
 - 1 -

Preparatory Knowledge: Propaedeutic in Informatics

Susanne Loidl1, Jörg Mühlbacher1, Helmut Schauer2

1Institute for Information Processing and Microprocessor Technology (FIM), Johannes Kepler
University Linz, Altenbergerstr. 69, A-4040 Linz

{loidl, muehlbacher}@fim.uni.linz.ac.at
2Department of Informatics (IFI), University Zurich,

Winterthurerstr. 190, CH-8057 Zurich
schauer@ifi.unizh.ch

Abstract. In the recent past a number of concepts have achieved prominence in the
quest for basic principles of informatics with long-term validity. Particularly at
schools providing an all-round education, it makes sense – and is necessary – to
concentrate on basic concepts. The fact is that strictly product-related knowledge is
inadequate, and in some cases already obsolete before pupils leave school. A more
systematic grasp of these concepts and their interrelations is therefore not just
desirable, but essential. Some of these “unchanging values” in informatics are
briefly introduced here, and it is shown how they can be, first, made more
comprehensible by means of applets, and second, put to work in teaching right now,
in conjunction with eLearning.

1 Introduction

In the recent past a number of concepts have achieved prominence in the quest for basic
principles of informatics with long-term validity – and these should be playing an
increasing part in the curricula of schools providing an all-round education; the concepts
in question are briefly introduced and discussed here (this paper is a shortened version of
[6]; see also [3]). Examples of such concepts are: abstraction, particularly in connexion
with modelling and recursion, differing forms of notation (with a clear distinction between
syntactic and semantic aspects), or distinctions between static/dynamic and local/global
aspects also appear important. Again, special properties of relations, such as transitivity,
symmetry or reflexivity, and (say) the difference between identity and equivalence, are of
primary significance in informatics. The examples selected and given below (see also [10]
and [12]) are intended to show how and (especially) which concepts can be conveyed.

The issue of how far procedural or object-oriented programming should be included in
formal education is not discussed here. While programming is an excellent training in
algorithmic thinking, it does require a certain amount of practice. The latter counts as a
skill, and its status and scope are bound to depend on the individual type of school and the
educational goals the school pursues.

 - 2 -

2 Examples of basic concepts in informatics

Let us consider a typical task in information processing: determining the mass x of an
unknown object by means of a balance. To analyse this task, we start by constructing a
model [2] (Fig.2).

2.1 Modelling, abstraction, states

Modelling involves abstraction: certain aspects of the task are deemed to be relevant, and
are taken into account in the model, while other aspects are treated as irrelevant and thus
ignored. What is deemed to be relevant or irrelevant is of fundamental importance, and
depends on the purpose of modelling. Here we ignore the size, shape and colour of the
unknown object, for instance, and consider the balance only at rest, with three possible
results of weighing: the mass of the object in the left-hand pan can be less than, equal to
or greater than the sum of the masses of all the weights in the right-hand pan. This last
point illustrates the distinction between static and dynamic aspects of modelling and the
concept of a state which a system can be in. A system of this kind, that can be in various
defined states and that switches from one to another as a result of defined events, is called
an automaton. If every subsequent state is uniquely determined by the current state and
the event in question, the automaton is deterministic and its behaviour can be forecast.
Gambling machines are typically non-deterministic. If we consider placing a weight in a
pan as an event, our model of a balance is then a deterministic automaton. If we permit the
removal of weights previously placed, a change of state can be reversed. Changes of state
can thus be reversible or irreversible. In the case of computer applications, any action
that can be reversed by means of undo is an example of a reversible change of state.

A further important aspect is the accuracy of a weighing procedure. For instance, we
can decide in favour of a discrete model with integer weights, with which the mass of the
unknown object can be ascertained only as a whole number, while leaving it open whether
the weights are specified in grams, kilograms, etc. With the distinction between discretely
and continuously variable values we have another concept basic to informatics.

Another key aspect of modelling is deciding what is rigid about the model and what
can be altered. For example, a given set of weights could be prescribed, or the choice of
weights could be left open. Again, the balance beam could be supported at its midpoint in
all cases, or the point of support could be shiftable, to permit a free choice of leverage.
Which the parameters of a model are, and which quantities are treated as constant and
which as variable, are thus also fundamental issues. Alan Perlis [9] put this very neatly 30
years ago in the remark “One man’s constant is another man’s variable”.

One special aim in the balance example, going beyond modelling as a function of the
level of abstraction selected, is a discussion about the purpose of the resulting model. For
mathematicians the equation x*a = g*b suffices, where g is the weight used to determine x
and a and b are the beam lengths. This presupposes that the aim is to model a mechanical

 - 3 -

balance, for a weighing device in which (say) the extension of a spring as a function of the
weight applied is used to measure mass involves a different equation.

Informatics specialists using integer weights (here their order of magnitude plays a
part) need to take into account both the resulting “inaccuracy u” of the balance and the
process of the balance coming to rest; in the model they will therefore start from an
inequation |x*a - g*b| < u, or regard the equation as satisfied once the angle α is less than
an ε adapted to the purpose of weighing. So a discussion of the balance example can well
lead on in the classroom to a discussion of the difference between formal, mathematical
modelling and the sort of modelling typical of the engineering sciences. Interpreting the
findings obtained from a model will also need discussion.

The following key properties of models can thus be discussed: Completeness (in terms
of the purpose intended), freedom from contradictions (consistency), fidelity to the
original and the associated interpretation of the data provided by the model.

The metamodel for discussing modelling is shown in Fig 1.

Idea, concept

ORIGINAL

Model

Modelling
Interpretation

Real world

Fig. 1: Metamodel of the modelling process

On top of this, for informatics specialists the weighing procedure leads directly to the
concept of an algorithm.

2.2 The concept of an algorithm

No doubt about it, the concept of an algorithm is fundamental to training in informatics.
As indicated initially, we shall not comment on programming in a programming language,
although programming is naturally the special procedure for informatics specialists to
formulate algorithms. At this point we are more concerned with the concept of an
algorithm independently of the software context.

Let us consider the sequence of actions that are performed when an object is weighed
by means of a balance or a model that mirrors its behaviour. For instance, we can place
weights in the pan or remove them completely at random, until the balance is in

 - 4 -

equilibrium. Apart from the fact that this procedure takes time, it comes to an end only if
the mass x of the object can be represented as the sum of a subset of the available weights.

So let us search for a directed procedure that determines the mass x of the object in as
small a number of weighing operations as possible. This leads us to the concept of an
algorithm. If the individual steps are to be performed in a particular order, the algorithm
is called sequential. Algorithms in which the individual steps can be performed in any
order, or even simultaneously, are called parallel. For example, several weights can be
placed or removed simultaneously, and thus parallel; on the other hand the individual
weighing operations are performed sequentially. The distinction between sequential and
parallel procedures is also of great importance in informatics – we need only think of data
transfer via serial or parallel interfaces, say.

As formulated here, the examples belong to the class of iterative algorithms. Going
further, we come to the issue of recursion. Often a recursive approach yields a simple
solution to a problem. “Recursive” means “with self-reference”. Recursion occurs
whenever something refers to itself.

Traditional examples of recursion, such as the Fibonacci series: Fib(n) = Fib (n-1)+
Fib(n-2) with Fib(1) = Fib(2) = 1 or n factorial: n! = n*(n-1)! with n>1 and 1! =1, are to
be found both in informatics teaching and in mathematics teaching.

However, we are more concerned with recursive thinking, the recursive description of
observations and the use of recursion to solve problems. Here comprehensible, concrete
tasks and examples adapted to the year/level in question must be found.

An initial, straightforward example of recursion from everyday life is a tree. Let us
imagine a cross-section through a tree-trunk and examine the growth rings that have
formed around the central pith. A tree one year old has one annual ring surrounding the
pith. In the general case the cross-section of a tree-trunk consists of the outermost ring
surrounding the cross-section as it was one year earlier. And this recursive perspective
continues until the “abort criterion” is satisfied, when the pith is reached!

The following example does cause a certain surprise in class (in our experience), when
one explains a succinct way of describing a queue of people waiting ahead of a cash desk
in a supermarket: a queue Q of persons P is either empty (an empty queue) or consists of a
person P followed by a queue Q. If one points out at the same time that one ca abstract
from a “person P” to any object, and introduces a non-existent “empty” object ε in
analogy to the empty set, one gets the pure concept of a queue!

By comparison, describing a queue iteratively takes much more doing. It depends on
the educational goals the school in question pursues, and on the year/level in question,
whether one then decides to tackle the next step towards EBNF (Extended Backus Naur
Form) by means of the following example, which is also excellent training in thinking:
how do we describe how a train is put together?

To put it simply, a train consists of an engine E at the head, followed by at least one
coach C. The recursive description focuses on "how is a train put together". We can write:
train = ET and T = C | CT. For practice one can then derive train = ECC, train = ECCC,
train = ECCT etc. and recall the situation with the queue for comparison: Q= ε|P|PQ.

 - 5 -

2.3 Time complexity

Let us try to estimate the effort involved in our weighing algorithm. With a purely trial-
and-error approach the mean number of weighing operations is proportional to the number
of all possible subsets of the weights. If the number of weights is n, the number of all
subsets of these weights is equal to 2n, so the mean effort increases exponentially with n.
The reason for this unnecessarily great effort is that with a purely trial-and-error approach
weights are selected for the next operation independently of the unsuccessful previous
tries. No use is made of the information whether the object was lighter or heavier than the
sum of the weights selected for these tries! Actually, the largest weight value tested that
was lighter than x forms the lower limit, and the smallest weight value tested that was
larger than x forms the upper limit, of an interval that the value x to be found must lie
within. The strategy behind an optimized weighing algorithm can only be to halve this
interval at each weighing operation, by comparing x with the arithmetical mean of the
interval limits. If x is lighter than this mean, the latter becomes the new upper limit; if x is
heavier than this mean, the latter becomes the new lower limit. x has been found when it
equals the mean or the interval has been reduced to 1. Since each weight is placed only
once, the effort (number of operations required) is in linear proportion to n. This
optimized algorithm is thus much more efficient than trial and error. In connexion with
the time needed to perform an algorithm one speaks of time complexity, a fundamental
concept in informatics. Other key issues in connexion with the concept of an algorithm
include the question of whether an algorithm holds, whether a problem is decidable,
computable, etc. We return to these questions later.

2.4 Number systems, coding

Since the number of weighing operations required is a function of the number n of
weights, the question arises of whether the number of weights can be reduced without
restricting the range of weight values that these can represent. With a conventional set of
weights with the eight values 1, 1, 2, 5, 10, 10, 20, 50 for instance, all integer weight
values within the interval 0 to 99 can be represented. This choice of weights is obviously
inspired by the decimal number system. Interestingly, the sequence 1, 2, 5, 10, 20, etc. has
the original property that for each pair of numbers in sequence the first value is the integer
half of the second value (the sequence 1, 2, 5, 10, 20, etc. corresponds to the values
(rounded to integers) in the European Standard sequence E3, which assigns three
logarithmically roughly equidistant values to each decade). The sequence of powers of 2
1, 2, 4, 8, 16, 32, 64, etc. also adheres to this principle; with the corresponding binary set
of weights with the seven values 1, 2, 4, 8, 16, 32, 64 all integer weight values within the
interval 0 to 127 can be represented. Although a binary set of weights of this kind is not a
standard product, it is superior to the decimal set of weights.

 - 6 -

Fig. 2 shows the result of a weighing operation using a binary set of weights. The
weights placed in the pan correspond exactly to the positions of the ones in the binary
coding of x.

Fig.2. Picture of a model of a mechanical balance, as an example of modelling and binary coding
(with the weights 32, 16, 8,4,2)

2.5 Decidability, computability, NP complete problems

In connexion with questions such as whether an algorithm holds, i.e. whether we are
dealing with a decidable, computable problem, a tractable problem etc., the favourite
objection is that such questions are far too complex, go beyond schools’ educational
targets and should be reserved for the sphere of tertiary education. In this section we want
to show that simple examples that can be formulated intuitively really exist and can be
used to introduce these topics in informatics in secondary schools.

At the same time there must be a strict requirement that informatics should be taught
only by people with a relevant qualification! We accordingly take it that the discussed
topics are already known, and concentrate on the issue of satisfactory didactic treatment.

We start by considering whether everything that occurs to one can be subjected to
algorithmic treatment, and thus ultimately to programming.

The halting problem is a good example of a problem that is easy to grasp: can one
define an algorithm that decides, for any algorithm whatever (!), whether it completes
after a finite number of steps or not? Depending on what the pupils already know, this
problem is fairly easy to describe verbally: imagine someone sitting at a PC, waiting some
time for results and becoming increasingly worried about whether the program currently
running just takes a considerable time or whether a bug has crept in and the best thing
would be to abort it. This leads to the wish for a test program that can decide in advance
whether the program in question will ever complete and provide results. One can then
point out that theoretical informatics delivers the conclusion (which pupils might not have

 - 7 -

expected) that tasks do exist that are not computable, i.e. not programmable, and that the
halting problem is an example of such a task. At the same time the pupils are confronted
with a good reason why informatics investigates its own basis in theoretical informatics.

At the next stage it can be assumed that from now on only computable problems will
be examined in detail. Here they are very simple, instantly comprehensible tasks such as
sorting a finite set of numbers etc. At the same time the requirement should be to perform
such tasks in the most efficient way possible, i.e. to search for good algorithms – “good”
can be defined as minimizing run time. To illustrate what counts as a good or a less good
algorithm, let us take n = 7 integers, order them graphically, first as a linear list and then a
binary search tree, and now ask how many comparisons are needed to find out whether an
integer x is not among the 7 numbers selected; this provides a preliminary justification for
the subject “Algorithms and data structures”. If a link to mathematics is to be developed
here and the pupils have the necessary basic knowledge, the binary search resulting from
this example leads to logarithms to the base 2, log2 n. The next question is how the
number of comparisons increases if one selects 2n rather than n numbers.

At the next stage a particularly impressive example is used to make it clear that time-
consuming problems cannot be solved simply by technical progress – acquiring a faster
computer. To illustrate this phenomenon, the puzzle problem discussed in detail below
can be presented; it is easy to explain:

We consider a very small jigsaw puzzle, measuring 5 by 5 pieces. All the pieces are
different, but should yield the picture intended, if they are put together correctly.

First of all one must ask the didactically central question whether the problem is
soluble at all (computable), i.e. whether it can be solved with the 25 pieces given. If we
recall that children can perform this task before they start going to school, there does not
seem to be much of a problem. However, it is clear that a computer will need an
algorithm: before tackling the puzzle problem, we must find out whether it is computable!
A simple brute-force algorithm supplies a positive answer:
• Number the pieces from 1 to 25.
• Arrange all pieces in a sequence. We thus obtain all n! sequences of the n (= 25)

numbers.
• For each resulting sequence, check whether it solves the puzzle.
In the worst case it takes n! tries to find the correct sequence!

At this point, faithful to the principle of interdisciplinary teaching, we can introduce the
concept of permutation, and use a few examples to derive the number n! of permutations
of n numbers, or even repeat the definition n! = n(n-1)! (with a glance back to recursion).

If we omit rotations – determining the number of possibilities could get us into didactic
difficulties –and use a computer performing 1 billion checks per second, we get the
following figures: Placing: 25! = 1,55*10^25 seconds, i.e. ~ 4,9*10^11 years. That is still
15 times as long as the time that has elapsed since the original big bang! It is didactically
effective to get the students to give an intuitive estimate of the time required first.

Two lessons emerge from this: acquiring a faster computer does not help at all, and we
need to start hunting for a better (good) algorithm.

 - 8 -

Fig. 3. Puzzle problem simplified with 2x2 pieces

At this point it is up to the teacher to convince the pupils that procedures for solving the
puzzle problem within a realistic length of computing time are known, e.g. by using
structural data about the edges of the individual pieces to get to a solution.

However, a discussion about this leads straight to the issue of NP complete problems,
though we must be aware that this topic can be mentioned only verbally and in simplified
form. But even at this level it is perfectly suitable for awakening pupils’ curiosity, and
thus getting them interested in the science of informatics.

The following selection of examples has worked well in practice: one starts with the
Travelling-Salesman-Problem (visiting n towns without visiting any of them more than
once), which can be explained graphically without difficulty. It is also easy to show that
this problem is computable: the approach is to list all permutations of the n towns and to
check for each permutation whether it satisfies the criterion for a round trip. In secondary
education one then has no choice but to point out that, interestingly enough, (1) for large n
no method of solving the problem in a realistic length of time has yet been found, and (2)
theoretical informatics provides the following remarkable statements: (a) there is reason to
suspect that no algorithm exists to solve the problem, and (b) according to the state of
science it will never be possible to prove that the suspicion voiced in (a) is correct.

The next step is to remind the pupils that, if their school has a large number of classes
and teachers, the timetable they get at the beginning of the school year is unlikely to be
definitive – instead, it will be a compromise (method of successive approximation), since
the task to be performed is defined as follows: obviously no teacher can teach in two
classes simultaneously, but he or she should a continuous succession of lessons with no
gaps, and the sequence of subjects per schoolday should make sense for each class.

The remarkable thing is that the same suppositions apply in the case of this so-called
timetable problem as with the Travelling-Salesman-Problem: if n (the number of teachers)
and m (the number of classes) are very large, trial and error will not lead to a satisfactory
result. Oddly enough, though, if a good (polynomial time bounded) solution were found, it
would follow that a good solution in the same sense existed for the timetable problem, and
it would make sense to go on hunting for one. The converse also applies: if a proof of
statement (a) were found for the Traveling-Salesman-Problem, we would know that no
solution existed for the timetable problem, either. The argument also applies in the other

 - 9 -

direction: if it can be proved that no tractable solution exists for the timetable problem,
then none exists for the Travelling-Salesman-Problem.

The following selection of examples has worked extremely well in the classroom: one
presents the timetable problem verbally only, and then goes on to the so-called clique
problem as a further instance of an NP complete problem. It is very easy to illustrate this
by drawing a graph [11] with 5 nodes and 8 edges (Fig 4), with no need for previous
knowledge in mathematics.

As with the Traveling-Salesman-Problem, there is an opportunity here to return to the
concept of a model: here the nodes correspond to persons, and an edge is drawn if a
special relationship exists between two persons. A subset of nodes and edges is called a
clique if an edge exists between every pair of nodes.

 a b

dc

e

Fig. 4. Graph with 5 nodes and a clique of four defined by a, b, c, d

In our experience classwork is enhanced by a discussion of this issue, together with a
reference to the fact that more than a thousand problems equivalent to the two presented
here are known [1]. Here Informatics teachers are confronted with the same didactic
problems as their colleagues in the natural sciences, who are obliged to draw attention in
their teaching to any number of unresolved issues. In our view it is didactically worth-
while to point out the limits of a discipline without explaining the underlying formal basic
principles.

As a special aid in connexion with this topic, a study guide has been added to the
eLearning version of the preparatory course in informatics [10]– see section 3.2.

As regards, first, the exact definition of “tractable” by means of “big” O notation with a
polynomial to describe run-time complexity and, second, the definition of “computable,
but intractable”, we advise against tackling this in secondary education. Even if
familiarity with polynomials can be assumed, the definition of O(f(n)) for time complexity
is hard for pupils to grasp and should not be thrust upon them.

2. 6 Information, language, alphabet

The representation of information by a code, and the distinction between the form of
this representation and its significance, i.e. between syntax and semantics, are further
basic concepts in informatics and imply the definition of information in contrast to data
and knowledge. The concept of language is closely linked to syntax and semantics; this

 - 10 -

includes programming languages, since syntax is a set of rules for constructing words,
plus the rule that only words constructed in this way belong to the language. Semantics
defines the meaning of these words in a language.

Then again, language involves the concept of an alphabet, since a language consists of
a set of words over the alphabet, while an alphabet is defined as a set of symbols drawn
from a supply of signs.

While presenting the concept of the syntax of a language, one is bound to raise the
issue of how to describe syntax. This leads us on to “metalanguage”, and we recall that
when we were discussing models we referred to a metamodel, as diagrammed in Fig. 1.
And we also briefly referred, in our treatment of recursion, to EBNF, a concept of a
metalanguage to describe syntax.

It seems clear, though, that while there are no didactic snags involved in presenting the
concepts of an alphabet, a code and formal languages in secondary education, given their
direct relevance to practical work (programming languages), one runs up against the limits
of what is feasible in the case of metalanguages such as EBNF. If one decides to avoid
programming languages altogether as instances of formal languages at this stage, possible
alternatives are: the rules for writing syntactically correct mathematical formulae or
musical notation. The latter is particularly suitable, inasmuch as it includes semantic
annotations (volume: piano, forte; tempo: presto, etc.)!

2. 7 Relations

Of course a classification of data with respect to their properties, their structure and their
relations belongs to the concepts of long-term validity with which properties such as
symmetry or equivalence, and thus equivalence classes, can be explained.

The list of concepts given here is purely exemplary and anything but exhaustive; it is
meant to encourage further discussion. However, our aim is to show that in the context of
all-round education informatics teaching must be concerned not with technological
artefacts, but with concepts of long-term validity, and can at the same time be organized
to link up with other subjects (here with mathematics); this also applies in reverse.

3 Ways of putting the new media to work

From the various figures it is already clear to what extent the new media and eLearning
can help to represent these “unchanging values” in informatics more effectively. At FIM
and also at IFI eLearning has been an important issue for years now; at FIM the first steps
in this direction were taken 20 years ago, when CBT (Computer-Based Training) courses
(concerned with programming, operating systems etc.) were developed and offered as an
enhancement of traditional teaching.

 - 11 -

3.1 What has been developed

From the focus on eLearning several tools have taken shape; these have been in use in
teaching for some years now. In particular, FIM has developed the WeLearn.Framework,
which is constantly being enlarged in scope; it currently comprises the components, such
as an open, easy-to-use eLearning environment (WeLearn) of universal applicability;
didactic models for use at universities, in schools and in adult education; various tools and
courses (in particular to implement our ideas about introducing students to informatics) to
enhance teaching in the final years of secondary education.

Here we draw attention to [5],[8] and [10]. One study [7] has investigated how well the
learning material and the learning environment provided were accepted.

3.2 “Propaedeutic in Informatics”

A key element in realizing our ideas about introducing informatics consists of specially
prepared teaching and learning material available to students both via the WeLearn
platform and on CD. “Propaedeutic in Informatics” is an introductory course for
informatics students held by FIM at the JKU Linz. It regularly takes place in the winter
semester; and involves blended learning [4] as a didactic model: here lectures and phases
of self-organized study alternate. In the summer semester the subject matter is treated
again, for the benefit of working students, other latecomers and interested pupils in the
final years of secondary education (see below); in this case, though, the course consists of
a kick-off meeting followed exclusively by distance learning.

This course is provided not only at the JKU, but also – with a different setting – at the
University of Zurich, where students of business informatics are familiarized with the
topics discussed here, using the same electronic material. Parts of it have also been
successfully incorporated into an academically oriented course at the FH Vorarlberg.

The electronic material currently available comprises:
• A study guide: guidance for self-organized study and an explanation of parts of the

subject matter, presented in the form of a dialogue between youngsters, and aimed
particularly at pupils in the final years of secondary education

• The entire study material in the form of illustrated, partly interactive HTML pages
• The study material in full as text, also available as printed lecture notes
• The full set of transparencies for individual lectures
• Applets, on the basis of which students can carry out experiments and simulations and

thus penetrate the subject matter. The applets discussed in chapter 2 are included here.
As regards teaching in secondary education, the following should be borne in mind:

Parallel to the above forms, the electronic material is also issued to secondary schools,
where it can be used for teaching informatics/in preparation for Informatics A level (see
below). Secondary-school teachers with a teaching qualification in informatics use the
eLearning material (available on CD) in class, or have installed their own WeLearn
server, via which they not only make the study material available but also help their pupils

 - 12 -

with queries, by means of newsgroups. Attention should be drawn to the following rule at
the JKU Linz: Students commencing a degree course in informatics at the JKU after
passing Informatics A level need not attend the preparatory course in informatics,
provided that the subject matter for A level roughly corresponds to the scope of the basic
principles presented in this paper.

4 Conclusion and outlook

People often say we live in a particularly fast-moving age – and this is especially true of
the still young discipline of informatics. If we date the breakthrough in informatics to the
1960’s, its history goes back less than 50 years, compared with a few thousand years in
the case of mathematics. Informatics has developed extremely rapidly; particularly in the
software field, the number of products available goes up by leaps and bounds, while their
half-life diminishes dramatically. It thus seems logical and necessary to concentrate on the
basic concepts, particularly in the field of secondary education. The fact is that purely
product-related knowledge and skills in the narrow sense are inadequate, and in some
cases already obsolete before pupils leave school. A more systematic grasp of these
concepts and their interrelations is therefore not just desirable, but essential.

Literature

1. Garey M.R., Johnson.D.S.: Computers and Intractability: A guide to the Theory of NP-
Completeness, W.H. Freeman, San Francisco, 1979
2. Hubwieser P.: Modellierung in der Schulinformatik. LOG IN 19, Heft 1. S.24-29, 1999
3. Informatik als Grundbildung; Informatik Spektrum, Band 27, Heft 2-4, 2004
4. Loidl, S.: The Beautiful but challenging World of Elearning. In Auer, M. E. and Auer, U., editors,
International Conference on Interactive Computer Aided Learning, The Future of Learning, Villach
Austria, Kassel university press 2004, ISBN 3-89958-089-3
5. Loidl, S., Sonntag, M.: Using metadata in creating offline views of e-learning content; in: Auer,
M., Auer, U. (Ed.): ICL; Learning Objects and Reusability of Content, Kassel university press 2003
6. Loidl, S. Mühlbacher, J, Schauer, H.: Preparatory Knowledge: Propaedeutic in Informatics,
Propädeutisches Informatikwissen, http://welearn-lavista.fim.uni-linz.ac.at/ (english/german), 2004
7. Mühlbacher, J., Mühlbacher, S.C., Loidl, S.: Learning Arrangements and Settings for Distance
Teaching/Coaching/Learning: Best Practice Report. In Hofer, C., Chroust, G. (Ed.) IDIMT – 2002
8. Paramythis, A., Loidl, S.: Adaptive Learning Environments and e-Learning Standards; in: Roy
Williams (Eds.): Proceedings of the 2nd European Conference on e-Learning, Glasgow, 2003
9. Perlis, A.J.: Epigrams on programming. SIGPLAN Notices, 17 (9),1982
10.Propädeutikum aus Informatik, http://welearn.fim.uni-linz.ac.at, 2004
11. Rosen, K.H.: Discrete Mathmatics and its Applications, 5th Edition, McGraw-Hill, 2003
12. Schauer, H.: Langlebige Standards in einer schnelllebigen Welt, CD Austria, 5/2004

