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Abstract

As adaptivity in e-learning systems has become
popular during the past years, new challenges
and potentials have emerged in the field of adap-
tive systems. Adaptation, traditionally focused
on the personalization of content, is now also re-
quired for learner communication and coopera-
tion. With the increasing complexity of adap-
tation tasks, the need for automated processing
of usage data, information extraction and pattern
detection grows. We present learner activity min-
ing and classification as a basis for adaptation in
educational systems and discuss intelligent tech-
niques in this context. Based on real usage data,
we present the results of experiments comparing
the behaviour and performance of different clas-
sification algorithms.

1 Introduction

This paper discusses how the goal of intelligent adaptive e-
learning systems can be approached with the help of learner
activity classification. Intelligent adaptive e-learning com-
bines topics, issues and characteristics of various fields: e-
learning, adaptivity and Computational Intelligence (CI).

E-learning environments have become fairly popular, as
learning scenarios have been radically developing towards
e-learning and blended learning during the past years. Al-
most every educational institution applies e-learning to a
certain extent. Related systems usually include different
kinds of facilities: tools accompanying learning content
like exercises or assignments; and, communication tools
like chat, fora or private messaging.

Adaptive systems offer various kinds of adaptation
and personalization, most of which restricted to content
(e.g. personalization of learning paths, recommendations
of topics, and in some cases also a personalized view of the
content). Mostly, adaptive e-learning systems have rather
limited support for communication facilities and do not ex-
tend adaptation efforts to them. Recent attention to adap-
tive support for collaboration (see e.g. [Soller, 2007]) has
been concentrating on research systems and has not been
fully exposed to a large community as of yet.

Intelligent systems have been in the focus of attention
for a longer period of time. Research combines princi-
ples like evolution, learning, in some sense also adapta-
tion, fuzzy logic, etc. Intelligent systems are designed to
simulate human reasoning and learning, reducing the need
for human intervention in the application process. CI is
promising for the further evolution of adaptive systems, es-

pecially in the context of e-learning where different learn-
ing theories [Lefrancois, 2006], [Prince and Felder, 2006],
learning styles [Felder and Brent, 2005], and social pro-
cesses [Vathanophas er al., 2008] need to be addressed. As
pointed out in [Brusilovsky and Peylo, 2003], educational
systems are traditionally either intelligent or adaptive, list-
ing prominent systems (like AHA! [De Bra and Calvi,
1998]) as adaptive but non-intelligent, and other ones as
intelligent but limited regarding adaptivity.

In this paper, we focus on intelligent adaptive e-learning
systems. Our approach relies on mining and processing of
usage data. Usually, although activity data is monitored by
the system, high levels of human intervention are required
to process and use such data to achieve high-quality adapta-
tion. We introduce an approach that is based on intelligent
techniques for the classification of user activity data in e-
learning environments and aims to largely supplement or
even replace human efforts in this context.

The rest of this paper is structured as follows. Section 2
describes the state of the art and lists common problems in
prevailing adaptive e-learning systems. Section 3 explains
our classification strategy and how it can address the afore-
mentioned issues. Section 4 compares statistical and CI-
based approaches in the context of classification. Section
5 describes related experiments that were run to measure
the performance of intelligent classifiers on learner activity
data tasks. We summarize related work and give an outlook
on future work in Sections 6 and 7.

2 The Adaptive E-Learning System - Two
Pieces or One Whole?

Most e-learning systems consist of various kinds of tools
which can be roughly categorized as learning facilities
and facilities supporting communication/cooperation pro-
cesses. In non-adaptive systems, tools are naturally inde-
pendent. In adaptive ones, tools may require communica-
tion with other tools and/or a central service (e.g., an adap-
tation engine). In theory, this would be the basis for an
integrated environment using knowledge gained in any of
its facilities for system-wide adaptations.

Nevertheless, adaptive systems in the field of e-learning
have been concentrating until now on some specific kinds
of adaptation. In general, we can distinguish between
adaptive navigation and adaptive presentation support
[Brusilovsky, 1996]. These techniques are based on a user’s
interaction history within the system or additional infor-
mation provided explicitly. They are well established, but,
when it comes to e-learning, they have been primarily used
to adapt content only.



Adaptation is often based on knowledge a system ob-
tained from a user’s interaction history, and that is then uti-
lized to predict future activities which in turn become the
basis for recommendations. At the moment, this informa-
tion is typically not shared between different components
of a system. For instance, a user’s previous behaviour in
the content facilities of a platform is only used to further
adapt the content to the user’s needs but not considered for
guidance in communication tools. Therefore, adaptive e-
learning systems are often not perceived as fully integrated,
but rather an assembly of two independent pieces of a puz-
zle. A new approach would be to establish a shared pool of
adaptation knowledge which is contributed to, and queried
by all of a system’s components.

3 Learner Activity Classification

Our general idea aims at introducing new kinds of adapta-
tion in e-learning systems, bridging the common gap be-
tween content and communication facilities. Here, we ap-
proach this aim using activity mining and classification.

3.1 Activity Data

If we want to offer recommendations related to commu-
nication and learning content, we need to infer a user’s
level of interest in specific topics. Therefore, we examine
a user’s history on the system and use previous interests
to predict future ones. We can shortly outline the concept
as follows. First, we collect a user’s passive (’consump-
tion”) activities. We will further also refer to this kind of
activities as read activities”. Reading an element (e.g. an
entry in a forum or a document) denotes a user’s interest. If
a user was interested in one specific element, we can find
similar ones and assume that these are also interesting for
this user. Given this kind of “knowledge”, we can try to
infer user interest for as many events as possible which can
then become the basis for adaptation. This general idea can
be put into practice by several different implementation ap-
proaches (see also Section 4) which provide different qual-
ity and granularity of results. All of them have in common
that the primary objective is to classify data continuously
produced by users’ activities on a platform.

3.2 Classification Levels

We distinguish between two different levels of classifica-
tion: classification of individual user activities, and classi-
fication of user activities considered as an interrelated con-
struct. The first kind, as opposed to the second one, treats
activities as if they were independent. The second kind is
promising for modeling dependencies between users, tools,
etc. but it requires a higher amount of reference informa-
tion. We concentrate on the first kind here, which can par-
tially be done before the system has collected enough in-
formation to generate reference constructs. It does not con-
sider the time context of, and relations between, activities
but uses activity items as independent of each other. Nev-
ertheless, in most cases (depending on the learning tech-
nique) the system must still be provided a certain amount
of reference data before classification of fresh data can be
performed. This means that, in this case, no long period
of training is necessary as long as some representative data
sets are available. Therefore, the only prerequisite for this
kind of classification is a certain period of data collection
(depending on users’ level of activity). Classification of in-
dependent activity items can be useful at the level of both
individual users and groups (see also Section 7).

3.3 Application in Adaptive E-Learning Systems

First of all, we want to provide adaptation which closes the
gap between learning facilities and those supporting com-
munication and collaboration. This can be done by extract-
ing information of all facilities, feeding it to one shared
model which is then again queried by all facilities. Regard-
ing the first level of classifictaion, we aim at recommending
both communication threads and learning content items,
based on a user’s previous interests. For the second level of
classification, our main application idea is closely related to
group work. We want to be able to determine users’ collab-
oration behaviour and their roles in group structures in or-
der to recommend group constellations the system predicts
successful on the one hand and interesting communication
partners for individual users on the other.

4 Statistical vs. Intelligent Approaches

In order to classify independent user activity items we have
to find an approach that is capable of computing realistic
values for every user’s interest in an event. There are sev-
eral ways of approaching this, basically statistical and “’in-
telligent” ones. The main characteristic of intelligence in
this context is that the respective approaches are capable of
learning, which is not possible for statistical ones. The sta-
tistical approach will work for some scenarios (in [Jung et
al., 2005], the authors introduce a statistical model for user
preferences which performs well) but it can turn out to be
too inflexible in others.

The aim is to not only determine interest, but also, on a
higher level, provide recommendations of specific commu-
nication threads, learning material, etc. Knowledge about
users gained in any of the platform’s areas (communication
or learning content) should be combined for the computa-
tion of interest levels. And finally, the system should of
course continuously adapt to users’ behaviour, i.e. all new
actions must be considered. The following sections provide
an introduction to each of the two approaches.

4.1 A Statistical Approach

This approach uses a statistical formula to compute a user’s
interest level for an item. The formula considers past user
interest (indicated e.g. by read activities) to compute statis-
tics which then becomes the basis for further prediction.
First, the distribution of a user’s read activities among tools
in a site has to be computed. Basically, standard statisti-
cal metrics like mean, standard deviation, and variance are
used to determine probability/density distributions. Given
only the mean, we would face the problem of statistical
outliers distorting the overall picture. This can be partially
solved by considering the standard deviation (or variance).
Given standard deviation, a tool’s deviation o7, from this
value can be used to identify significant (in both directions)
tool results. Consider the following simple example using
5 hypothetical tools and 25 read activities produced by 1
user within our time frame, distributed among the tools as
cp =10, co = 2,¢c3 = 4, ¢y = 3, c5 = 6. Consider, we
want to compute this user’s interest value for every tool.
This would result in the following:
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In a next step, a tool-specific metric can be determined as
or, =|cz — T —0o

which will mark all resulting o, > 0 as significant (in
both directions). In our example o7, and o, will be pos-
itive values, marking T} as significantly high (as ¢; > 7)
and T as significantly low (as co < Z) regarding interest.
This (simplified) approach can be improved, e.g. by adding
weights, and in theory this improved version might be suf-
ficient, but it still carries some non-obvious risks. For in-
stance, a statistical formula, even if it contains variable ele-
ments, is inflexible, meaning that the core does not change
for different scenarios. We have to be aware that users may
behave differently in their interest across sites, tools or re-
sources. There can be courses where communication plays
a more important role than educational content, and users
might differ in their communication and learning behaviour
in several ways. Furthermore, we may want to weigh read
activities differently based on the time when they occurred
(e.g. if the timespan between the related “active” create
event and the read activity is relevant).

In order to consider all of these factors, the formula
might have to look different for different combinations of
users, tools, courses and resources. This is hardly possible,
and even if it was, it would still lack the ability to continu-
ously and individually adapt to a user’s behaviour.

4.2 A Flexible, Self-Learning Approach

In order to overcome issues and problems raised by purely
statistical approaches, classification techniques of the field
of machine learning can be used. These techniques do
not make as many semantic assumptions as statistical ap-
proaches do, but learn from the user. Although the classi-
fiers we used for our experiments (see a detailed descrip-
tion in Section 5) differ drastically in their way of model
building, they have in common that their models consider
all features we provide as input. In our case, 8 attributes
are available, 6 of which (the anonymized user id, event
id, tool id, site id, related resource and the interest class)
are taken into account by the classifiers. The remaining
two, index and timestamp, were removed by a filter in pre-
processing because we do not consider temporal relations
for this kind of classification yet. This means, all solu-
tions we get dynamically adapt to all feature values of new
input events. Thus, not only the site where the event oc-
curred is considered, but also e.g. its creator and the tool
where it originated. To further extend flexibility and per-
sonalization, the classifier then computes an event’s inter-
est value for every user individually. This implies that the
approach works separately for every user. As the classifier
is continuously fed with new information, it is able to learn
and adapt its behaviour during the process. As each of the
classifiers builds a model (e.g. a decision tree, a Bayesian
Network, or a rule base) which can be queried, it is also
possible to extract semantic information from it which will
offer additional knowledge about users, behaviours, and the
whole construct of content, courses and tools. In addition,
dependencies and correlations between attributes could be
found which might become important for further event de-
sign. Especially the opportunity to gain semantic informa-
tion from the model built by a classifier is a significant ad-
vantage compared to a statistical approach, as the latter is
limited to strict one-way information exchange, i.e. no in-
formation can be extracted from statistics in a way it can
go back into and enhance the user model.

5 Experiments

This section describes experiments designed to test our
classification approach on real user activity data, compare
the performance of different techniques for different aims,
and show how classification can improve activity-based
adaptation. The experiments aim at producing a group-
based interest model. In general, we can distinguish be-
tween user- and group models. A user model is created for
every user individually and only fed with information about
that specific user. A group model pictures group behaviour,
i.e. activities of multiple users which were clustered into
groups (e.g. , based on similarities, or a given course con-
text). Our system is fed with all users’ activities and tries
to classify new events as interesting or non-interesting for
every user individually, but uses this knowledge to build a
shared model. This model will be referred to in later stages
of our work to offer group-based adaptations. We can ben-
efit from working with group models in several ways. For
example, to avoid the “cold start” problem [H66k, 1997], a
group model can become the default for a new course par-
ticipant. The system then does not have to create new mod-
els from scratch any more but can build upon one based on
the interest and activities of a group working on the same
content and tasks.

5.1 Setup

Our experiments outline an extension to the behaviour of
the “recent activity tool” ! which is an add-on to the e-
learning platform Sakai [Sakai, 2009]. This tool provides
an overview of recent activities in various Sakai tools. It
includes a personalized view marking activities as interest-
ing for the current user, and a personalized RSS feed. The
tool adapts at the user-level only at the moment. Adapta-
tion is not done before the system has received a sufficient
amount of information about the user. Recommendations
are based on a statistical model similar to the one described
before. Thus, the adaptive part of the recent activity tool re-
lies on assumptions and generalizations to a certain extent.
As already described, CI techniques can improve the per-
formance, flexibility, and accuracy of adaptive components
because they learn from the user instead. Our experiments
use these techniques to replace the statistical model. Real
usage data is provided by a monitoring extension to Sakai.
The instances are independent and handled as random set
elements for the first run of experiments. Yet, they contain
information which can help to create relations in further
post-processing.

The overall data set contains 4967 instances with 6 fea-
tures as described in Section 4.2. String attributes were
normalized to nominal ones, meaning that before data went
into the classifiers, a filter collected all possible values for
a feature (for instance, all tools where activity was mon-
itored). The resulting finite set of values then allows for
better computation of probabilities.

The experiments were run on data of one specific course
about the Unified Modeling Language, with 31 participants
in total. Data was collected over a period of several months
and went through some preprocessing during which irrel-
evant or pseudo-data (e.g. produced by test users) was re-
moved. During these steps anonymization was also per-
formed by encoding user IDs with a one-way hashing algo-
rithm.

!The recent activity tool was developed in the context of the
Adaptive Learning Spaces (ALS) project. For further information,
please refer to http://www.als-project.org



5.2 Process and Technologies

Experiments were carried out iteratively with training, test-
ing and evaluation steps repeated for different classifica-
tion algorithms. Validation was performed in two different
ways — by 10-fold cross-validation, and by specifically split
training- and test sets. A comparison of the algorithms’
results concludes the experiments and becomes the basis
for classifier rating and final selection. We used the Weka
[Witten and Eibe, 2005] machine learning software to run
the experiments. For a more detailed description of the al-
gorithms please refer to Weka documentation and tutorials.
The following paragraphs describe the configuration of the
classification algorithms which were used.

Naive Bayes: The naive Bayesian approach builds a
simple network with one parent node (the class label, in our
case the interest value). There are no important additional
configuration alternatives.

Bayesian Network: The network applied for the exper-
iments uses the SimpleEstimator approach for finding the
conditional probability tables of the net. The TAN algo-
rithm (determining the maximum weight spanning tree and
returning a Bayesian Network augmented with a tree) is
applied for searching network structures.

SMO (Sequential Minimal Optimization): SMO is
used to train a support vector machine. We used stan-
dard settings with relatively low complexity (the higher, the
fewer wrong classifications are accepted) and a polynomial
kernel K (z,y) =< x,y >P with exponent p = 2.

Multilayer Perceptron (Backpropagation Neural
Network, later referred to as NN): We used a network with
a = attributes + classes hidden layers of sigmoid nodes,
a learning rate of 0.7, momentum of 0.2 and 500 learning
cycles. Please note that run-time filters like nominal to bi-
nary slow down the process significantly.

IBk (Nearest Neighbour): We used £ = 10 and the
LinearNearestNeighbourSearch (brute force) algorithm for
nearest neighbour search and cross-validation.

JRip (Rule-based): This algorithm implements a
propositional rule learner and provides a set of rules which
are then used as a basis for classification decisions. Our
experiments use 10 folds (for pruning and growing rules)
and 6 optimization runs.

J48 (Tree-based): This algorithm, building a decision
tree, uses a confidence factor (small values mean more
pruning) of 0.25 and reduced error pruning here.

RandomTree: This algorithm, building a decision tree,
uses a KValue (i.e. the number of randomly chosen at-
tributes) of 1 and an unlimited tree depth.

5.3 Results

The results of the described base experiment are listed in
Table 1 and Figure 1. The base experiment uses 10-fold
cross-validation to get a first impression of the classifiers’
performance. Subsequently, more specific experiments
were conducted in order to find out how their performance
changes over time. The experiments were conducted on a
2,98 GHz dual-core machine with 4 GB RAM, running 64-
bit Windows XP. As a first experimental step, we compared
the performance of different classification techniques to the
performance of a statistical approach as described in Sec-
tion 4.1. The percentage of correctly classified instances
ranges from 96.63 (Naive Bayes) to 98.41 (SMO) for the
machine learning techniques. The statistical model obtains
aresult of 68.94%. In the following, we do a more detailed

Table 1: This table lists classification results of various al-
gorithms on the overall data set (10-fold cross-validation).
The NN classifier is listed twice, once with filters. The ta-
ble further displays the percentage of correctly classified
positive instances, the True Positive rate for class 1, the
Root Mean Squared Error, the time taken to build the model
T, and the time taken for the overall process 7.

[ Class. | Corr. [ TP [RMSE [ T.n (s) | T (hym,s) |
NB 47.6% | 76.1% | 0.1550 | < 0.01s | < 1s
BN 70.0% | 72.3% | 0.1112 | < 0.01s | < 1s
SMO 70.4% | 84.5% | 0.1261 | 105.39s | 16mb4s
NN | 70.3% | 12.3% | 0.1668 | 17.22s 21h16m8s
NN 56.0% | 60.6% | 0.1366 | 17.16s 2mbls
1Bk 70.4% | 84.5% | 0.1092 | < 0.01s | 5s
JRip 68.0% | 85.2% | 0.1143 | 0.63s Ts
J48 70.7% | 74.8% | 0.1137 | < 0.01s | <1s
RT 70.4% | 84.5% | 0.1092 | 0.13s <ls

comparison of the classifiers listed in Section 5.2. The per-
centage of correctly classified instances from now on refers
to “’positive” instances (i.e. the instances with an interest
value of 1) only. The overall results, containing “negative”
instances also are less expressive, as the number of these
instances is higher and their classification much easier (for
the CI techniques only). This leads to a very similar overall
performance of the classifiers and subsequently to a mis-
leading picture and potentially wrong conclusions. The re-
sults show that the classification task itself can be handled
relatively well by different classification techniques. As
there is only little discrepancy regarding the number of cor-
rectly classified instances, process time becomes an even
more important criterion. After running experiments with
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Figure 1: This plots show how the performance of classi-
fiers increases with an increasing amount of training data.

cross-validation, which provided a first general impression
on the performance of machine learning techniques on our
data, we modeled a similar experimental setup in order to
measure how fast the classifiers learn from given input data.
The experiments were run on split data (training set and test
set). As we are building a group model, the percentage split



for the data set is based on users, not resources. This means
that the training set does not contain a certain percentage
of the data but all data of a certain percentage of users. We
ran the experiments several times with the events for 15%,
25%, 50%, and 75% of the users as training and remain-
der as test set. As depicted in the plots (Figure 1), the re-
sults show three different trends. Bayesian Network, Ran-
domTree and J48 (the last two both tree-based approaches)
show good classification performance right from the begin-
ning and relatively steady behaviour. SMO could also be
added to this “cluster” of algorithms, regarding its effec-
tiveness. Next, we can see a second cluster containing IBk
and JRip. These algorithms show good results but not right
from the beginning. However, their plateau is at about the
same place as the first cluster. The third trend can be seen
in MultilayerPerceptron (NN) and Naive Bayes which are
steady in their performance but don’t provide promising re-
sults. This means that for subsequent work we will not
consider the classifiers of the third cluster. 1Bk and JRip
will be further explored, but the most likely candidates are
those in the first cluster, where the favourites are Bayesian
Network and the tree-based classifiers. SMO, compared to
the other classifiers, is relatively slow, with the time needed
to build a model increasing at least linearly as the training
set grows. In general, a linear algorithm is reasonable for
run-time employment. In our case, comparing SMO to the
faster classifiers, the discrepancy in computation complex-
ity (< 0.01 seconds as opposed to 1.15 seconds for building
the model for the smallest training set) is significant enough
to be an exclusion criterion. SMO will be kept for further
observation, but does not remain a first choice candidate.
Another important criterion for the selection of a clas-
sifier is in our case the possibility of information extrac-
tion, given a model. Descriptive classifiers like Bayesian
Networks, rule- or tree-based approaches enable very sim-
ple extraction of semantic information, whereas function-
based ones like neural networks or support vector machines
tend to behave like blackboxes. Generally we can conclude
that learning classifiers perform well on our data. There-
fore, also considering the issues and potential problems and
limitations of statistical approaches (see Section 4), these
techniques are highly promising for our scenario and all
subsequent ones operating on data of a similar structure.

6 Related Work

Our general approach is based on a combination of the
fields of adaptive systems, e-learning and CI. Thus, we do
not only have to consider challenges of the particular areas
but also the potentials lying in the aggregation. This is not
the first attempt pointing in that direction. For instance, our
work relates to recent research issues in the field of adaptive
collaboration support as described in [Paramythis, 2008].
In general, the matter of distributed collaboration entails
some challenges. Their specific effects on the development
process regarding adaptive support was e.g. elaborated in
[Soller, 2007] where the author also describes relevant so-
cial processes. Additionally, personalization in distributed
environments is further discussed in [Dolog et al., 2004],
where the authors introduce recent projects and also ad-
dress personalization on the Semantic Web.

Regarding Machine Learning (ML), we can refer to re-
search described in [Webb et al., 2001], where the authors
particularly treat student modeling and explicate specific
requirements of this area. A concise overview on data min-
ing techniques from the perspective of adaptive systems is

given in [Voges and Pope, 2000].

Regarding the context of data mining in education, we
find particularly interesting results in [Romero er al., 2008],
where the authors compare different algorithms to classify
students. They also describe experiments aiming at predict-
ing students’ final grades based on usage data. The selected
set of algorithms is partly congruent to ours, but operates
at the user level instead of the activity level as in our ap-
proach, i.e. their data set contains items already aggregat-
ing information about user activities. This approach seems
perfectly sound at the first glance, but it is less flexible as
only a specific number of information elements can be con-
sidered which makes it hard to add further semantics later
if necessary. As both approaches use semantically similar
data but for different objectives and on a different level, it
is very interesting to compare the results. Some trends can
be found in both reports, whereas in other areas there is
relatively high discrepancy. For example, the authors argue
against e.g. Neural Network and Nearest Neighbour classi-
fiers in their scenario in particular and data mining in gen-
eral, due to the lack of comprehensibility. As these classi-
fiers are in cluster two and three in our evaluation, we agree
with them here, although the Neural Network achieved a
better classification result on their data. Our second clas-
sifier in cluster three, Naive Bayes was not included in
their study. Tree-based classifiers performed very well in
both cases. Unfortunately, the performance of Bayesian
Networks cannot be compared because it was not included
in the evaluation of Romero et al. However, they did an
additional step of comparing the classifiers’ performances
on ”plain” data to those after preprocessing and identified
what classifiers can actually be improved by preprocessing,
which we will consider during our next steps.

Further related work can be found in [Oakley er al.,
2004], where the author describes data-driven modeling of
students’ interactions, aiming at predicting students’ abil-
ity to correctly answer a question and whether a student’s
interaction is beneficial in terms of learning. The experi-
ments focus on Bayesian Network models. Additionally,
we can also find interesting information in research on sta-
tistical approaches in machine learning, which is relevant
for our approach because it identifies scenarios where sta-
tistical approaches work particularly well. Find a descrip-
tion of a statistical rule learning approach in [Riickert and
Kramer, 2006]. In [Jung et al., 2005], a detailed compari-
son of statistical and non-statistical approaches is given.

7 Conclusions and Future Work

As the experiments have shown, flexible classification ap-
proaches perform well on user activity data as produced
on a learning platform like Sakai. The results can poten-
tially be improved by combining (complementary) classi-
fiers (using ensemble methods like bagging, boosting or
stacking). The solution is not restricted to Sakai or even the
recent activity tool, as data of any learning environment can
easily be converted to a similar format. The intelligent clas-
sification approach is extendable in several ways. First, it
can be applied on different levels, building models for indi-
vidual users, groups or other clusters (e.g. any specifically
interesting combination of features). Second, as described
in Section 3, classification is not restricted to individually
handled events, it can also be applied at the level of activity
paths. These paths, representing a sequence of (related) in-
stances, are a way of modeling relations between activities
or any of their features. As a next step we will concentrate



on modeling users and their collaboration behaviour with
this approach. Several issues have to be considered:

Some factors in the path building process are strongly
dependent on specific features. For instance, the timespan
between the occurrence of subsequent events must be han-
dled differently for various tools. In a synchronous com-
munication tool, like a chat, an event which occurs hours
after another one is more likely to be independent than in
an asynchronous communication tool, like a forum, where
the context is more important that time. In order to avoid
wrong conclusions due to similar conditions, we have to set
up a knowledge base containing factors and their respective
values which may vary for different tools, etc.

What are the concrete questions we want to be able
to answer given the path model? Before any design-
specific decisions can be made, we have to define what
should be modeled, like e.g. the level of communication
between users or the context-based relations between com-
munication and learning content tools.

What kind of data representation is best suitable for
the model? Given information about semantics of the
model and requirements for the information which should
be extracted from it, adequate representation must be cho-
sen. There are several ways of modeling entities, relations
and weights, such as graphs. Implementing and evaluating
an approach based on a combination of matrices, graphs
and a set of new metrics (measuring e.g. the degree of so-
called parental relationships between users or other fea-
tures) will be the next step in the process. The aims in-
clude modeling collaboration, defining metrics indicating
”success”, classifying the outcome as successful or not and,
during the process, finding out what leads to successful col-
laboration and what has adverse effects.

In synthesis, we can state that our Cl-based classifica-
tion techniques are promising in several ways. Not only
are they capable of replacing strongly assumption-based
approaches and thus improve the performance and flexi-
bility of adaptive features; in addition, we can potentially
overcome the problem of a gap between different kinds of
facilities in adaptive e-learning systems as introduced in the
first sections. We consider data produced in practically any
different kinds of tools, and, once the model is integrated
in the learning environment, it can also be queried from all
the system’s components. Thus, knowledge about a student
gained in one area can be used for adaptations in others.
Moreover, using our extended classification approach op-
erating on interrelated data, we can easily model relations
between tools and other features which can become the ba-
sis for new kinds of adaptation and recommendations.
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