have to be provided by
the run-time engine. Exceptions can happen in a lot of cases,
but in general the following categories can be distinguished:

Participant exceptions
• actors missing: roles having to perform actions (ac-

tivity, review, …) or taking part in operations requir-
ing their members, are not populated (any more)

• groups missing: required groupings and groups are
empty or have been disbanded

• insufficient participation: participants did not act in
the required way (e.g., voting for a team leader)

Action exceptions
• constraint violated: operation not allowed by con-

straints (referential integrity, range, multiplicity, etc.)
• operation rejected: operation (casting, grouping, ac-

tion, etc.) rejected by reviewer
• operation not possible: operation cannot be per-

formed on object (e.g., cancel a completed scene)
Sequencing exceptions:
• incomplete sequencing: sequencing model is incom-

plete (e.g., missing transitions) while story is running
Data exceptions
• data type mismatch: data type do not match in as-

signment or literal value does not fit requirements
• run-time model: object in run-time model is not ac-

cessible or writable
• expression invalid: run-time model access expres-

sion has wrong syntax
Constraint solving exceptions
• no-result: constraints are not satisfiable (e.g., when

grouping, casting, auto-selecting services)
External exceptions
• service-unreachable: external service (e.g., collabor-

ation or grouping service) not reachable
• service-failed: operation in external service failed

(e.g., service deployment)
These are just the main types of exceptions that can occur

and not the individual exceptions, which are too numerous to
list and describe here in detail.

Defining exception handlers works in a similar manner to
specifying event handlers. Unlike the later, however, excep-
tion handlers cannot filter through expressions when they are
to be triggered; instead, they are triggered every time one of
the specified exceptions occurs. Each exception has a run-
time property, which contains a reference to the object in
which it was caused, and a human-readable description of
the cause, which can for example be used when notifying
somebody. An exception handler also defines whether the
exceptions should be fully handled by itself, or subsequently
propagated to the default handlers on the script or run-time
engine level. This makes it convenient, for instance, to han-
dle exceptions where they occur and use a catch-all handler
at script-level to send notifications to relevant people.

IX. SUMMARY AND OUTLOOK
This paper constitutes the last instalment in a series that

puts forward a comprehensive set of extensions to IMS LD
intended to provide extensive and grounded support for ad-
aptation in collaborative learning designs. The proposed
extensions are currently under evaluation using criteria such
as the ones described in [27]. In addition, a representative
selection of existing, well-known collaboration scripts is
being used to assess whether all required features are
supported and can be expressed.

In parallel, we have commenced work on a prototypical
implementation of the extended specification into the Sakai

425425

e-learning platform [28]. This will then be employed in real-
world student-based evaluations, where we will seek to es-
tablish the impact of the newly enabled types of adaptive
support on the collaborative learning process. Following that,
we intend to turn our attention towards tool-oriented support
for authoring CSCL scripts in the extended specification,
with a focus on facilitating the utilization of common strat-
egies, patterns, and templates even by educators with little
prior experience in the area.

ACKNOWLEDGMENTS
The work reported in this paper has been supported by

the “Adaptive Support for Collaborative E-Learning”
(ASCOLLA) project, financed by the Austrian Science Fund
(FWF; project number P20260-N15).

REFERENCES
[1] J. Roschelle and S.D. Teasley, “The construction of shared
knowledge in collaborative problem solving,” Computer-Supported
Collaborative Learning, C. O'Malley, Ed., Berlin: Springer, 1995, pp. 69–
97.
[2] P. Dillenbourg, “What do you mean by collaborative learning?”
Collaborative-learning: Cognitive and Computational Approaches, P.
Dillenbourg, Ed., Oxford: Elsevier, 1999, pp. 1–19.
[3] A. Paramythis and J.R. Mühlbacher, “Towards New Approaches in
Adaptive Support for Collaborative e-Learning,” Proceedings of the 11th
IASTED International Conference, Crete, Greece: 2008, pp. 95–100.
[4] J. Zumbach, J. Schönemann, and P. Reimann, “Analyzing and
supporting collaboration in cooperative computer-mediated
communication,” Proceedings of the 2005 conference on Computer support
for collaborative learning: learning 2005: the next 10 years!, Taipei,
Taiwan: International Society of the Learning Sciences, 2005, pp. 758–767.
[5] P. Dillenbourg, “Over-scripting CSCL: The risks of blending
collaborative learning with instructional design,” 2002.
[6] Y. Miao, K. Hoeksema, H.U. Hoppe, and A. Harrer, “CSCL Scripts:
Modelling Features and Potential Use,” Proceedings of the 2005
Conference on Computer Support for Collaborative Learning – Learning
2005: The next 10 Years!, Taipei, Taiwan: International Society of the
Learning Sciences, 2005, pp. 423–432.
[7] A.M. O’Donnell and D.F. Dansereau, “Scripted Cooperation in
Student Dyada: A Method for Analyzing and Enhancing Academic
Learning and Performance,” Interaction in Cooperative Groups: The
theoretical Anatomy of Group Learning, R. Hertz-Lazarowitz and N.
Miller, Eds., London: Cambridge University Press, 1992, pp. 120–141.
[8] R.D. Pea, “The social and technological dimensions of scaffolding
and related theoretical concepts for learning, education, and human
activity,” The Journal of the Learning Sciences, vol. 13, 2004, pp. 423–
451.
[9] N. Rummel, H. Spada, and S. Hauser, “Learning to collaborate while
being scripted or by observing a model,” International Journal of
Computer-Supported Collaborative Learning, vol. 4, Mar. 2009, pp. 69–92.
[10] N. Rummel, A. Weinberger, C. Wecker, F. Fischer, A. Meier, E.
Voyiatzaki, G. Kahrimanis, H. Spada, N. Avouris, E. Walker, K.R.
Koedinger, C.P. Rosé, R. Kumar, G. Gweon, Y. Wang, and M. Joshi, “New
challenges in CSCL: Towards adaptive script support,” Proceedings of the
8th International Conference of the Learning Sciences – Volume 3,
Utrecht, The Netherlands: International Society of the Learning Sciences,
2008, pp. 338–345.
[11] S. Demetriadis and A. Karakostas, “Adaptive Collaboration
Scripting: A Conceptual Framework and a Design Case Study,” Complex,
Intelligent and Software Intensive Systems, International Conference, Los
Alamitos, CA, USA: IEEE Computer Society, 2008, pp. 487–492.
[12] IMS Global Learning Consortium, Inc., “Learning Design
Specification (Version 1.0 Final Specification),” 2003.

[13] R. Koper and B. Olivier, “Representing the Learning Design of
Units of Learning,” Educational Technology & Society, vol. 7, 2004, pp.
97–111.
[14] A. Paramythis, “Adaptive Support for Collaborative Learning with
IMS Learning Design: Are We There Yet?,” Proceedings of the Adaptive
Collaboration Support Workshop, held in conjunction with the 5th
International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH'08), Hannover, Germany: 2008, pp. 17–29.
[15] M. Caeiro, L. Anido, and M. Llamas, “A Critical Analysis of IMS
Learning Design,” Proceedings of CSCL 2003, Bergen, Norway: 2003, pp.
363–367.
[16] J. Torres and J.M. Dodero, “Analysis of Educational Metadata
Supporting Complex Learning Processes,” Metadata and Semantic
Research, 2009, pp. 71–82.
[17] K. Hagen, D. Hibbert, and P. Kinshuk, “Developing a Learning
Management System Based on the IMS Learning Design Specification,”
IEEE International Conference on Advanced Learning Technologies
(ICALT 2006), Los Alamitos, CA, USA: IEEE Computer Society, 2006,
pp. 420–424.
[18] F. König and A. Paramythis, “Towards Improved Support for
Adaptive Collaboration Scripting in IMS LD,” Sustaining TEL: From
Innovation to Learning and Practice – Proceedings of the 5th European
Conference on Technology Enhanced Learning Sustaining (EC-TEL 2010),
M. Wolpers, P.A. Kirschner, M. Scheffel, S. Lindstädt, and V. Dimitrova,
Eds., Barcelona, Spain: Springer Verlag, 2010, pp. 197–212. (in press)
[19] F. König and A. Paramythis, “Collaboration Contexts, Services,
Events and Actions: Four Steps Closer to Adaptive Collaboration Support
in IMS LD,” Proceedings of the International Conference on Intelligent
Networking and Collaborative Systems (INCoS 2010), Thessaloniki,
Greece: 2010. (in press)
[20] B. Towle, M. Halm, R. Koper, and C. Tattersall, “Designing
Adaptive Learning Environments with Learning Design,” Learning Design.
A Handbook on Modelling and Delivering Networked Education and
Training, Springer-Verlag, 2005, pp. 215–226.
[21] A.J. Berlanga and F.J. Garcia, “A Proposal to Define Adaptive
Learning Designs,” Proceedings of Workshop on Applications of Semantic
Web Technologies for Educational Adaptive Hypermedia (SW-EL 2004),
Eindhoven, The Netherlands: Technische Universiteit Eindhoven, 2004, pp.
354–358.
[22] T. Zarraonandia, J.M. Dodero, and C. Fernández, “Crosscutting
Runtime Adaptations of LD Execution,” Educational Technology &
Society, vol. 9, 2006, pp. 123–137.
[23] Y. Miao and U. Hoppe, “Adapting Process-Oriented Learning
Design to Group Characteristics,” Proceeding of the 2005 conference on
Artificial Intelligence in Education: Supporting Learning through
Intelligent and Socially Informed Technology, IOS Press, 2005, pp. 475–
482.
[24] A. Paramythis and A. Cristea, “Towards Adaptation Languages for
Adaptive Collaborative Learning Support,” Proceedings of the First
International Workshop on Individual and Group Adaptation in
Collaborative Learning Environments (WS12) held in conjunction with the
3rd European Conference on Technology Enhanced Learning (EC-TEL
2008). CEUR Workshop Proceedings, ISSN 1613-0073, online CEUR-
WS.org/Vol-384/, Maastricht, The Netherlands: 2008.
[25] P. Totterdell and P. Rautenbach, “Adaptation as a problem of
design,” Adaptive user interfaces, Academic Press, 1990, pp. 61–84.
[26] H. Dieterich, U. Malinowski, T. Kühme, and M. Schneider-
Hufschmidt, “State of the Art in Adaptive User Interfaces,” Adaptive User
Interfaces, M. Schneider-Hufschmidt, T. Kühme, and U. Malinowski, Eds.,
Elsevier Science Publishers B. V, 1993, pp. 13–48.
[27] M. Caeiro-Rodríguez, M. Llamas-Nistal, and L. Anido-Rifón,
“Towards a Benchmark for the Evaluation of LD Expressiveness and
Suitability,” Journal of Interactive Media in Education, 2005.
[28] Sakai Foundation, Sakai Project, http://www.sakaiproject.org.

426426

