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Abstract—This paper, the third in a series, completes the pres-
entation of a proposed set of modifications and extensions to 
the IMS Learning Design specification with the goal of ena-
bling better support for adaptivity in collaborative learning 
settings. The extensions presented here target advanced adap-
tation features that build upon previous work and include: 
adapting control flows; controlling adaptations on a meta-
level; human involvement in adaptation decisions; “transac-
tional” action processing; loops and branches for controlling 
action execution; declaration of re-usable action sequences and 
complex expressions; and mechanisms for exception handling.  

Keywords—collaborative learning; adaptive support; 
learning design; IMS LD; extension; adaptation actions; control 
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I.  INTRODUCTION 
Learning is regarded by many theorists as a social ac-

tivity that can benefit from a collaborative setting [1]. In col-
laborative learning situations, certain interactions (such as 
discussion, mutual questioning, joint problem solving, con-
flict, collective sense-making and shared agreement) can 
trigger learning mechanisms and result in improved learning 
outcomes [2]. There is, however, no guarantee that beneficial 
interactions occur, even less so in distance learning, where 
lack of or limited ‘real-world’ contact amongst learners can 
negatively influence social- and group learning- patterns [3]. 
Especially in collaborative e-learning, support is needed to 
increase the probability that the desired interactions occur, 
because teams may not have worked together before, are 
usually formed for a comparatively short time, and individ-
ual learning goals are predominant. One way to support 
learners is by scaffolding their interaction in order to get 
group work going, mitigate disorientation and reduce cogni-
tive load [4]. Collaboration scripts [5] are an instance of 
such a scaffolding strategy. They provide a detailed specifi-
cation of the collaboration contract in a scenario, and aim to 
set up systematic differences among learners in order to trig-
ger contentious interactions, or to make rich interactions for 
exchanging complementary knowledge necessary [2]. For 
computer-supported collaborative learning (CSCL), col-
laboration scripts are modelled and enacted via external, 
computational representations, termed CSCL scripts [6]. 
These contain instructions specifying how members of a 
group should interact and collaborate to attain a task [7]. 

Static collaboration scripts, however, represent idealized 
scenarios and there is a danger of impeding fruitful collabor-
ation by an overly coercive script (over-scripting) [5]. One 
strategy of adjusting scripts to learners and groups is to re-
duce its scaffolds over time in a process called fading [8], 
once learners have a good understanding of how to collabor-
ate effectively. To adjust scripts at run-time in general and 
target the individual needs of learners and groups, adaptive 
collaboration scripting has been proposed [9],[10] and found 
to be an effective method [11]. 

The most widely known formalization for CSCL scripts 
is the IMS Learning Design (IMS LD) specification [12], a 
learning process modelling language intended to formally 
describe designs of teaching-learning processes for a wide 
range of pedagogical approaches [13]. Still, IMS LD has 
been criticized both for insufficient expressiveness in aspects 
of the collaborative learning process [6], and for the absence 
of constructs that are vital in supporting adaptivity [14]: the 
language provides limited support to model group-based, 
synchronous collaborative learning activities and collabor-
ation contexts [6]; the specification of services for providing, 
amongst others, collaboration facilities has been found to be 
rather inflexible [15]; IMS LD is missing an event model to 
monitor state changes and trigger adaptations, and it has only 
very few functions to modify a collaboration process at run-
time [14]; artefacts can not be explicitly specified; IMS LD 
exposes no run-time model for querying state information 
and effecting changes; the activity sequencing model has 
been found to be constraining [16] and difficult to under-
stand [17]; and, there is no mechanism to handle exception 
states that may arise at run-time. 

Based on extensions of IMS LD that have already been 
developed (section II) or are proposed in the literature (sec-
tion III), we present modifications and additions to the speci-
fication, aiming to address the aforementioned shortcomings 
and improve support for adaptivity in CSCL scripts. Specifi-
cally, the amendments deal with actions for adapting the con-
trol flow (section IV.A), control of adaptations on a meta-
level (section IV.B), human involvement in adaptation deci-
sions (section V), transactional action processing, loops and 
branches for controlling action execution (section VI), de-
claration of re-usable action sequences and complex expres-
sions (section VII) and mechanisms for exception handling 
(section VIII). Section IX summarizes the goals attainable 
through the proposed extensions, and provides an outlook on 
issues to be worked on in future iterations. 
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II. EXTENSIONS TO IMS LD 
In order to address shortcomings of IMS LD precluding 

its effective use in supporting collaborative and adaptive 
learning (see section I), certain extensions to both its infor-
mation model and its run-time behaviour have already been 
developed and described in detail [18],[19]. As these exten-
sions form the basis for the work presented here, their most 
important aspects will be summarised in the remainder of 
this section. A simplified model of the run-time objects and 
their inter-relations can be seen in Fig. 1. Elements added to 
or changed from IMS LD are shown in gray. The scripting 
capabilities have been extended as follows: Groups can be 
explicitly modelled (group), either statically or via 
specifying constraints for run-time creation of dynamic 
groups. Group members can share group-specific properties 
and an environment that acts as a common group workspace. 
A choice of different policies gives control over the grouping 
of participants for populating groups at run-time (grouping). 
For roles, properties and shared workspaces can be specified 
as well. Casting participants into roles is now possible at run-
time via policies similar to those for grouping (casting). 
Grouping and casting operations can be sequenced by means 
of two new activities: grouping-activity and casting-activity. 

To avoid relying on the properties for storing individual 
and group work results, artefacts can be modelled explicitly, 
and their flow between different learning activities is ex-
pressed by referencing them as input-, output- or transient- 
artefacts. Coupled with permissions, this defines how they 
progress in the script process and who can contribute. For 
collaboration context provision, the service specification has 
been enhanced to support a wide range of services, con-
straint-based auto-selection and fine-grained permissions. 

In the new model, the method can have multiple story 
containers (corresponds to the IMS LD element play), which 
can each have multiple scene elements (correspond to com-
bination of act and role-part). Scenes tie actors (members of 
role objects) to activities (learning-activity, grouping-
activity, casting-activity) and are instantiated at various 
granularities: one scene-instance for all actors, one per group 
or one per actor. In combination with environments, which 
may provide communication and collaboration services, col-
laboration contexts for groups and classes can be created at 
the process level. Scenes are connected to each other via 
transition objects, allowing for arbitrary sequencing of ac-
tivities and making loops possible. Workflow semantics are 
used for splitting and synchronizing the flow of action. 

To implement advanced adaptation features in a script, 
knowledge of its run-time state is required. The proposed ex-
tensions to IMS LD feature a run-time model with access to 
all elements of the script. This model also contains pure run-
time data, such as information on participants. Data from the 
run-time model can be used in expressions, which made 
some operators redundant (e.g., users-in-role) and new ones 
necessary  (e.g., runtime-value). More flexible and expres-
sive definitions of adaptation rules are made possible through 
an event handling mechanism with event-condition-action 
(ECA) semantics (event-handler). Each object in Fig. 1 
shown with an asterisk can be monitored by an event han-

dler. Events are also generated by services; this allows react-
ing to behaviour of participants in external tools. Event han-
dlers can trigger a multitude of new adaptation actions, 
which can manage the life-cycle of objects (creation, de-
struction), their attributes and relation to other objects, and 
can intervene in the environment, to enable and disable re-
sources and services, or to directly control external services. 

 

III. RELATED WORK 
IMS LD provides some support for adapting a scenario, 

of which Towle and Halm [20] give an overview. Four areas 
where a scenario can be tailored to individual learners are 
identified: available resources (environment), sequencing of 
activities (method), different rights and obligations (roles), 
and actual tasks to perform (activities). The description of 
how to implement these adaptations, however, already shows 
limitations of IMS LD like the difficulty to express complex 
adaptations, hard-coded and unstructured adaptation rules, no 
possibility for re-using rules and lack of a run-time model. 

A number of extensions have been proposed in recent 
years to address shortcomings of IMS LD discussed in sec-
tion I. Berlanga and García [21] present a framework which 
covers tests on learning style and knowledge, student model-
ling, and strategies for tailoring a scenario to individual stu-
dents expressed in adaptation rules. Zarraonandia et al. [22] 
describe an approach for introducing small variations into 
learning design scripts at design- and run- time. The pro-
posed adaptation actions modify activities, environments, the 
structuring of these elements, resources, properties, and 
completion criteria. Advanced adaptations like the introduc-
tion of new roles or acts, complex conditions and major 
structural changes are, however, not discussed.  

To improve support for collaborative scenarios, Miao and 
Hoppe [23] propose an extension for modelling groups, rely-
ing on operations for creating/deleting groups, member man-
agement and run-time state queries. A mechanism for defin-
ing complicated expressions and actions is introduced, and 

 

Figure 1.  Object model (partial). New objects in gray. 
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the need for a loop control structure for action declarations is 
put forth. The authors also advocate a semi-automated ap-
proach for involving humans in adaptation decisions.  

Miao et al. [6] present a comprehensive collection of 
ideas on how to improve support for adaptive collaboration 
scripting. The proposed extensions include explicit model-
ling of artefacts, a more flexible sequencing model with 
workflow semantics, means to access more run-time state 
information and contexts for social interaction. With regard 
to adaptation, the authors propose to extend IMS LD with 
operations concerning activities, artefacts, roles, groups, per-
sons, transitions, environments and relations between them. 

Other suggestions for adaptation actions in the literature 
include varying the group size, recommending or assigning 
(changes in) roles for participants, modifying the activity 
structure (e.g., adding / removing / reordering tasks), deter-
mining the availability of elements (activities, services, arte-
facts) [14], invoking system facilities and manipulating the 
system state (e.g., initiating communication sessions). Para-
mythis and Cristea [24] also present some more requirements 
for adaptation languages in the area of collaboration support, 
none of which are supported by IMS LD: workflow- or pro-
cess- based reasoning, temporal operators, policies for 
grouping, and support for “provisional” adaptation decisions. 

IV. ADAPTATION ACTIONS 
The original IMS LD specification provides only a lim-

ited number of actions: showing/hiding objects, changing the 
value of properties and giving feedback. Comprehensive 
support for adaptive interventions, however, requires a wide 
range of additional actions in order to effect meaningful 
changes on the execution of a learning design. The necessary 
actions can be broadly categorized into the following classes: 

• object adaptations: creating, modifying and destroy-
ing objects (group, scene, artefact, …) 

• relation adaptations: modifying attributes of objects 
or processes in relation to other objects or processes 
(membership, ownership, permissions, visibility, …) 

• control flow adaptations: starting, stopping, modify-
ing (e.g., new branches) the script process 

• environment adaptations: managing services and 
performing human-like actions in the environment 

• adaptation control: managing the adaptations them-
selves (conditions, event handlers, actions, …) 

These actions cover the life-cycle of objects, relations be-
tween them, control of active processes, adaptations of ex-
ternal services and basic building blocks for meta-adaptivity. 
Two of these classes will now be described in more detail. 

A. Control Flow Adaptations 
Adapting the control flow deals with modifying the se-

quencing of activities in scenes and stories, instantiation and 
completion of sequencing elements, and controlling their 
run-time state. In our model, transitions sequence the scenes 
in a story by connecting them and modelling simple sequen-
ces, branches or joins of the control flow, and loops. Possible 
adaptations to transitions are: setting a condition, to make the 
transition conditional; modifying an existing condition; and 
removing the condition, to convert to an unconditional tran-

sition. Depending on a scene’s configuration of how its out-
going control flow is split among the transitions connecting 
it to subsequent scenes (single outgoing, multiple outgoing, 
all outgoing), there are constraints on the number of required 
conditional and unconditional transitions [18]. If, for in-
stance, the control flow should be split to all subsequent 
scenes, only unconditional transitions can be used. Con-
versely, when adaptively changing the flow split mode for 
the outgoing control flow of a scene, the types of outgoing 
transitions may have to be adjusted as well. These actions 
need to be executed in combination (see section VI), so as 
not to violate constraints. Another adaptation action is re-
quired to change how many preceding scenes (one, multiple, 
or all) need to transfer the control flow to start a scene. 

Collaboration contexts are formed by creating one in-
stance of a scene for all participants (class context), for each 
group of a set of groups (group context), or per participating 
person (personal context). This instantiation configuration 
may be changed by an adaptation action, but only before a 
scene has started. In the case of group contexts, a set of 
groups or a reference to a grouping is needed as parameter. 

Completion criteria can be changed at run-time for activi-
ties, scenes, scene instances, stories and the method. After 
the action has been performed, the respective element can 
become immediately completed if the criterion is fulfilled. 

Finally, there are adaptation actions to directly control 
the state of the control flow: start, pause, resume, complete, 
and cancel. Depending on the object on which they are ap-
plied, they have different effects. Pausing, resuming, com-
pleting and cancelling a story also performs that operation on 
the (running) scenes it contains and propagates to scene in-
stances. Starting a story works at any time and causes it to 
run in parallel to and independent from other stories. Starting 
a scene creates the scene instances, instantiates the envi-
ronment, transfers existing artefacts from preceding activities 
according to the specification and starts activities whose con-
trol mainly rests with the system and not the participants 
(grouping-activity, casting-activity). Scene instances can be 
started individually in the context of a running scene but re-
quire a list of actors. Pausing a scene (instance) disables the 
associated event handlers, suspends the timers [19], locks the 
artefacts currently used in it, and makes the state change 
visible to participants. Resuming a scene (instance) reverses 
this process. Completing a scene stops all its instances, 
marks it as complete, notifies the participants that the scene 
has been completed and passes the control flow to its outgo-
ing transition(s), which (depending on the sequencing con-
figuration) lets participants continue the story. Cancelling a 
scene works in the same manner but marks it as cancelled. 

B. Adaptation Control Actions 
These actions are very different from the others, because 

they do not adapt those parts of a learning design script that 
directly influence its participants but rather modify the speci-
fication and run-time enactment of adaptive interventions 
themselves. They are necessary for effecting meta-adaptivity 
(i.e., adaptation of a system’s own adaptive behaviour), also 
referred to as a second-level adaptation cycle [25]. There are 
multiple ways of influencing adaptivity in a script. 
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Conditions, as defined in IMS LD, are a set of if-then-
else rules, and cannot be enabled or disabled at run-time, ex-
cept by using a custom local property (e.g., rule5-enabled) to 
explicitly control this aspect. By introducing container ele-
ments for such rules, referring to individual (sets of) condi-
tions becomes possible. Run-time access to these containers, 
coupled with actions to enable and disable them, allow for 
basic modifications of a script’s primary adaptation logic. 

In order to support reacting to more state changes, struc-
ture the rule base and improve semantics, an event handling 
mechanism has been introduced [18]. At run-time, event-
handler objects can be created and added to (and removed 
from) objects that support them (scene, role, service, etc.) 
Enabling and disabling event handlers works like it does for 
rules. For triggering them, event objects can be created and 
“injected into” objects supporting event handlers or directly 
into a specific event handler. Depending on its filter expres-
sion, a handler will react by executing its actions. 

For implementing adaptation control actions, a meta-
model of the script, its rules, event handlers and actions is 
needed. It also has to be noted, that these actions only pro-
vide the infrastructure for realizing interventions. The com-
plex problem of assessing the resulting effects and the rea-
soning processes required for deciding when and how to 
modify the adaptation strategy are not part of this work. 

V. PROVISIONAL ADAPTATIONS 
Script authors may want to express that some adaptations 

are not automatically enacted, but are left for a human (e.g., 
a teacher) to decide. These decisions can be binary (enact 
specific action or not) or multi-valued (enact one of many 
choices). This approach is similar to what Dieterich et al. 
[26] term user-controlled self-adaptation: the system takes 
the initiative, creates and presents an adaptation proposal to a 
user who decides, and the system takes over again to execute 
the user’s choice. The difference here is, that participants do 
not necessarily decide about adaptations that influence them-
selves but also those that influence others. 

In order to make adaptations provisional, the respective 
actions can be ‘wrapped’ in a container element, that speci-
fies details like who is asked and what happens if this person 
did not respond. Any list of actions can be made provisional 
and used like a normal action in, for instance, conditions or 
event handlers. It is possible to specify a single list of ac-
tions, which would allow choosing whether to enact this se-
quence or not, or a set of choices of different lists of actions, 
from which one can be chosen. Each action list needs to have 
a (human-readable) description that explains its intention and 
effect. The whole provisional action may have a description. 
In combination with context information by the system, these 
descriptions are used to generate the information presented to 
the decision makers, who are identified via their roles. The 
following modes of decision are currently supported: 

• one member of the role(s) can decide alone; 
• all members of the role(s) have to agree: either eve-

rybody, or all members who are currently online; 
• a simple majority of role members suffices: again, 

either all or just the members who are online. 

One problem with provisional adaptations is that they 
may never be reacted upon, because notifying the decision 
makers was not possible, they did not respond, or they could 
not agree. To remedy such problems, a timeout can be de-
fined, after which one of the following fallback options can 
be put into effect: the adaptation is cancelled altogether; a 
default choice (specified in the choice of actions) or the de-
fault option of the single action (execute/do not execute) is 
enacted; the decision is escalated to a different role and a 
new timeout starts with different fallback options. 

Like other elements of the model, provisional adaptations 
can be adapted (see section IV.B). Before they are activated, 
the choice of actions can be changed. They can also have 
event handlers, through which state changes can be moni-
tored and acted upon. While running, the list of roles tasked 
with the decisions, the decision mechanisms and the fallback 
action definition can be changed. Other possible actions in-
clude cancelling a provisional adaptation, enacting the de-
fault, triggering escalation or escalating to a different role. 

VI. ACTION CONTROL STRUCTURES 
In a lot of cases, action execution is constrained in a vari-

ety of ways, mostly to ensure referential integrity between 
script elements. There are, however, operations required dur-
ing adaptation, where the individual steps would violate such 
constraints but the end result is valid again. An example of 
this is mentioned in section IV.A, where a change to the se-
quencing configuration of a scene requires specific transi-
tions to originate from it, but modifying those transitions can 
only happen in other, subsequent actions. Modifying the 
transitions beforehand would also not work, because this 
would again violate the constraints of the sequencing con-
figuration. In order to make this adaptation possible, actions 
can be grouped in an action block. Each action block works 
like a transaction: it is regarded as an atomic operation, 
which either completes in its entirety or fails because its ac-
cumulated effects violate constraints, which are only checked 
after executing the block. Action blocks contain nested ac-
tions and can be used in all places where actions can be used. 

Advanced control over the execution of sets of adaptation 
actions requires two structures known from traditional pro-
gramming languages: branches and loops. For modelling 
branches, the structure of the original IMS LD conditions 
[12] can be reused, because it already specifies the required 
if-then-else scheme, where a Boolean expression is evaluated 
and the actions in the respective branch are called. With 
loops, a list of actions can be repeated as long as an expres-
sion evaluates to true. The while-do scheme is used. 

VII. COMPOSITE ACTIONS AND NAMED EXPRESSIONS 
Compared to the original IMS LD specification, many 

adaptation actions and expression operators have been added 
in the extensions proposed so far, in order to increase the ex-
pressiveness and modelling capabilities of learning design 
scripts [18],[19]. The majority of those, however, work at a 
rather low level, dealing with just one object and performing 
one operation (not counting the effects from those on other 
objects). For instance, adding a branch with a scene to an ex-
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isting control flow requires: creating the scene, connecting it 
with transitions to the scene where the branch occurs and to 
the scene where the branched control flow should join the 
main one again, and setting the transition conditions so that 
the desired actors get to the new scene. Even this simplified 
description already shows that atomic operations need to be 
combined to result in meaningful, higher-level effects. For 
this reason, we propose to extend IMS LD with means to 
create composite actions and named expressions as combina-
tions of other (composite) actions and (named) expressions. 
This makes it possible to define often-required operations 
once and re-use them across a script. Authoring tools or run-
time engines could also provide libraries of such operations. 

Composite actions require a unique name with which 
they are invoked, a list of actions to perform and (optionally) 
parameters. When invoked, the actions are performed in se-
quence. Parameters allow abstracting the declaration from 
concrete situations in which the action is used. Each param-
eter has a name, a type and a flag which specifies whether it 
is mandatory. For optional parameters a default value can be 
given, which is used when no value is provided by the caller. 
Parameters can be accessed inside the declaration like any 
run-time model data item [18] via its name in the special, lo-
cal scope $params (e.g., $params.paramName). 

Named expressions are declared in a similar manner. The 
only difference is that instead of the list of actions, the re-
spective expression needs to be declared. Parameters can be 
used as well. Upon invocation, the named expression is ev-
aluated and its result is returned. 

VIII. EXCEPTION HANDLING 
With the shift to more adaptive and dynamic learning de-

sign scripts, a lot of data is processed at run-time and actions 
may constantly modify the scenario. These operations can 
lead to situations and states that were not anticipated while 
authoring the scenario and could result in a lock-up or termi-
nation of the script. Similar to event handlers [18], we pro-
pose to extend IMS LD with a mechanism to handle those 
exception states. There is, however, an important difference 
between events and exceptions: Events can be handled when 
the script author deems it important or helpful for detecting 
state changes. Exceptions, on the other hand, cannot be left 
unhandled; there must be at least a default handler. If, for 
instance, the instantiation of a service (e.g., chat tool) fails, 
this could be handled by trying a different service or chan-
ging the scenario so that the service is not needed any more. 
If no such custom exception handling was defined, a default 
handler must take appropriate actions such as stopping the 
script and notifying an administrator. Exception handlers can 
be defined for individual objects; this provides them with 
maximum context and intercepts problems immediately 
where they appear. Default handlers can also be specified for 
the whole script, and, as a last resort, have to be provided by 
the run-time engine. Exceptions can happen in a lot of cases, 
but in general the following categories can be distinguished: 

Participant exceptions 
• actors missing: roles having to perform actions (ac-

tivity, review, …) or taking part in operations requir-
ing their members, are not populated (any more) 

• groups missing: required groupings and groups are 
empty or have been disbanded 

• insufficient participation: participants did not act in 
the required way (e.g., voting for a team leader) 

Action exceptions 
• constraint violated: operation not allowed by con-

straints (referential integrity, range, multiplicity, etc.) 
• operation rejected: operation (casting, grouping, ac-

tion, etc.) rejected by reviewer 
• operation not possible: operation cannot be per-

formed on object (e.g., cancel a completed scene) 
Sequencing exceptions:  
• incomplete sequencing: sequencing model is incom-

plete (e.g., missing transitions) while story is running 
Data exceptions 
• data type mismatch: data type do not match in as-

signment or literal value does not fit requirements 
• run-time model: object in run-time model is not ac-

cessible or writable 
• expression invalid: run-time model access expres-

sion has wrong syntax 
Constraint solving exceptions 
• no-result: constraints are not satisfiable (e.g., when 

grouping, casting, auto-selecting services) 
External exceptions 
• service-unreachable: external service (e.g., collabor-

ation or grouping service) not reachable 
• service-failed: operation in external service failed 

(e.g., service deployment) 
These are just the main types of exceptions that can occur 

and not the individual exceptions, which are too numerous to 
list and describe here in detail. 

Defining exception handlers works in a similar manner to 
specifying event handlers. Unlike the later, however, excep-
tion handlers cannot filter through expressions when they are 
to be triggered; instead, they are triggered every time one of 
the specified exceptions occurs. Each exception has a run-
time property, which contains a reference to the object in 
which it was caused, and a human-readable description of 
the cause, which can for example be used when notifying 
somebody. An exception handler also defines whether the 
exceptions should be fully handled by itself, or subsequently 
propagated to the default handlers on the script or run-time 
engine level. This makes it convenient, for instance, to han-
dle exceptions where they occur and use a catch-all handler 
at script-level to send notifications to relevant people. 

IX. SUMMARY AND OUTLOOK 
This paper constitutes the last instalment in a series that 

puts forward a comprehensive set of extensions to IMS LD 
intended to provide extensive and grounded support for ad-
aptation in collaborative learning designs. The proposed 
extensions are currently under evaluation using criteria such 
as the ones described in [27]. In addition, a representative 
selection of existing, well-known collaboration scripts is 
being used to assess whether all required features are 
supported and can be expressed. 

In parallel, we have commenced work on a prototypical 
implementation of the extended specification into the Sakai 
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e-learning platform [28]. This will then be employed in real-
world student-based evaluations, where we will seek to es-
tablish the impact of the newly enabled types of adaptive 
support on the collaborative learning process. Following that, 
we intend to turn our attention towards tool-oriented support 
for authoring CSCL scripts in the extended specification, 
with a focus on facilitating the utilization of common strat-
egies, patterns, and templates even by educators with little 
prior experience in the area. 
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