

A framework for uniformly visualizing and interacting
with algorithms in E-Learning

Alexandros Paramythis, Susanne Loidl, Jörg R. Mühlbacher, Michael Sonntag
Institute for Information Processing and Microprocessor Technology (FIM)

Johannes Kepler University (JKU) Linz
Altenbergerstr. 69, A-4040 Linz

Austria
{alpar, loidl, muehlbacher, sonntag}@fim.uni-linz.ac.at

ABSTRACT
E-Learning materials contain more and more interactive
elements, which are a unique asset compared to conven-
tional learning materials. But because of a usually frag-
mented development process (several co-existing genera-
tions of design, development over a longer time, many
contributors, etc.), both presentation and interaction might
vary widely between such materials, even within a single
course offering. Furthermore, a common didactic model
(what information is present, where and how it can be
accessed, etc.) is hard to achieve. In this paper we propose
a framework intended to address some of these issues by
streamlining didactic, organizational and technical aspects
of interactive e-learning examples. This framework has
already been used and evaluated in the development of
several such examples, which have been deployed in a
blended-learning setting at the university level. While it is
particularly well suited for visualizing various kinds of
algorithms, it has also proven applicable for other types of
interactive examples.

KEY WORDS
E-Learning, interactive algorithm visualization, frame-
work, uniform interaction and didactic models

1. Introduction

The development of E-Learning material is costly. It is
estimated that good material requires investments from 10
up to 100 times those for a "conventional" course (see e.g.
[1] for a detailed assessment of costs for a single course).
One reason for this is the need for interactivity: Scanning
a book and placing it online is in all but the most trivial
cases insufficient for high quality E-Learning courses.
Although such an approach fails to take advantage of the
new possibilities afforded by the deployment “medium”,
like personalization and interactivity, it still constitutes an
“entry point” into the creation of E-Learning materials.
As a consequence, a pattern often observed, at least at the
university level, is that materials are not just created at
once, but rather evolve over time: It starts with more con-
ventional material and is expanded and enhanced over

time (an example is presented in [2]) through other kinds
of media (audio, video) and more / better interactive ele-
ments, e.g. applets or flash animations.

However, this evolutionary development process
can result in several problems. Firstly, this process typi-
cally involves many persons in the design and authoring
of materials, which almost invariably results in several
different modes of interaction. Even when strict guide-
lines are established, these can be interpreted differently
and are perhaps not always followed exactly. Even more
problematically, not all materials will adhere to the same
didactic model, contain similar additional information
(like general background or help pages) or support the
same additional functionality (e.g. printing).

In this paper we present a framework designed to
prevent these (and other) problems. Our overarching goals
in the development of the framework have been: (a) to
instate uniform didactic and interactivity models in inter-
active E-Learning examples; (b) to support the implemen-
tation phase of such examples; (c) to foster and, where
possible, enforce adherence to usability standards and
guidelines; (d) to facilitate the deployment of examples in
both on-line and off-line forms; and, (e) to ensure a high
degree of reusability of the implemented examples, be-
yond the E-Learning context they were originally in-
tended for. From a didactical point of view, the intention
has been to capitalize upon the possibility of standardiz-
ing best practices, by encapsulating much-used and
proven didactical structures into what has been termed
‘software templates’ [3].

The presented framework comprises mainly of a
number of Java libraries and a build environment oriented
towards concurrent applet- and application- mode de-
ployment. It has already been used for implementing a
large number of individual examples, which are in practi-
cal use in blended-learning courses [4] our institute offers
for its students.

2. Discussion of the interactivity model

Advanced learning material, in particular for courses in
technical or natural sciences must contain elements –
typically in the form of Java applets – which allow inter-

action. This is one basic concept for visualized simulation
and explorative learning in general.

The user interface of such applets should be as
consistent as possible. Students should focus on the sub-
ject itself and obstructions or the “cost” of familiarization
with different interaction paradigms should be kept to an
absolute minimum. Learners expect (and benefit from)
uniformity and consistency in the materials that comprise
individual courses (or, for that matter, a series of related
courses) [5].

This demand goes beyond recommendations for
the spatial arrangement of elements, or common style
guides in general. It necessitates uniform facilities for
performing common tasks in this context, including:
mechanisms for printouts, screen copy facilities, appear-
ance and function of input and visualization components,
standard facilities for accessing background information,
context-sensitive help, etc.

The presented framework enforces both a consis-
tent look and feel throughout the set of provided examples
from the learners’ point of view, and a set of Java libraries
and prefabricated output objects, which allow easy em-
bedding of examples into a predefined environment. Fur-
thermore, their design and implementation (including
constituent materials) is guided by a set of custom speci-
fication documents that detail the structures and policies
that must be observed during development.

According to our experience the effort required
to become familiar with the constraints enforced by the
framework are negligible compared to the cumbersome
work of adjusting someone else’s examples after they
have been implemented. Even more, due to the prefabri-
cated classes and the API, the development of interactive
software proved to be both considerably easier and faster.

2.1 Didactic aspects

As already stated, one of the primary goals of the frame-
work has been to predetermine and enforce a number of
didactic decisions. An advantage of this is that the actual
implementers of examples need not be educators them-
selves; basic engineering skills should still suffice to
achieve at least reasonable results. Examples of elements
with didactic background in the framework include the
following (we focus here on the deployment of examples
embedded in on-line course materials):

Preface page - As the examples are often in-
cluded directly within the on-line learning material, they
should initially be not too distracting (and also not con-
sume a lot of resources, like screen space or memory).
Therefore each example is accompanied by a short intro-
ductory page with a general outline of the example’s goal,
background theory and main aspects exemplified.
Through this learners can decide whether to start the app-
let or not. The actual visualization is begun in a new win-
dow upon pressing a button. This allows a compact repre-
sentation within the material (see Figure 1a), while not
constraining the size of the visualization (thus making it

possible to easily accommodate different display sizes
and resolutions).

Help text - Each example must contain a help
text (see e.g. Figure 1b). This should not only describe the
background of the visualization (which is already in the
base material, but might be required when running as a
stand-alone application), but rather how to handle it, and
is therefore separated into two files (usage and theory).
This part is easily overlooked by implementers, but highly
important for learners. The framework supports the use of
HTML in these help pages, making it possible to reuse
portions of the learning material, and also easily enhance
it with images or animations if desired. Moreover, no spe-
cial editing / compilation step (compared e.g. to MS help
files) is required.

Common general layout - The example visuali-
zation window is also standardized for learner's usage. At
the top is a bar describing the current state of the algo-
rithm, i.e., which percentage has already been completed.
As not all algorithms might allow easy deterministic cal-
culation of the total number of steps, individual examples
can also opt for an open-ended presentation (which never-
theless still happens in discrete steps). Compared to a de-
scription or a predefined animation this stepwise devel-
opment of the result better explains the actual working of
the algorithm: Each step is shown separately as it hap-
pens. To ease interaction with complex algorithms, ad-
vancing to the next step can also be automated (at user-
controlled variable speeds, and with the possibility to
pause / continue at any time). This allows students adapt-
ing the presentation to their personal preferences, and
facilitates both acquiring the big picture through observ-
ing general trends (fast advancement), as well as inspect-
ing details in single steps.

Furthermore, as the general layout of the interac-
tive examples is always the same through the framework,
students get accustomed to this and can more easily han-
dle them. This is especially useful as the interaction
modes are quite trivial at the beginning (simple exam-
ples), but the more they advance in the course, the more
complex applets grow, but then the handling is already
familiar to them.

2.2 Organizational implications

Introducing a framework for educational examples also
has some organizational implications and influences the
development process. As discussed above, the iterative
development model results in a high turnover of persons
contributing to the material. Providing written guidelines
often does not work satisfactorily, as these might be inter-
preted differently, are not known in details and following
them is generally seen as onerous additional work. But if
these guidelines come in the clothing of a framework,
they are adhered to much more closely: This reduces the
work, using libraries is customary (in contrast to written
regulations), and the enforcement is strict (with compile-
and run-time- checks in place).

Similar thoughts apply to quality assurance.
Some missing information can easily be overlooked, but
empty placeholders show this lack clearly. Testing also
gets easier, as the elements are always in the same place
and verification gets routine, instead of having to look for
all the different elements in several places and then
probably forgetting one of them.

A given framework can also change the devel-
opment process. As we have pointed out in the introduc-
tion, the development of learning material is often an evo-
lutionary process and, typically for universities, benefits
from contributions offered by students, either voluntarily
or organized within programming labs. One should not
underestimate this valuable source. In fact, students,
based on their own experience and way of looking at a
particular subject, are often a source of innovative and
compelling ideas on how aspects of theory can be turned
into interactive visualizations. Through the employment
of the framework presented it is possible to engage stu-
dents in the design and implementation of examples with-
out the potentially adverse effect of personal aesthetics,
arbitrary design choices and insufficiently advanced pro-
gramming skills. Instead of receiving various results with
better or worse visualization, which cannot really be used
in learning material without a major rework, the best ones
can now be easily selected and inserted into the teaching
material. All that is required is adding any extra elements
missing (e.g. the theory part) and it will immediately fit in
with all the other preexisting examples.

Similar considerations apply to teachers. Often
they are not quite satisfied with the material (content,
completeness, presentation, structure, etc.), including ex-
amples. Basing them on a framework allows for easier
changes to adapt e.g. the actual visualization or the expla-
nations given. This is also important when considering
different target groups [6]: Examples for computer sci-
ence students could be adapted to pupils in lower levels of
education by extending the description (e.g. possible
without programming, as these parts are ordinary web
pages integrated into the applet through the framework)
and removing some details. The framework enables them
to focus on the pedagogical necessities while ensuring a
common presentation and the presence of all the impor-
tant elements.

2.3 Technical considerations

Technical aspects are also important for the interactivity
to avoid e.g. too many different modes of interaction.
These are much harder to define in guidelines or enforce,
as they depend on the subject matter visualized.

One possibility to improve similar rendering is
integrating advanced libraries. One example for this is
rendering of formulas [7]. This is a quite hard task, so
applet creators would either try to skip this, resulting in
poorer learning quality because of missing information, or
create their own drawing code. The latter would result in
different renderings, which are probably also worse in
quality. While merely integrating a library does not en-

force its use, it is asserted that the presence will be en-
couragement enough to use it, especially if such use is
facilitated through a well thought-out and easy to under-
stand API. Additional libraries are included for the same
reason, e.g. for creating graphs and charts.

Interaction is also unified through the frame-
work. Algorithms must be formulated to consist of dis-
tinct incremental steps. This requires separating the sig-
nificant changes from those rather unimportant. So while
for many algorithms a single inner loop might be interest-
ing (e.g. sieve of Eratosthenes: the next number to be re-
moved), for some a subdivision (RSA key generation:
individual checks and calculation elements) or several
runs together (bubblesort: finding the smallest remaining
element as a single step) might be didactically more sen-
sible. Again, the framework does not guarantee a good
selection, but it enforces the author to give some thought
to this very important issue.

Different modes of deployment are also taken
care of: The framework supports presenting the visualiza-
tion both as an applet and as a standalone application
from a common code base. Through this it is suited both
for online distribution as well as presentation during a
presence phase or on a CD. All the necessities for the im-
plementation of this are taken care of by the framework.

Also, the framework obviously reduces the work
for creating new interactive examples: Only the actual
algorithm and its visualization is required. The general
interaction (showing basic information, starting it, control
of the separate steps, etc.) is already complete so only
specific parameters and additional interaction methods
must be implemented. Through this also average pro-
grammers or students can create presentable results.

3. Developing with the framework

The software part of the framework has been imple-
mented as a set of Java classes and associated libraries.
The high-level embodiment of examples in the framework
is termed a feature. Features incorporate all the code and
supporting elements that make up a full example. Typi-
cally, a feature consists of the following: help text detail-
ing the use of the interactive portion of the feature and an
overview of the related theory; an “input panel”, where
users can enter any input data required for the featured
algorithm, configure its parameters, etc.; and an “output
panel” where visualization and interaction with the algo-
rithm takes place. In the rest of this section, we will pro-
vide an outline of the development process for features
employing the framework, looking simultaneously at the
standard interactive facilities it offers.
 The development of features starts with assem-
bling the accompanying materials. These usually include
a one-paragraph description, an HTML page (including
associated resources such as images), and an optional
image that is used alongside the aforementioned one-
paragraph description to visually identify the feature.

 Implementation commences with the creation of
a Java class that binds together the materials listed above,
and provides the framework access to them in a structured
way. At this stage, the framework has already enough
information for the “background” section of the “input
window” (Figure 1a). It also automatically recognizes the
presence of a theory help file, adding a menu element that
allows users to invoke the respective help window (Figure
1c). Neither of these facilities requires any programming
on the part of the framework’s user.

 Implementation then moves on to the creation of
the feature’s “input panel” (Figure 1a, lower part). Al-
though its contents are apparently dependent on the par-
ticular example / algorithm, the framework supports de-
velopers through a set of components with a common
look and feel (see e.g. the shaded “note” component in
Figure 1a), and facilities for their spatial arrangement.
 The next step involves implementing the actual
algorithm that is the core of the example. Acknowledging

 Figure 1a: Introduction / input window

 Figure 1b: Visualization / interaction window

 Figure 1c: Help window showing the theory page Figure 1d: Print-preview window

Figure 1: Standard interactive facilities

the fact that implementation and testing are inherently
iterative processes, the framework allows for an incre-
mental approach in this respect. Specifically, initial im-
plementations do not need to expose any details of the
individual steps the algorithm involves, or provide actual
output. At the other extreme, complete implementations
can provide fine-grained information on the total number
of steps and the step currently performed, as well as so-
phisticated and interactive graphical output.

The output window (see Figure 1b) provides an
automatically generated section (top part), with compo-
nents enabling the end user to control the execution / pro-
gress of the algorithm. The components available there
vary on the basis of the granularity of steps the algorithm
implementation exposes, and also supports cases where
the total number of steps cannot be calculated, or is too
costly to calculate beforehand.
 The lower part of the output window, the “output
panel” (Figure 1b, lower part) has to be implemented ex-
plicitly. To support this task, the framework provides a
number of graphics and interaction primitives that can be
employed to quickly assemble a graphical output. Fur-
thermore, the framework provides explicit support for the
Model-View-Controller (MVC) architectural pattern for
interactive software [8]. Following that pattern: each step
in the algorithm modifies accordingly a model of the algo-
rithm’s state / progress, the view of the model is auto-
matically updated whenever such changes happen, and the
(optional) controller portion can be employed to support
direct interaction of the student with elements in the view.
 Although the view portion must be implemented
explicitly by the developer for run-time presentation, no
additional programming is necessary for attaining print-
able output from that. Specifically, the framework incor-
porates support for constructing a printer-ready version of
the view, including pagination, etc. Furthermore, a print-
preview window (see Figure 1d) allows users to inspect
output and change printer settings before actual printing.
 Once implementation as described above is
complete, a custom build system undertakes the genera-
tion of archives that can be used for different modes of
deployment. In detail, using a simple XML file that drives
the process, the build system generates both applet- and
application- versions of the feature. Applets are accompa-
nied by an HTML page containing the provided back-
ground information and a button that starts the applet.
Applications are accompanied by batch / shell files, which
make it easy to start individual examples on a variety of
platforms. Finally, both the framework and the build sys-
tems contain integrated support for internationalization,
making concurrent deployment of examples and materials
in more than one language possible.

4. Practical experiences

The framework was tested through implementing numer-
ous applets, the suitability of which have been validated
in several courses. As these are held with the support of

the WeLearn web-based learning platform [9], the applet
version is used. One important aspect of the platform is
however also the offline presentation, so the application
form comes in handy e.g. when transferring a course to
CD's. The rest of this section outlines some of the exam-
ple applets that have been implemented with the frame-
work thus far.
 "WeLearn.LaVista" is course material demonstrating
the concepts of object-oriented thinking and modeling and
enabling experimenting with these concepts. Therefore it
contains several applets. One example is the "Von-
Neumann applet" demonstrating the Von-Neumann cycle
(how computer instructions get executed). The students
can choose among a number of pre-given short programs,
such as a simple calculation, traffic lights, etc., which can
then be executed stepwise. Programs vary in complexity,
but the operating mode stays the same. Finally, the applet
offers the students the opportunity to create further pro-
grams on their own, based on a small instruction set.
 In the winter term 2004/05, WeLearn.LaVista
was integrated into a course provided by the institute for
computer science students in their first semester. Feed-
back showed that the students appreciated experimenting
with the applets very much, but that different navigation
paradigms (where and how to start a simulation, etc.)
sometimes caused confusion. Therefore, it was decided to
integrate the applets into the framework, taking advantage
of its navigation, documentation, etc. facilities to replace
the custom versions in use before. As a result, all
WeLearn.LaVista applets now possess the same look and
feel and are handled similarly (see Figure 2 for an exam-
ple). The learners can concentrate on the content and are
not confused or distracted by unimportant issues, such as
navigation through the applet.
 Parallel to the redesign of the WeLearn.LaVista
applets, various other applets were implemented for a
mathematics course called “IT-Math”. Within this course

Figure 2: "Before" and "after" versions of the "Von-
Neumann" applet

Figure 3: “Matrix Addition” example demonstrating the
use of the embedded JEuclid library for rendering mathe-

matical expressions

applets demonstrate concepts from graph theory (directed
/ undirected graphs, adjacency matrix, shortest paths,
etc.), number theory, etc. Figure 3 shows the “Matrix Ad-
dition” example from this set, which, as its name sug-
gests, demonstrates the steps involved in adding matrices;
note that the symbolic version of the addition in this
screen-shot is supported through the embedded JEuclid
[7] library, which is capable of presenting mathematical
expressions in MathML [10]. The “Sieve of Eratosthenes”
example in Figure 1 is from this set of features.

5. Conclusions

Although the presented approach for unifying interactive
and didactic aspects of E-Learning examples has already
proven its merits in practice, there are also some draw-
backs, the primary one being that the exemplified algo-
rithm must be broken down into individual steps. Whereas
this is good from a didactic and interactivity point of
view, such implementations of algorithms can differ sig-
nificantly from the "standard" one, potentially resulting in
increased complexity. They are therefore not well suited
to teach the implementation of the algorithm itself, but
rather for understanding its inner workings.
 En route to the further development of the
framework, we are currently planning to perform two
types of assessment: (a) usability experiments aimed at
improving the interactive experience of students using
examples created with the framework, and (b) assessment
of the framework itself as a development tool.
 Improvements that are already under way con-
cern: the integration of facilities to further harmonize

presentation and a descriptive definition of required pa-
rameters, in this way unifying the interaction aspect even
further; the addition of additional deployment methods
(currently the framework is oriented towards deployment
through applets embedded in web pages and stand-alone
applications); and, the development of more “standard”
libraries specifically aimed at common knowledge do-
mains (e.g., geometry).

Other possible improvements include support for
handicapped persons, including magnification of the visu-
alization (through the framework itself, not the individual
example) and special adaptation for handheld devices.
Because of their limited screen size special considerations
must be taken, e.g. minimization (similar to the magnifi-
cation mentioned above), support by the framework for
scrolling presentation or special modes (e.g. parameters
on a separate tab, which is a typical mode of interaction
for handhelds, but rather strange for PCs with large
screens). Another option we are looking into is support
for backtracking, i.e. allowing the user to not only move
forward stepwise but also backwards, so the exploration
of reasons for certain developments are possible. Al-
though any example can obviously offer this on its own,
support by the framework is desirable to also unify this
and further reduce work.

References

[1] N. Hammer, Desing of Design: Die Gestaltung von
Mediendesign Lerneinheiten im virtuellen Studiengang
Medieninformatik, Proc. 32nd annual GI conference,
Bonn, 2002, 385-392
[2] B. Gauss, L. Urbas, C. Hausmanns, R. Zerry,
Systemic approach to integrating new media into
academic teaching – A case study, Proc. 2003 EDEN
Annual Conference, Eden, 2003, 385-390
[3] W. Jansen, H. van de Hooven, H.P.M. Jägers, W.
Steenbakkers, The Added Value of E-learning. Proc.
Informing Science + IT Education Conference (IS2002),
Cork, Ireland, 2002, 733-746.
[4] S. Loidl, J. R. Mühlbacher, H. Schauer, Preparatory
Knowledge: Propaedeutics in Informatics, Proc. of ISSEP
2005, to appear
[5] K. Oakes, An Objective View of Learning Objects.
TD (American Society for Training and Development), 56
(5), 2002, 103-105.
[6] K. Weicker, N. Weicker, V. Claus, Zielgruppen-
orientierte E-Learning-Module für das Informatikstudium,
Proc. 32nd annual GI conference, Bonn, 2002, 90-99
[7] JEuclid: http://sourceforge.net/projects/jeuclid/
[8] A., Glodberg, & D., Robson, Smalltalk-80: The
Interactive Programming Environment (Reading, MA:
Addison-Wesley, 1984).
[9] WeLearn – Web Environment for Learning:
http://www.fim.uni-linz.ac.at/research/WeLearn/
[10] MathML - http://www.w3.org/Math/

