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O. Summary:

In this paper we are carrying on the work about F-factors which have been intro

duced by MUhlbacher. Beside further general structura l statements we declare

L-canonical factors FL and C-canonical factors FC in addition to the earlier de

fined canonical factor FK. {F K} C {FL} C {FC} holds. An algorithm, transforming

every factor from one of these classes into a maximal matching in C(n) steps, is

specified. In addition we can determin~ i n O(n3) steps whether a factbr is a

C-canonical one or not.

1. Introduct ion

In this paper we carryon the studies started in /t1079b/. Their origin is a prob

lem in the theory of numbers /M079a/. Fo ~ reasons of completeness essential de

finitions and results of / M079/ are repeated and further properties are deduced.

We keep suggesting undirected graphs X without multiple edges and loops.

Definition 1.1:

A spanning subgraph F of an undirected Graph X=(V,E) is called F-fac

tor of X, iff the components of F are non adjacent edges and/or dis

joint circles each having an odd number of edges.

Example:
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Fig. 1.1

Figure 1.1 shows a graph X and some, but not al l of its F-factors. There also



exist graphs contatning no F-factor. The F-factor

shows the cl ose connexi on t o t he mat chi ng probl em:

as a generalization of maximal matchings.

F1 in the precedi~g ~xample

F-factors may be interpreted

Definition 1.2:

Let f 2i+1,
edges of a

2i +1 of F.

with f Zr+1
of F.

i = 0,1,2, ... for i=O be the number ILl of the nonadjacent

F-factor F and for i ~ 1 the number of circ l es with. 1engths.
-+

We call f = <f 1, 0, f 3, 0, f S,0 , , f2t-f1,0, ,f2rt:1>

i °and f 2(r+j)+1= ° for j ~ 1 the characteristic vector r

Definition 1.3:

Le~ F1 and F2 be two F-factors of a graph X wit~ characteristic vec~

tors. f 1 and :t2 , F1 :;,; F2 holds, iff i\ =: t2 holds. l exicoprephtca'l ly,

Rema r k:

In originally f is defined to be <f1 , .. ,f2i +1, ... >. For formal reasona

we prefer the. no tat ion above, because in th.is cas e the i:ndices of f.;. ,
correspond wi t h usual notation of vectors~

Definition 1.4:

Let {F) be the set of F-factors of a given graph X and {F} i 0~ we

call FK E {F } canonical, iff FK~ F for all F E {F} holds . For canon

ical F-facto rs we will use the symbol FK:

In fM079bf fo 11 owing theorems wer-e proofed.

Th.eo rem 1.1:

Let FK be a canontcal factor of X. it is possible to generate a maxi

mal matching Mp of X in O( IVCX) I) steps.

Theorem 1.2:
Given: a maximal matching M and a canonical factor FK of X. If

u = {ul' uZ" " ,u r : is the set of unsaturated ver t ices wi th respect

to M, then FK contains exactly r = IU ! odd circles.

Now the question how to get algorithmically a canonical factor of a given graph

X arises. We have not solved this problem and so it seems to be i nt eres t i ng to

establish structural properties of F-fac tors generally and FK factors specially.



2. Some numerical properties of F resp. F
K

factors

Lemma 2.1:

Let F be a F-factor of X and f the characteristic vector of F

<f 1 ,O, f 3, O,fS, ... f2r+1 >' then:

Proof:

n= IV(X)I
r.

= f + I: ( 2j +1) .~ f 2j +11 . 0J=

2r+1
f 1 + I:

j=l
jf .

J
holds.

Lemma 2.2:

triv i al for edges resp. circl es are disjoint.

-Let F and f defined as before then

Proof:

r
IE(F) I = I: (2j+1) * f 2j+1 =

, j=O

2r+1
I:

j=l
jf .

J
holds.

trivially, note, that for even j the value f. is zero.
J

Corollary 2.1: ·

jE(F) 1 n-f1

Theorem 2.1:

Let X be a graph and F a F-factor of X then:

the number of edges (nodes) which ar e contained in circles of F is

2 IE(F) 1 - n

Proof:

Using lemma 2.1 and 2.2 we get:

2 ~+1 2r+f 2r+1 2r+1
2IE(F)1 = 2 of I: jf. = L: jf. + f 1 + I: jf. = n + I: jf ..

j=l J j=l J j=2 J j=2 J

The last summation is exactly the number of edges (nodes) which are

contained in circles of F.

Theorem 2.2:

Let X be a graph and F a F-factor of it then:

1/2 n ~ IE(F) I ~ n holds.



Proof:
The left in equal ity hol ds trivi all y . Let dCx) be the degree of

x E V(X) then concerning F: 1 S dCx) S 2 holds. Consequently

1 1IE(F) I = ~ . E d(x ) ~ 7 E 2 S n.
xEV(F) XEV(X)

The following theorem shows canonical F-factors meeting a property of minimality

related to their set of edges.

Theorem 2.3:

Let X be a graph and {F i f i = 1.2 •... s} the set of f-factors Of it

and FK be a canonical F-factor of it. Then

I E(FK) I = min { I E(Fi.) I }
1$;:Ss

Proof:

For FKf 1 = kfl is maximum per definition. Therefore
def

IE CF K) I = n - max .f1 holds. For n is constant
l :ii ~s '

I E(F
K

) I mi n (n - . f 1) =
1::o i ss 1

according corollary 2.1.

mt n
l ~ i S s

( IE(Fi) l) holds consequently

3. Structura l properties of F- resp. FK-factors

Union and intersection of graphs are defined as usually /BE 73/. /DO~1073/. Anal

ogously we introduce the difference of graphs:

Definition 3.1:

Let X. and X. be graphs. we def ine the difference (X. - X.) as
1 J , J

follows:

V(X.-X.) = V(X.) - V(x.)
1 J , J

E(X.- X.) = {[ x•y ] I X. Y E V(X.- X. ). [x. y ] E E(X . )}, J , J ,

In the case that V(X.) C V(X .). getting the difference of X. and X. corresponds
J 1 J ,

to the removal of the nodes x E V(X.) from V(X.) and the accompanying deletionJ ,
of edges wh i ch have become impossible now.



;>

Theorem 3.1:
Let X be a graph and F a F-factor of X and S any component of F. Then

F-S is a F-factor of X-So

Proof:
For F is a F-factor, F is a spanning subgraph of X that means

V(F) = V(X). Consequently V(F-S) = V(X-S) and therefore F-S is F-fac

tor of X-So

The following theorem gives us the formal requirements for an eventual use of a
djvide and conquer algorithm.

Theorem 3.2:

Let y,Z be subgraphs of X so that V(Z) = V(X)-V(Y) and let Fy resp.

FZ be F-factors of Y resp. Z, t~en Fy .u FZ is a F-factor of X.

Proof:

V(Z) n V(Y) = 0. Consequently Fy U FZ contains only nonadjacent edges

and odd circles as components. For V(Z) u V(Y) = V(X) V(F y UF Z) = V(X)
holds. Consequently Fy U FZ i s a F-factor of X.

Theorem 3.3:

Let F be a F-factor of a graph X and zex. Follows from [uv ] ~ E(F).

etther u,v E V(Z) or {U,V) n V(Z) = 0 then F-Z is a F-factor of X-Z.

Proof:

Let [u ,v ] be an edge of the l inearpart of F. In this case this edge

is contained in E(f-Z) without any adjacent edges or isn't contained

in E(F-Z) atall .
Let [u,v] be an edge from a circle K of F. For the preceding condi

tions K is either disjoint to E(F-Z) or K is contained in F-·Z com

pletely. For V(F)=V(X) F-Z is consequently a F-factor of X-Z.

For comp l eteness we menticn th.e following theorem whi ch allows the restriction of

our stud ies on connected 9raphs withou t loss of general ity:

Theorem 3.4:
A. graph X wi th n components conta ins, a F-fac tor exactly, rf f every

component of X contains a F-factor.



Then (u,v] is an
1 2K ,K , [u ,v] and

FK bei ng canon-

Theorem 3.5:

If FK is a canonical F-factor of a graph X, then

X - L(F K) = K(F K).

Remove the linearpart of FK and the incident edges, so the set of disjoint cir

cles, the so-called circlecomponent K(FK ),of the factor FK remains exactly.

Proof:

Assume that X - L(F K) contains edges lu.v l with [u, v] E E( K(F K)) and
let [u,v ] be such an edge.

(i) if u,v are nodes contained in the same circle K2i+1, then [u,v]

is a chord of th e circle K2i +1. In this case K2i +1 can be dis

assembled into a "linear part" and a less odd circle K2 "+1 ' j ~ t.
.. J

This is a contradiction to FK being canonical.

(ii) let u,v be contained in disjoint circles K1 , K2.

odd path between K1 and K2 and we can disassemble

L(F K) becomes l ar ger. This is a contradic t i on to

i ca1.

x - LeFK) contains no isolated nodes, th.erefore the theorem holds.

4. Maximizing the li.near part

An essential property of canonical F-factors is the fact, that their linearpart

is a maximum. Thi s property is used for proof i ng the fact, that we can es tao l ish

a maximal matching in O(IV(X) I) steps. We are showing nO\\I, that the maximality

of the li.nearpart is a sufficient condit i on for establishing a maximal matching

in OeV I eX) I) steps.

Definition 4.1:

Let X be a graph and F a F-factor of X. We call

ieal, iff its linearpart is a max irnum vt ; e, if'f

I E(L (F i ) ) I ~ I E(L (F) ) I holds..

Obviously every canonical factor is L-canonical.

the factor F L-canon

for all F-factors Fi

Theorem 4.1:

Let F~,F~ be L-canonical factors of a graph X, t hen IE(Ft) I = IE(~) I.



Proof:
1 2 1 2 .

From IE(L(F )) 1 = IE(L(F )) 1 follows IV(L(F )) 1 = IV(L (F ) )Iconse-

quently for nodes contained in circles IV(K(F1))1 = IV( K(F 2) ) 1 and

therefore IE(K(F1))1 = IE(K(F2))1 hol ds .

From these equations the thecrem follows obviously.

Theorem 4.2

FL L-canonical with linearpart L(F L)
maximal matching MF.

Let FL be
algorithm
steps.

Input:

Output:

a L-canonical factcr of a graph X. Using the following

one can establish a maximal matching MF of X in O( IV(X) I)

(i) 1* Initialisation *1
~.1F : = L(FL) ;

(ii) For every circle K2i +1 in FL
do;

establish a maximal matching M2i+1 of K2i +1
MF := MF U M2i +1;

od;

Proof:

u . is the
1

~j+l'

The set of edges, established by this algori ~hm, is obviously a

matching of X. Assume MF not maximal and let U = {u1,u 2,· .. ,U n},

r ~ 2 be the set of unsaturated nodes concerning MF. Then, there is

an dugmenting path W(u.,u.) connecting two unsat ur at ed nodes. Estab-
1 J

lishing M2i +1 the choice of the unsaturated node ui in K2i +1 is op-

tional. Therefore u.,u . can be chosen, that the augmenting path
1 J

W(Ui,u j) connects two nodedisjofnt circles K2i +1, K2j +1 and
first node of K2 · 1 met by this path and u. is the first of

1+ J

'" ,'----"

W(ui,u j)

AI • • • • .......

... ,
..... _---,,'

(Fig. 4.1).
u.

Fig. 4.1



In this case u.,u. can be saturated by substituting E(\~(u.,u.))-(E(l~(u.,u.))nMF)
1 J 1 J 1 J

for E(\~(u.,u.) n r'1 F) . Thi s substitution cont radicts the max imality of IE (L(F) )I
1 J

and consequently F being L-canonical. The bound O(IV(X) 1) is evident.

An obvious consequence of theorem 4.2 is the following:

Theorem 4.3:

Let Ft, F~ be two L-canonical factors of X, then the number of cir

cles contained in Ft is equal to the number of circles contained in
2

FL·

Proof:

From the proof of theorem 4.2 follows, that th e number r of nodes,

unsaturated related to a maximal matching is equal to the number of

odd circles containedin a L-canonical F-factor. Consequently the num

ber of unsaturated nodes relative to the matching establis hed by Ft

is exactly equal to the number of unsaturated nodes related to the

matching established by F~. Therefore the theorem holds.

Theorem 3.5 can be transfered to L-canon ical factors because proofing the theo

rem only the property jE(L(FK)1 being maximal has been used:

Theorem 4.4:

Let FL be a L-canonical factor of X, then

X - L(FL) = K(F L) holds.

5. Minimizing the circle part

In this section, we will show, that concerning to the construction of a maximal

matching using a F-factor F, the minimal ity of the circle part of the factor is

sufficient: using F-factors with the minimal number of circles contained in tt,

a maximal matching is established by the algorithm of theorem 4.2 algorithmica l l~

analogous as it has been established using FL-factors and FK-factors.

Definition 5.1:

Let X be a graph and FC a F-factor of X. The factor FC i2 called

C-canonical, iff the number IK(FC) ! of circles contained in it is mi
nimal, i.e. iff IK(FC) I ~ IK( F)I holds for all F-factors F of X.



Theorem 5.1:

Let FC be a (-canonical factor of X, then we can establish a maximal

matching MF in O( IV(X) I) steps starting with Fe-

Proof:

The proof is nearly identical with the proof of theorem 4.2: AssJme

the established matching not being maximal, then we can reduce the

number of circles contained in the F-factor using the augmenting path

existing concerning MC:

This theorem can be inversed:

Theorem 5.2:

Let F be a F-factor of a graph X and establishes the algorithm given

in theorem 4.2,used on F, a ma ximal matching MC' then F is a FC-fac

tor, i .e. C-canonical.

Proof:

An obvious consequence of 5.1 is the fact, that the number of unsatu

rated nodes relative to the established matching is exactly the num

ber of circles contained i n F. From the maxi mality of matching MC
follows that no F-factor may contain less circles than the giv en .one.

Otherwise using the algorithm, we could establish a matching, satu

rating more nodes, and this would be a contradiction to MC being max

imal .

Corollary:

Because we can establish a maximal matching of a graph in O(n3) steps

and our algorithm for establishing MC is a O(n) algorithm we can de

cide in 0(n 3) steps whe ther a F-factor F is a FC-factor or not.

In fig. 5.1 a simple example shows, that theorem 5.2 holds only for FC factors

but not for FK-factors globaly.
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X FK-factor and F -factor MCFL-factor and nE FL-factor
FC-factor no FK-factor

Fig. 5.1

The concept of alternating paths defined for matchings M (note: Me E(X)) can be

transfered to F-factors, substituting E(F) c: E(X) for M. A consequence of this

concept and theorem 5.2 is:

Theorem 5.3:

A F-factor F of a graph X is (-canonical, iff it doesn't contain two

circles KI,K2 connected by an alternating path related to F.

Proof:

Assume F being a C-canonical factor FC containing two circles K1,K2

as stated. Related to the matching ~ l C establ i shed by the algorithm

gi ven in theorem 4.2 two nodes UI E V(KI) and u2 E V(K2) are unsatu

ra t ed. If there is an alternating path from KIto K2, then this path

is an augmenting path related to MC' MC couldn't be maximal.

Contradiction!

Conversly let F be a F-factor not containing two circles KI and K2

connected by an alternating path concerning F; assume F not being FC
factor. Then F must contain at least two circles KI,K2. Establishing

a matching as usually two nodes u
l

E V(KI) and u2 E V(K2) are unsatu

rated related to this matching. Existing no alternating path concern

i ng F, i"1 F rnus t be maxima i because KI, K2 are chosen ._arbitrari ly in the

set of circles contained in F. From theorem 5.2 fol lows that F must

be FC-factor.

6. The classes FK~ and Fe

In section 2 and 3 canonical F-factors {F K} have been defined, in section 4 the

class {FL} has been defined and in section 5 the class { Fe} ' From def inition it



follows {FK} c: {F L}. The simple example in figure 5.1 shows, that there are FC
factors which are not L-canonical. According to the or em 4.2. and theorem 5.2
every L-canonical factor is a C-canonical one. Therefore the following relation

holds:

{FK}C{FLK:{FC}'

However we conjecture that {F L} C. {FK} and consequently {FL} = {F K}.
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