
Concepts, aims, and problems which

modelling in OR and OOP have in common
Jörg R. Mühlbacher

Institute for Information Processing and Microprocessor

Technology (FIM), University of Linz, Austria
0. Preface
This paper is dedicated to Paul Stähly on the occasion of his 65th birthday. It reflects many private discussions between us, in particular, on modelling and the use of an appropriate programming language. Paul Stähly has always been a dedicated user of SIMULA 67, already in those days when object oriented programming (OOP) was not invented yet. He has early noticed the power of object orientation in his research area (OR). The authors of SIMULA 67 introduced classes as templates which define data structures and algorithms to be included in a particular instance (of a model). In addition, classes may be defined in terms of each other.

Paul Stähly has also been and still is aware of the problem to which extent the results of a calculation process can be interpreted semantically correct, if the model is used for a different application area as it was designed for originally. In component oriented software development this is referred to as “domain dependency”, and there is a demand for a “contract” which may be understood as additional semantic information for the user of a model and its implementation.
1. Aims of modelling

Let us briefly recall a couple of major reasons why modelling is essential. In this context we have in mind applied disciplines as operations research and software development. In order to focus on central aspects, we use examples which are well known and used in such areas.

Abstraction to master complexity

Talking about models we have to restrict to abstract ones in which physical situations or alike are described in symbolic form, and in this case we often make use of the language of mathematics (mathematical expressions, systems of equations, graphs, ...) or - with respect to computer science (CS) - we use notations and languages which have been developed for CS.

The most obvious purpose of models is: they are designed by an abstraction process in order to avoid too much complexity and to allow us to master the complexity which still remains after this process of abstraction. Using “complexity” we refer generally to both: time complexity as it is defined in the theory of algorithms, and complexity meaning interactions between components the model consists of.

A simple example is the calculation, whether a path from a source s0 to destinations si (i = 1, 2, ..., n-1) exists. The abstraction process, step by step, starts at a map of the region in question (of course, the map already is a model of the landscape), omits geographical orientation and finally ends up in a sparse matrix A, where

if a connection between si, sj exists then A [i, j] = 1 else A [i, j] = 0 end.

Whether, in terms of programming, the matrix A as model of the resulting digraph is represented as an array or as a list of lists of neighbours (adjacency list) is a question of convenient representation and depends on the programming language used for the implementation. At this stage the representation has no influence on what the model represents and which kind of information we can gather from it.

Reusability of models and their associated algorithms

Another purpose of abstract models is the aim to reuse them. We can apply identical algorithms whenever we have brought down a task to a model which is “isomorphic” to a model having been derived from another problem. With “isomorphic” we refer to the fact that sometimes a transformation might be necessary in addition.

At this point the important aspect is: we have omitted details during the abstraction process.

In our example the matrix A does not contain any information on the distances between nodes si, sj and, consequently, we can not calculate shortest paths from s0 to si (i = 1, 2, ..., n-1).

So the aim of “reusability” contains the danger of drawing wrong conclusions or deriving incorrect “results”, because the required additional information has been filtered out in earlier stages of the modelling process. We are aware of this danger. In many cases, through abstraction, the resulting models become what is called domain specific and often one lacks the information which application domain the model has been derived from.

We regard a model as consisting of

(a) a data structure and

(b) a set of algorithms (see: methods in OOP) which are designed to operate on the data structure.

The interpretation of results delivered by these algorithms is a semantic problem and therefore is domain specific. Consequently, reusability is limited and depends on how far the abstraction went: the more abstract the model is, the less any domain dependency counts. But at the same time semantic information is lost.

One possibility however is to add to a model

(c) a description of the application domain.

We refer to this remark later on, when we make comparisons with component oriented programming.

Extending models: inheritance and the need for contracts

One benefit of an abstract model is the ability to extend the behaviour of the model. Instead of designing a new model M2 from scratch, the previous model M1 may be extended so that the resulting model M2 inherits all the involved data structures and algorithms of M1. In some cases we can add additional functionality just by adding new algorithms and/or data structures. However, often the original algorithms of M1 have to be modified, too, they are subject of an overwriting process.

In our example concerning the calculation of paths between nodes in a graph we make use of inheritance. In order to calculate shortest paths as well we can expand the original adjacency matrix A by a matrix B which contains distances and other information, e.g. the quality or costs of a connection, so that speed and therefore time and path length costs may be calculated, if one has to travel from si to sj. (At this point it is not relevant, whether A and B are kept separately or if they should be combined conveniently involving a side effect on the chosen algorithms.)

Extending an existing model usually is quite straight forward as long as the designer of the model remains within the original application area (domain) the model has been written for.

If we focus on graph based models, we see that such models are more or less domain independent due to the previous abstraction process f.

Consequently, the extension of a model could also imply a change from the original domain D1 to D2:

f1: M1 (M2 (f2: (M1 (D1) ((M2 (D2)

Let D1 be an application domain concerning delivery of goods without unloading. The meaning of edge e = (u,v) could be: the agent e delivers goods to both, u and v. So the problem ends up in the vertex cover problem:

A vertex cover of X = (V, E) is a subset S (V such that each edge of X is incident upon some vertex in S. Is there a vertex cover of size r?

This problem is formally equivalent to the clique problem:

A k-clique in a graph X is a complete subgraph of X with k nodes. Does X contain a k-clique?

Both problems are NP-complete. If we replace X by its complement graph Xc, then the following lemma holds:

A set S (V is a clique in Xc if and only if V – S is a vertex cover of X.

One is attempted to solve the first problem formulated in D1 in another domain D2 which reflects an application area e.g. in communication. As long as we design both models from scratch and have the mapping X (Xc carefully in mind, the approach would work.

But the idea of reusability includes the aim to reuse somebody else’s model and implementation. We can only do so if we have access to a full semantic explanation of the model and the involved algorithms. What we need is a “contract” on the model which contains all the relevant semantic information in order to take advantage of reusability.

In our example the following could happen: because finding a clique is NP-complete, the designer of the model wants to reduce the underlying graph X by replacing it by Y, where certain paths (u,v), (v,w) are shrunk to (u,w) and expanded afterwards again. This makes sense, because in D2 the (semantic) assumption is reasonable, that within a path of length 2 no information is lost on the way from u to w. But cliques contained in Y do not correspond to vertex covers in Xc. The solution achieved in D2, although not “optimal”, may have practical value in D2, but presumably is pointless in D1. We become victims of the missing contract.

Designer of models in OR are fully aware of this danger. But, as a forward reference: in component oriented programming it turns out that missing contracts on reusable software components currently cause a major problem.

2. Aims of object oriented programming

The availability of object oriented programming languages brought a major change in software design generally. The previous procedure oriented programming style has been replaced by a different paradigm. Such programming languages as Smalltalk, C++, Oberon-2 or JAVA also changed the way how a software system is designed.

A programming language is called object oriented if it supports objects as instances of classes and inheritance in particular.

Abstraction to master complexity

Classes can be understood as plans how instantiated objects look like and behave. Therefore classes are the result of an abstraction process and must be designed carefully. One specific aim, when designing classes, is to master complexity, because objects instantiated from such classes will communicate with other objects and this interaction reflects the complexity of the system built upon or by class libraries.

As we have pointed out earlier, this concept of classes had already been invented before OOP penetrated the software landscape. We find these ideas in SIMULA 67 and later on in languages as Modula-2 which allows the specification and implementation of abstract data structures and abstract data types.

An abstract data structure is a mechanism for encapsulating data together with access procedures which operate upon them.

Abstract data types (ADT) can manage any number of instances of abstract data structures. Clients of an object, constructed by an ADT do not need to know how the access procedures are actually implemented or will be implemented. During the design phase (i.e.: modelling) it is sufficient to know about the master plan (= definition/specification) behind the ADT. Exactly this helps to master complexity, because ADTs can be used as structuring mechanisms which help to partition a general model into smaller parts.
Reusability

One specific way of implementing ADTs is provided by classes. Reusability is provided as soon as we can use class libraries which are designed (usually by other people) to solve subproblems occurring frequently.

In the ideal case such libraries are domain independent, but in most cases they are dedicated to a specific application domain.

Examples are user interfaces for windowing systems, basic building blocks for file systems, and databases: scanning data, sorting, searching, inserting, and deletion of data etc.

This kind of reusability already was the design goal and aim of subroutine libraries of procedure oriented languages as FORTRAN or PASCAL.

But classes go one step ahead: they allow extension and modification.

Extending classes: inheritance and the need for contracts

In OOP inheritance is a special mechanism and concept. It allows that (classes of) objects can be defined as special cases of more general ones, automatically including the associated procedures (in OOP: methods) and the definition of the underlying data structure.

Special cases of classes are called subclasses and they inherit methods and data structure from their superclass but may define their own methods additionally and may also, to some extent, override any of the inherited characteristics.

If we want to inherit capabilities from a superclass in order to design a new subclass then we must have information about the master plan from which we want to inherit.

This information can be drawn from the implementation code (implementation inheritance) or by inspecting and using the available interface description (interface inheritance).

If we do not allow so called multiple inheritance we get a class hierarchy, because inheritance can be nested to any degree.

Apart from syntactic needs the mentioned interface serves as a contract or contractual interface. It provides semantics to the designer of the class hierarchy.

Exactly at this point we want to recall the potential danger of reusability. When we discussed the reuse of models we stated the demand for a contract which should provide information, in particular, if a model is used in a different application domain, possibly after some modifications and/or extensions have been applied.

In OOP basically we have two forms of changing a contract given by the interface and description in a metalanguage. If we change the interface then we do a (rather simple (?)) syntactic change. But if we change the description by changing its specification, then we commit a dangerous semantic break of a contract.

If one does so within the inner levels of a class hierarchy, the results for clients of the leafs of the hierarchy can be unpredictably unpleasant.

One could argue that a contract never must be broken. But as soon as one wants to reuse a class library, originally designed for a certain domain D1, and tries to transfer it to another domain using inheritance, then a semantic break of the contract may occur easily or is unavoidable.

This is the major hindrance of making classes/objects domain independently deployable. It puts intrinsic limits for extensibility.

We are already familiar with this situation in the context of reusability of OR models.

3. Summary

Designing a model involves the design of class libraries if the model should be implemented under the OOP paradigm, and vice versa. Both are based on abstraction and the aim of reusability and extensibility in particular.

The latter concept contains the danger of changing underlying semantics coming from a remaining application domain dependence. Therefore there is an evident need to have contracts which must not be broken. But this in turn imposes limits to an arbitrary inheritance when at the same time there is a need to change the application domain, too.

We have seen that common problems exist in modelling for OR, too. On the one hand there is a demand for reusability and inheritance, on the other hand the domain dependency imposes restrictions. And we need contracts for such models, too.

1
10
6

