
                                                                                           -  1 -  

Preparatory Knowledge: Propaedeutic in Informatics 

Susanne Loidl1, Jörg Mühlbacher1, Helmut Schauer2 

1Institute for Information Processing and Microprocessor Technology (FIM), Johannes Kepler 
University Linz, Altenbergerstr. 69, A-4040 Linz 

{loidl, muehlbacher}@fim.uni.linz.ac.at 
2Department of Informatics (IFI), University Zurich, 

Winterthurerstr. 190, CH-8057 Zurich  
schauer@ifi.unizh.ch 

Abstract. In the recent past a number of concepts have achieved prominence in the 
quest for basic principles of informatics with long-term validity. Particularly at 
schools providing an all-round education, it makes sense – and is necessary – to 
concentrate on basic concepts. The fact is that strictly product-related knowledge is 
inadequate, and in some cases already obsolete before pupils leave school. A more 
systematic grasp of these concepts and their interrelations is therefore not just 
desirable, but essential. Some of these “unchanging values” in informatics are 
briefly introduced here, and it is shown how they can be, first, made more 
comprehensible by means of applets, and second, put to work in teaching right now, 
in conjunction with eLearning. 

1   Introduction 

In the recent past a number of concepts have achieved prominence in the quest for basic 
principles of informatics with long-term validity – and these should be playing an 
increasing part in the curricula of schools providing an all-round education; the concepts 
in question are briefly introduced and discussed here (this paper is a shortened version of 
[6]; see also [3]). Examples of such concepts are: abstraction, particularly in connexion 
with modelling and recursion, differing forms of notation (with a clear distinction between 
syntactic and semantic aspects), or distinctions between static/dynamic and local/global 
aspects also appear important. Again, special properties of relations, such as transitivity, 
symmetry or reflexivity, and (say) the difference between identity and equivalence, are of 
primary significance in informatics. The examples selected and given below (see also [10] 
and [12]) are intended to show how and (especially) which concepts can be conveyed. 

The issue of how far procedural or object-oriented programming should be included in 
formal education is not discussed here. While programming is an excellent training in 
algorithmic thinking, it does require a certain amount of practice. The latter counts as a 
skill, and its status and scope are bound to depend on the individual type of school and the 
educational goals the school pursues. 
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2   Examples of basic concepts in informatics 

Let us consider a typical task in information processing: determining the mass x of an 
unknown object by means of a balance. To analyse this task, we start by constructing a 
model [2] (Fig.2). 

2.1   Modelling, abstraction, states 

Modelling involves abstraction: certain aspects of the task are deemed to be relevant, and 
are taken into account in the model, while other aspects are treated as irrelevant and thus 
ignored. What is deemed to be relevant or irrelevant is of fundamental importance, and 
depends on the purpose of modelling. Here we ignore the size, shape and colour of the 
unknown object, for instance, and consider the balance only at rest, with three possible 
results of weighing: the mass of the object in the left-hand pan can be less than, equal to 
or greater than the sum of the masses of all the weights in the right-hand pan. This last 
point illustrates the distinction between static and dynamic aspects of modelling and the 
concept of a state which a system can be in. A system of this kind, that can be in various 
defined states and that switches from one to another as a result of defined events, is called 
an automaton. If every subsequent state is uniquely determined by the current state and 
the event in question, the automaton is deterministic and its behaviour can be forecast. 
Gambling machines are typically non-deterministic. If we consider placing a weight in a 
pan as an event, our model of a balance is then a deterministic automaton. If we permit the 
removal of weights previously placed, a change of state can be reversed. Changes of state 
can thus be reversible or irreversible. In the case of computer applications, any action 
that can be reversed by means of undo is an example of a reversible change of state. 

A further important aspect is the accuracy of a weighing procedure. For instance, we 
can decide in favour of a discrete model with integer weights, with which the mass of the 
unknown object can be ascertained only as a whole number, while leaving it open whether 
the weights are specified in grams, kilograms, etc. With the distinction between discretely 
and continuously variable values we have another concept basic to informatics. 

Another key aspect of modelling is deciding what is rigid about the model and what 
can be altered. For example, a given set of weights could be prescribed, or the choice of 
weights could be left open. Again, the balance beam could be supported at its midpoint in 
all cases, or the point of support could be shiftable, to permit a free choice of leverage. 
Which the parameters of a model are, and which quantities are treated as constant and 
which as variable, are thus also fundamental issues. Alan Perlis [9] put this very neatly 30 
years ago in the remark “One man’s constant is another man’s variable”. 

One special aim in the balance example, going beyond modelling as a function of the 
level of abstraction selected, is a discussion about the purpose of the resulting model. For 
mathematicians the equation x*a = g*b suffices, where g is the weight used to determine x 
and a and b are the beam lengths. This presupposes that the aim is to model a mechanical 



                                                                                                 - 3 - 

balance, for a weighing device in which (say) the extension of a spring as a function of the 
weight applied is used to measure mass involves a different equation. 

Informatics specialists using integer weights (here their order of magnitude plays a 
part) need to take into account both the resulting “inaccuracy u” of the balance and the 
process of the balance coming to rest; in the model they will therefore start from an 
inequation |x*a - g*b| < u, or regard the equation as satisfied once the angle α is less than 
an ε adapted to the purpose of weighing. So a discussion of the balance example can well 
lead on in the classroom to a discussion of the difference between formal, mathematical 
modelling and the sort of modelling typical of the engineering sciences. Interpreting the 
findings obtained from a model will also need discussion.  

The following key properties of models can thus be discussed: Completeness (in terms 
of the purpose intended), freedom from contradictions (consistency), fidelity to the 
original and the associated interpretation of the data provided by the model. 

The metamodel for discussing modelling is shown in Fig 1. 
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Fig. 1: Metamodel of the modelling process 

On top of this, for informatics specialists the weighing procedure leads directly to the 
concept of an algorithm. 

2.2   The concept of an algorithm 

No doubt about it, the concept of an algorithm is fundamental to training in informatics. 
As indicated initially, we shall not comment on programming in a programming language, 
although programming is naturally the special procedure for informatics specialists to 
formulate algorithms. At this point we are more concerned with the concept of an 
algorithm independently of the software context. 

Let us consider the sequence of actions that are performed when an object is weighed 
by means of a balance or a model that mirrors its behaviour. For instance, we can place 
weights in the pan or remove them completely at random, until the balance is in 
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equilibrium. Apart from the fact that this procedure takes time, it comes to an end only if 
the mass x of the object can be represented as the sum of a subset of the available weights. 

So let us search for a directed procedure that determines the mass x of the object in as 
small a number of weighing operations as possible. This leads us to the concept of an 
algorithm. If the individual steps are to be performed in a particular order, the algorithm 
is called sequential. Algorithms in which the individual steps can be performed in any 
order, or even simultaneously, are called parallel. For example, several weights can be 
placed or removed simultaneously, and thus parallel; on the other hand the individual 
weighing operations are performed sequentially. The distinction between sequential and 
parallel procedures is also of great importance in informatics – we need only think of data 
transfer via serial or parallel interfaces, say. 

As formulated here, the examples belong to the class of iterative algorithms. Going 
further, we come to the issue of recursion. Often a recursive approach yields a simple 
solution to a problem. “Recursive” means “with self-reference”. Recursion occurs 
whenever something refers to itself. 

Traditional examples of recursion, such as the Fibonacci series: Fib(n) = Fib (n-1)+ 
Fib(n-2) with Fib(1) = Fib(2) = 1 or n factorial: n! = n*(n-1)! with n>1 and 1! =1, are to 
be found both in informatics teaching and in mathematics teaching. 

However, we are more concerned with recursive thinking, the recursive description of 
observations and the use of recursion to solve problems. Here comprehensible, concrete 
tasks and examples adapted to the year/level in question must be found.  

An initial, straightforward example of recursion from everyday life is a tree. Let us 
imagine a cross-section through a tree-trunk and examine the growth rings that have 
formed around the central pith. A tree one year old has one annual ring surrounding the 
pith. In the general case the cross-section of a tree-trunk consists of the outermost ring 
surrounding the cross-section as it was one year earlier. And this recursive perspective 
continues until the “abort criterion” is satisfied, when the pith is reached! 

The following example does cause a certain surprise in class (in our experience), when 
one explains a succinct way of describing a queue of people waiting ahead of a cash desk 
in a supermarket: a queue Q of persons P is either empty (an empty queue) or consists of a 
person P followed by a queue Q. If one points out at the same time that one ca abstract 
from a “person P” to any object, and introduces a non-existent “empty” object ε in 
analogy to the empty set, one gets the pure concept of a queue! 

By comparison, describing a queue iteratively takes much more doing. It depends on 
the educational goals the school in question pursues, and on the year/level in question, 
whether one then decides to tackle the next step towards EBNF (Extended Backus Naur 
Form) by means of the following example, which is also excellent training in thinking: 
how do we describe how a train is put together? 

To put it simply, a train consists of an engine E at the head, followed by at least one 
coach C. The recursive description focuses on "how is a train put together". We can write: 
train = ET and T = C | CT. For practice one can then derive train = ECC, train = ECCC, 
train = ECCT etc. and recall the situation with the queue for comparison: Q= ε|P|PQ. 
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2.3   Time complexity 

Let us try to estimate the effort involved in our weighing algorithm. With a purely trial-
and-error approach the mean number of weighing operations is proportional to the number 
of all possible subsets of the weights. If the number of weights is n, the number of all 
subsets of these weights is equal to 2n, so the mean effort increases exponentially with n. 
The reason for this unnecessarily great effort is that with a purely trial-and-error approach 
weights are selected for the next operation independently of the unsuccessful previous 
tries. No use is made of the information whether the object was lighter or heavier than the 
sum of the weights selected for these tries! Actually, the largest weight value tested that 
was lighter than x forms the lower limit, and the smallest weight value tested that was 
larger than x forms the upper limit, of an interval that the value x to be found must lie 
within. The strategy behind an optimized weighing algorithm can only be to halve this 
interval at each weighing operation, by comparing x with the arithmetical mean of the 
interval limits. If x is lighter than this mean, the latter becomes the new upper limit; if x is 
heavier than this mean, the latter becomes the new lower limit. x has been found when it 
equals the mean or the interval has been reduced to 1. Since each weight is placed only 
once, the effort (number of operations required) is in linear proportion to n. This 
optimized algorithm is thus much more efficient than trial and error. In connexion with 
the time needed to perform an algorithm one speaks of time complexity, a fundamental 
concept in informatics. Other key issues in connexion with the concept of an algorithm 
include the question of whether an algorithm holds, whether a problem is decidable, 
computable, etc. We return to these questions later. 

2.4   Number systems, coding 

Since the number of weighing operations required is a function of the number n of 
weights, the question arises of whether the number of weights can be reduced without 
restricting the range of weight values that these can represent. With a conventional set of 
weights with the eight values 1, 1, 2, 5, 10, 10, 20, 50 for instance, all integer weight 
values within the interval 0 to 99 can be represented. This choice of weights is obviously 
inspired by the decimal number system. Interestingly, the sequence 1, 2, 5, 10, 20, etc. has 
the original property that for each pair of numbers in sequence the first value is the integer 
half of the second value (the sequence 1, 2, 5, 10, 20, etc. corresponds to the values 
(rounded to integers) in the European Standard sequence E3, which assigns three 
logarithmically roughly equidistant values to each decade). The sequence of powers of 2 
1, 2, 4, 8, 16, 32, 64, etc. also adheres to this principle; with the corresponding binary set 
of weights with the seven values 1, 2, 4, 8, 16, 32, 64 all integer weight values within the 
interval 0 to 127 can be represented. Although a binary set of weights of this kind is not a 
standard product, it is superior to the decimal set of weights. 
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Fig. 2 shows the result of a weighing operation using a binary set of weights. The 
weights placed in the pan correspond exactly to the positions of the ones in the binary 
coding of x. 

 
Fig.2. Picture of a model of a mechanical balance, as an example of modelling and binary coding 
(with the weights 32, 16, 8,4,2) 

2.5   Decidability, computability, NP complete problems 

In connexion with questions such as whether an algorithm holds, i.e. whether we are 
dealing with a decidable, computable problem, a tractable problem etc., the favourite 
objection is that such questions are far too complex, go beyond schools’ educational 
targets and should be reserved for the sphere of tertiary education. In this section we want 
to show that simple examples that can be formulated intuitively really exist and can be 
used to introduce these topics in informatics in secondary schools. 

At the same time there must be a strict requirement that informatics should be taught 
only by people with a relevant qualification! We accordingly take it that the discussed 
topics are already known, and concentrate on the issue of satisfactory didactic treatment. 

We start by considering whether everything that occurs to one can be subjected to 
algorithmic treatment, and thus ultimately to programming. 

The halting problem is a good example of a problem that is easy to grasp: can one 
define an algorithm that decides, for any algorithm whatever (!), whether it completes 
after a finite number of steps or not? Depending on what the pupils already know, this 
problem is fairly easy to describe verbally: imagine someone sitting at a PC, waiting some 
time for results and becoming increasingly worried about whether the program currently 
running just takes a considerable time or whether a bug has crept in and the best thing 
would be to abort it. This leads to the wish for a test program that can decide in advance 
whether the program in question will ever complete and provide results. One can then 
point out that theoretical informatics delivers the conclusion (which pupils might not have 
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expected) that tasks do exist that are not computable, i.e. not programmable, and that the 
halting problem is an example of such a task. At the same time the pupils are confronted 
with a good reason why informatics investigates its own basis in theoretical informatics. 

At the next stage it can be assumed that from now on only computable problems will 
be examined in detail. Here they are very simple, instantly comprehensible tasks such as 
sorting a finite set of numbers etc. At the same time the requirement should be to perform 
such tasks in the most efficient way possible, i.e. to search for good algorithms – “good” 
can be defined as minimizing run time. To illustrate what counts as a good or a less good 
algorithm, let us take n = 7 integers, order them graphically, first as a linear list and then a 
binary search tree, and now ask how many comparisons are needed to find out whether an 
integer x is not among the 7 numbers selected; this provides a preliminary justification for 
the subject “Algorithms and data structures”. If a link to mathematics is to be developed 
here and the pupils have the necessary basic knowledge, the binary search resulting from 
this example leads to logarithms to the base 2, log2 n. The next question is how the 
number of comparisons increases if one selects 2n rather than n numbers. 

At the next stage a particularly impressive example is used to make it clear that time-
consuming problems cannot be solved simply by technical progress – acquiring a faster 
computer. To illustrate this phenomenon, the puzzle problem discussed in detail below 
can be presented; it is easy to explain:  

We consider a very small jigsaw puzzle, measuring 5 by 5 pieces. All the pieces are 
different, but should yield the picture intended, if they are put together correctly. 

First of all one must ask the didactically central question whether the problem is 
soluble at all (computable), i.e. whether it can be solved with the 25 pieces given. If we 
recall that children can perform this task before they start going to school, there does not 
seem to be much of a problem. However, it is clear that a computer will need an 
algorithm: before tackling the puzzle problem, we must find out whether it is computable! 
A simple brute-force algorithm supplies a positive answer:  
• Number the pieces from 1 to 25. 
• Arrange all pieces in a sequence. We thus obtain all n! sequences of the n (= 25) 

numbers. 
• For each resulting sequence, check whether it solves the puzzle. 
In the worst case it takes n! tries to find the correct sequence! 

At this point, faithful to the principle of interdisciplinary teaching, we can introduce the 
concept of permutation, and use a few examples to derive the number n! of permutations 
of n numbers, or even repeat the definition n! = n(n-1)! (with a glance back to recursion). 

If we omit rotations – determining the number of possibilities could get us into didactic 
difficulties –and use a computer performing 1 billion checks per second, we get the 
following figures: Placing: 25! = 1,55*10^25 seconds, i.e. ~ 4,9*10^11 years. That is still 
15 times as long as the time that has elapsed since the original big bang! It is didactically 
effective to get the students to give an intuitive estimate of the time required first. 

Two lessons emerge from this: acquiring a faster computer does not help at all, and we 
need to start hunting for a better (good) algorithm. 
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Fig. 3. Puzzle problem simplified with 2x2 pieces 

At this point it is up to the teacher to convince the pupils that procedures for solving the 
puzzle problem within a realistic length of computing time are known, e.g. by using 
structural data about the edges of the individual pieces to get to a solution. 

However, a discussion about this leads straight to the issue of NP complete problems, 
though we must be aware that this topic can be mentioned only verbally and in simplified 
form. But even at this level it is perfectly suitable for awakening pupils’ curiosity, and 
thus getting them interested in the science of informatics. 

The following selection of examples has worked well in practice: one starts with the 
Travelling-Salesman-Problem (visiting n towns without visiting any of them more than 
once), which can be explained graphically without difficulty. It is also easy to show that 
this problem is computable: the approach is to list all permutations of the n towns and to 
check for each permutation whether it satisfies the criterion for a round trip. In secondary 
education one then has no choice but to point out that, interestingly enough, (1) for large n 
no method of solving the problem in a realistic length of time has yet been found, and (2) 
theoretical informatics provides the following remarkable statements: (a) there is reason to 
suspect that no algorithm exists to solve the problem, and (b) according to the state of 
science it will never be possible to prove that the suspicion voiced in (a) is correct. 

The next step is to remind the pupils that, if their school has a large number of classes 
and teachers, the timetable they get at the beginning of the school year is unlikely to be 
definitive – instead, it will be a compromise (method of successive approximation), since 
the task to be performed is defined as follows: obviously no teacher can teach in two 
classes simultaneously, but he or she should a continuous succession of lessons with no 
gaps, and the sequence of subjects per schoolday should make sense for each class. 

The remarkable thing is that the same suppositions apply in the case of this so-called 
timetable problem as with the Travelling-Salesman-Problem: if n (the number of teachers) 
and m (the number of classes) are very large, trial and error will not lead to a satisfactory 
result. Oddly enough, though, if a good (polynomial time bounded) solution were found, it 
would follow that a good solution in the same sense existed for the timetable problem, and 
it would make sense to go on hunting for one. The converse also applies: if a proof of 
statement (a) were found for the Traveling-Salesman-Problem, we would know that no 
solution existed for the timetable problem, either. The argument also applies in the other 
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direction: if it can be proved that no tractable solution exists for the timetable problem, 
then none exists for the Travelling-Salesman-Problem. 

The following selection of examples has worked extremely well in the classroom: one 
presents the timetable problem verbally only, and then goes on to the so-called clique 
problem as a further instance of an NP complete problem. It is very easy to illustrate this 
by drawing a graph [11] with 5 nodes and 8 edges (Fig 4), with no need for previous 
knowledge in mathematics.  

As with the Traveling-Salesman-Problem, there is an opportunity here to return to the 
concept of a model: here the nodes correspond to persons, and an edge is drawn if a 
special relationship exists between two persons. A subset of nodes and edges is called a 
clique if an edge exists between every pair of nodes.  

  a b

dc

e 

 
Fig. 4. Graph with 5 nodes and a clique of four defined by a, b, c, d 

In our experience classwork is enhanced by a discussion of this issue, together with a 
reference to the fact that more than a thousand problems equivalent to the two presented 
here are known [1]. Here Informatics teachers are confronted with the same didactic 
problems as their colleagues in the natural sciences, who are obliged to draw attention in 
their teaching to any number of unresolved issues. In our view it is didactically worth-
while to point out the limits of a discipline without explaining the underlying formal basic 
principles. 

As a special aid in connexion with this topic, a study guide has been added to the 
eLearning version of the preparatory course in informatics [10]– see section 3.2. 

As regards, first, the exact definition of “tractable” by means of “big” O notation with a 
polynomial to describe run-time complexity and, second, the definition of “computable, 
but intractable”, we advise against tackling this in secondary education. Even if 
familiarity with polynomials can be assumed, the definition of O(f(n)) for time complexity 
is hard for pupils to grasp and should not be thrust upon them.  

2. 6   Information, language, alphabet 

The representation of information by a code, and the distinction between the form of 
this representation and its significance, i.e. between syntax and semantics, are further 
basic concepts in informatics and imply the definition of information in contrast to data 
and knowledge. The concept of language is closely linked to syntax and semantics; this 
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includes programming languages, since syntax is a set of rules for constructing words, 
plus the rule that only words constructed in this way belong to the language. Semantics 
defines the meaning of these words in a language. 

Then again, language involves the concept of an alphabet, since a language consists of 
a set of words over the alphabet, while an alphabet is defined as a set of symbols drawn 
from a supply of signs. 

While presenting the concept of the syntax of a language, one is bound to raise the 
issue of how to describe syntax. This leads us on to “metalanguage”, and we recall that 
when we were discussing models we referred to a metamodel, as diagrammed in Fig. 1. 
And we also briefly referred, in our treatment of recursion, to EBNF, a concept of a 
metalanguage to describe syntax. 

It seems clear, though, that while there are no didactic snags involved in presenting the 
concepts of an alphabet, a code and formal languages in secondary education, given their 
direct relevance to practical work (programming languages), one runs up against the limits 
of what is feasible in the case of metalanguages such as EBNF. If one decides to avoid 
programming languages altogether as instances of formal languages at this stage, possible 
alternatives are: the rules for writing syntactically correct mathematical formulae or 
musical notation. The latter is particularly suitable, inasmuch as it includes semantic 
annotations (volume: piano, forte; tempo: presto, etc.)! 

2. 7   Relations 

Of course a classification of data with respect to their properties, their structure and their 
relations belongs to the concepts of long-term validity with which properties such as 
symmetry or equivalence, and thus equivalence classes, can be explained. 

The list of concepts given here is purely exemplary and anything but exhaustive; it is 
meant to encourage further discussion. However, our aim is to show that in the context of 
all-round education informatics teaching must be concerned not with technological 
artefacts, but with concepts of long-term validity, and can at the same time be organized 
to link up with other subjects (here with mathematics); this also applies in reverse. 

3   Ways of putting the new media to work 

From the various figures it is already clear to what extent the new media and eLearning 
can help to represent these “unchanging values” in informatics more effectively. At FIM 
and also at IFI eLearning has been an important issue for years now; at FIM the first steps 
in this direction were taken 20 years ago, when CBT (Computer-Based Training) courses 
(concerned with programming, operating systems etc.) were developed and offered as an 
enhancement of traditional teaching. 
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3.1   What has been developed 

From the focus on eLearning several tools have taken shape; these have been in use in 
teaching for some years now. In particular, FIM has developed the WeLearn.Framework, 
which is constantly being enlarged in scope; it currently comprises the components, such 
as an open, easy-to-use eLearning environment (WeLearn) of universal applicability; 
didactic models for use at universities, in schools and in adult education; various tools and 
courses (in particular to implement our ideas about introducing students to informatics) to 
enhance teaching in the final years of secondary education. 

Here we draw attention to [5],[8] and [10]. One study [7] has investigated how well the 
learning material and the learning environment provided were accepted. 

3.2   “Propaedeutic in Informatics” 

A key element in realizing our ideas about introducing informatics consists of specially 
prepared teaching and learning material available to students both via the WeLearn 
platform and on CD. “Propaedeutic in Informatics” is an introductory course for 
informatics students held by FIM at the JKU Linz. It regularly takes place in the winter 
semester; and involves blended learning [4] as a didactic model: here lectures and phases 
of self-organized study alternate. In the summer semester the subject matter is treated 
again, for the benefit of working students, other latecomers and interested pupils in the 
final years of secondary education (see below); in this case, though, the course consists of 
a kick-off meeting followed exclusively by distance learning. 

This course is provided not only at the JKU, but also – with a different setting – at the 
University of Zurich, where students of business informatics are familiarized with the 
topics discussed here, using the same electronic material. Parts of it have also been 
successfully incorporated into an academically oriented course at the FH Vorarlberg. 

The electronic material currently available comprises: 
• A study guide: guidance for self-organized study and an explanation of parts of the 

subject matter, presented in the form of a dialogue between youngsters, and aimed 
particularly at pupils in the final years of secondary education 

• The entire study material in the form of illustrated, partly interactive HTML pages 
• The study material in full as text, also available as printed lecture notes 
• The full set of transparencies for individual lectures 
• Applets, on the basis of which students can carry out experiments and simulations and 

thus penetrate the subject matter. The applets discussed in chapter 2 are included here. 
As regards teaching in secondary education, the following should be borne in mind: 

Parallel to the above forms, the electronic material is also issued to secondary schools, 
where it can be used for teaching informatics/in preparation for Informatics A level (see 
below). Secondary-school teachers with a teaching qualification in informatics use the 
eLearning material (available on CD) in class, or have installed their own WeLearn 
server, via which they not only make the study material available but also help their pupils 



                                                                                                 - 12 - 

with queries, by means of newsgroups. Attention should be drawn to the following rule at 
the JKU Linz: Students commencing a degree course in informatics at the JKU after 
passing Informatics A level need not attend the preparatory course in informatics, 
provided that the subject matter for A level roughly corresponds to the scope of the basic 
principles presented in this paper. 

4   Conclusion and outlook 

People often say we live in a particularly fast-moving age – and this is especially true of 
the still young discipline of informatics. If we date the breakthrough in informatics to the 
1960’s, its history goes back less than 50 years, compared with a few thousand years in 
the case of mathematics. Informatics has developed extremely rapidly; particularly in the 
software field, the number of products available goes up by leaps and bounds, while their 
half-life diminishes dramatically. It thus seems logical and necessary to concentrate on the 
basic concepts, particularly in the field of secondary education. The fact is that purely 
product-related knowledge and skills in the narrow sense are inadequate, and in some 
cases already obsolete before pupils leave school. A more systematic grasp of these 
concepts and their interrelations is therefore not just desirable, but essential. 
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