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0. Summary:

In this paper we are carrying on the work about F-factors which have been intro-
duced by Miihlbacher. Beside further general structural statements we declare
L-canonical factors FL and C-canonical factors FC in addition to the earlier de-
fined canonical factor FK. {FK} C {FL} - {FC} holds. An algorithm, transforming
every factor from one of these classes into a maximal matching in C(n) steps, is
specified. In addition we can determiné in_O(nB) steps whether a factor is a

C-canonical one or not.

1. Introduction

In this paper we carry on the studies started in /M079b/. Their origin is a prob-
lem in the theory of numbers /MU79%a/. Fo~ reasons of completeness essential de-
finitions and results of /MU79/ are repeated and further properties are deduced.
We keep suggesting undirected graphs X without multiple edges and loops.

Definition 1.1:
A spanning subgraph F of an undirected Graph X=(V,E) is called F-fac-

tor of X, iff the components of F are non adjacent edges and/or dis-
joint circles each having an odd number of edges.
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Example:

Fyq _ Fe l

Fig. 1.1

Figure 1.1 shows a graph X and some, but not all of its F-factors. There also



exist graphs containing no F-factor. The F-factor F1 in the preceding example
shows the close connexion to the matchingproblem: F-factors may be interpreted

as a generalization of maximal matchings.

Definition 1.2:
Let f2i+1’ i
edges of a F-factor F and for i =z 1 the number of circles with lengths

= 0,1,2,... for i=0 be the number |L| of the nonadjacent

2i+41 of F. We call f = <f1,0,f3,0,f5,0,.b.;;t;f21¥1,0,”?t,f2rfl> |
with f2r+1 # 0 and f2(r+j)+1: 0 for j = 1 the characteristic vector ¥
of F.

Definition 1.3:
Let F, and F, be two F-factors of a graph X with characteristic vec~

1 2
tors f and f,, F; = F, holds, iff f; = f, holds lexicographically.

Remark:
In originally f is defined tobe <f ""%i+1"">' For formal reasons
we prefer the notation above, because in this case the ‘indices of f.

correspond with usual notation of vectors.

Definition 1.4: ;
Let {F} be the set of F-factors of a given graph X and /F; # @, we
call FK € {F} canonical, iff FK_g F for all F £ {F} holds. For canon-
ical F-factors we will use the symbol FKT

In /M0O79b/ following theorems were proofed.

Theorem 1.1:
Let FK be a canonical factor of X. It is possible to generate a maxi-~
mal matching MF of X in O(1V(X)1) steps.

Theorem 1.2:
Given: a maximal matching M and a canonical factor FK of X. If
U= {ul,uz,...,ur} is the set of unsaturated vertices with respect
to M, then FK contains exactly r = (Ut odd circles.

Now the question how to get algorithmically a canonical factor of a given graph
X arises. lWe have not solved this problem and so it seems to be interesting to
establish structural properties of F-factors generally and FK factors specially.



2. Some numerical properties of F resp. F, factors

Lemma 2.1:
Let F be a F-factor of X and f the characteristic vector of F
<f1,0,f3,0,f5,...f2r+1>, then:
r _ 2r+l
n= 1V(X) = fl + _; (2j+41) = f2j+1 = fl + -§ ij holds.
J=0 j=1
Proof:
trivial for edges resp. circles are disjoint.
Lemma 2.2:
Let F and f defined as before then
r 2r+l
(E(F)1 = £ (2j+1) =« f,. ., = £ jf. holds.
=0 2j+1 j=1 J
Proof:

trivially, note, that for even j the value fj is zero.

Corollary 2.1: .

lE(F)1 = n—fl
Theorem 2.1:

Let X be a graph and F a F-factor of X then:

the number of edges (nodes) which are contained in circles of F is

21E(F)1 - n
Proof:
Using lemma 2.1 and 2.2 we get:
2r+1 2r+1 2r+l 2r+l
2ie(F)r =2 % ¢ jf.= ¢ jf.+ f, + ¢ jf.=n+ 1o jf..
j=1 J =1 J 1 j=2 J j=2 J
The Tast summation is exactly the number of edges (nodes) which are
contained in circles of F.
Theorem 2.2:

Let X be a graph and F a F-factor of it then:
1/2 n s 1E(F)I = n holds.



Proof: )

The left inequality holds trivially. Let d(x) be the degree of

x € V(X) then concerning F: 1 = d(x) = 2 holds. Consequently

1 N
E(F)l =5 = d(x) s5 = 2 s n.

x €V(F) x € V(X)
The following theorem shows canonical F-factors meeting a property of minimality
related to their set of edges.

Theorem 2.3: '
Let X be a graph and (F' / i =1,2,...s) the set of F-factors of it

and F, be a canonical F-factor of it. Then

K
IE(F ) = min (E(FY) 1)
15iss
Proof:

For F, f, = f. is maximum per definition. Therefore

K'1 k'1 _

def
\E(FK)| =n - max .fl holds. For n is constant
lsiss |

E(F)t = min (n - .f) = min (IE(F')1) holds consequently

1=i=ss

according corollary 2.1.

1siss

3. Structural properties of F- resp. F -factors

Union and intersection of graphs are defined as usually /BE 73/, /DOMU73/. Anal-

ogously we introduce the difference of graphs:

Definition 3.1:

Let Xi and Xj be graphs, we define the difference (Xi - Xj) as
follows:

V(Xi'xj) = V(Xi) - V(Xj)

E(X;=X5) = xoy ] 1 %,y € V(Xi-X5)s [xoy) e E(XG )

In the case that V(Xj)C: V(Xi)’ getting the difference of Xj and Xi corresponds
to the removal of the nodes x € V(Xj) from V(Xi) and the accompanying deletion

of edges which have become impossible now.



Theorem 3.1:

Proof:

Let X be a graph and F a F-factor of X and S any component of F. Then
F-S is a F-factor of X-S.

For F is a F-factor, F is a spanning subgraph of X that means
V(F) = V(X). Consequently V(F-S) = V(X-S) and therefore F-S is F-fac-
tor of X-S.

The following theorem gives us the formal requirements for an eventual use of a

divide and conquer algorithm.

Theorem 3.2:

Proof:

Theorem 3.3:

Proof:

Let Y,Z be subgraphs of X so that V(Z) = V(X)-V(Y) and let FY resp.

F, be F~-factors of Y resp. Z, then FY U FZ is a F-factor of X.

JA

V(Z) nV(Y) = @. Consequently FY U FZ
and odd circles as components. For V(Z) u V(Y) = V(X) V(FYljFZ): V(X)

contains only nonadjacent edges

holds. Consequently Fy uFy is a F-factor of X.

Let F be a F-factor of a graph X and ZC X. Follows from [u,v] € E(F),
either u,v ¢ V(Z) or {u,vyn V(Z) = @ then F-Z is a F-factor of X-Z.

Let [u,v] be an edge of the linearpart of F. In this case this edge
is contained in E(F-Z) without any adjacent edges or isn’t contained
in E(F-Z) at all. '

Let [u,v] be an edge from a circle K of F. For the preceding condi-
tions K is either disjoint to E(F-Z) or K is contained in F-Z com-
pletely. For V(F)=V(X) F-Z is consequently a F-factor of X-Z.

For completeness wemention the following theorem which allows the restriction of

our studies on connected graphs without loss of generality:

Theorem 3.4:

A graph X with n components contains a F-factor exactly, iff every

component of X contains a F-factor.



Theorem 3.5:
If F, is a canonical F-factor of a graph X, then =

K
X - L(F,) = K(F

K K-

Remove the linearpart of FK and the incident edges, so the set of disjoint cir-
cles, the so-called circlecomponent K(FK),of the factor FK remains exactly.

Proof:
Assume that X - L(FK) contains edges [u,v] with [u,v] € E(K(FK)) and
Tet [u,v] be such an edge.
(i) if u,v are nodes contained in the same circle K21+1, then [u,v]
is a chord of the circle K2.+1 In this case K2.+1 can be dis-
assembled into a "linear part" and a less odd circle K2 11’ J < 1.
being canonical.

K
(i1) Tet u,v be contained in disjoint circles k!, k2. Then [u,v] is an

odd path between K1 and K2 and we can disassemble Kl,KZ, [u,v] and

L(FK) becomes larger. This is a contradiction to FK being canon-

This is a contrad1ct1on to F

ical.

X - L(FK) contains no isolated nodes, therefore the theorem holds.

4. Maximizing the linear part

An essential property of canonical F-factors is the fact, that their linearpart
is a maximum. This property is used for proofing the fact, that we can establish
a maximal matching in O(iV(X)t) steps. We are showing now, that the maximality
of the linearpart is a sufficient condition for establishing a maximal matching
in O(Vi(X)1) steps.

Definition 4.1:
Let X be a graph. and F a F-factor of X. We call the factor F L-canon-
ical, Tff its linearpart is a maximum, i.e, iff for all F-factors F
E(L(F'))1 s IE(L(F)) | holds.

Obviously every canonical factor is L-canonical.

Theorem 4.1:
' 1 .2

Let FL,FL be L~canonical factors of a graph X, then |E(Fi)|= IEUf)!.



Proof:

Theorem 4.2

Proof:

From 1E(L(FL))1 = [E(L(F®))| follows IV(L(F

h
quently for nodes contained in circles V(K (F
therefore IE(K(FL))I = 1E(K(FZ)) 1 holds.

From these equations the thecrem follows obviously.

= V(L(FZ))fconse-

)
)= IV(K(FE)1 and

Let FL be a L-canonical factcr of a graph X. Using the following

algorithm one can establish a maximal matching MF of X in O(iV(X)1I)
steps.

Input: FL L-canonical with linearpart L(FL)

OQutput: maximal matching MF'
(i) /= Initialisation =/

MF 1= L(FL);

(ii) For every circle K21.+1 in FL
do;
establish a maximal matching M21+1 of K21.+.1
ME o= Mp U My
od;

The set of edges, established by this algorithm, is obviously a

matching of X. Assume MF not maximal and let U = {ul,uz,...,un},

r z 2 be the set of unsaturated nodes concerning MF' Then, there is
an augmenting path W(ui,uj) connecting two unsaturated nodes. Estab-

Tishing M the choice of the unsaturated node us in K21.+1 is op-

2i+l1
tional. Therefore ui,uj can be chosen, that the augmenting path
N(uj,uj) connects two nodedisjoint circles Kz1+1, K2j+1 and u; s the
first node of K met by this path and ”j is the first of K2j+1'
(Fig. 4.1).

u. u.
e o

2i+1

Fig. 4.1



In this case UssU; can be saturated by substituting E(W(ui,uj))—(E(N(ui,uj))rWMF)
for E(N(ui,uj) N MF). This substitution contradicts the maximality of IE(L(F))1
and consequently F being L-canonical. The bound O(IV(X)r) is evident.

An obvious consequence of theorem 4.2 is the following:

Theorem 4.3:
Let F&, FE be two L-canonical factors of X, then the number of cir-
cles contained in FE is egual to the number of circles contained in
2
FLf
Proof:

From the proof of theorem 4.2 follows, that the number r of nodes,
unsaturated related to a maximal matching is equal to the number of

odd circles containedina L-canonical F-factor. Consequently the num-
1

ber of unsaturated nodes relative to the matching established by FL

is exactly equal to the number of unsaturated nodes relatéd to the

matching established by F2 Therefore the theorem holds.

L
Theorem 3.5 can be transfered to L-canonical factors because proofing the theo-

rem only the property IE(L(FK)] being maximal has been used:

Theorem 4.4:
Let FL be a L-canonical factor of X, then

X - L(F ) = K(F) holds.

5. Minimizing the circle part

In this section, we will show, that concerning to the construction of a maximal
matching using a F-factor F, the minimality of the circle part of the factor is
sufficient: using F-factors with the minimal number of circles contained in it,
a maximal matching is established by the algorithm of theorem 4.2 algorithmically,
analogous as it has been established using FL—factors and FK-factors.
Definition 5.1:
Let X be a graph and FC a F-factor of X. The factor FC
C-canonical, iff the number |K(FC)[of circles contained in it is mi-
nimal, i.e. iff IK(F IK(F)I holds for all F-factors F of X.

is called

C)] <



Theorem 5.1:

Proof:

Let FC be a C-canonical factor of X, then we can establish a maximal

matching M- in O( V(X)) steps starting with F

F c’

The proof is nearly identical with the proof of theorem 4.2: Assume
the established matching not being maximal, then we can reduce the
number of circles contained in the F-factor using the augmenting path

existing concerning MC'

This theorem can be inversed:

Theorem 5.2:

Proof:

Corollary:

Let F be a F-factor of a graph X and establishes the algorithm given
in theorem 4.2,used on F, a maximal matching MC’ then F is a Fc—fac-
tor, i.e. C-canonical.

An obvious consequence of 5.1 is the fact, that the number of unsatu-
rated nodes relative to the established matching is exactly the num-
ber of circles contained in F. From the maximality of matching MC
follows that no F-factor may contain less circles than the given.one.
Otherwise using the algorithm, we could establish a matching, satu-

rating more nodes, and this would be a contradiction to M. being max-

C
imal.

Because we can establish a maximal matching of a graph in O(n3) steps
and our algorithm for establishing MC is a 0(n) algorithm we can de-

cide 1in O(n3) steps whether a F-factor F is a FC—factor or not.

In fig. 5.1 a simple example shows, that theorem 5.2 holds only for FC factors

but not for F _-factors globaly.

K
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X F -factor and F.-factor M

F'-factor and ng FL-factor c
Fc—factor no FK—factor
Fig. 5.1

The concept of alternating paths defined for matchings M (note: MC E(X)) can be
transfered to F-factors, substituting E(F) & E(X) for M. A consequence of this
concept and theorem 5.2 is:

Theorem 5.3:
A F-factor F of a graph X is (C-canonical, iff it doesn't contain two
circles Kl,K2 connected by an alternating path related to F.

Proof:

Assume F being a C-canonical factor FC containing two circles Kl,K2

as stated. Related to the matching MC established by the algorithm

given in theorem 4.2 two nodes u, € V(Kl) and u V(KZ) are unsatu-

1 € 2 €
rated. If there is an alternating path from K to KZ, then this path
M

is an augmenting path related to M couldn‘t be maximal.

c-'C
Contradiction! -
Conversly let F be a F-factor not containing two circles K1 and K2
connected by an alternating path concerning F; assume F not being FC
2

factor. Then F must contain at least two circles Kl,K . Establishing
1 € V(Kl) and u, € V(KZ) are unsatu-
rated related to this matching. Existing no alternating path concern-

a matching as usually two nodes u

ing F, M must be maximal because Kl,K2 are chosen arbitrarily in the
set of circles contained in F. From theorem 5.2 follows that F must

be Fc-factor.

6. The classes F,, F,

[

and F.

In section 2 and 3 canonical F-factors {FK} have been defined, in section 4 the
class {FL} has been defined and in section 5 the c]ass'{FC}. From definition it



follows {FK}Q; {FL}. The simple example in figure 5.1 shows, that there are FC
factors which are not L-canonical. According to theorem 4.2 and theorem 5.2
every L-canonical factor is a C-canonical one. Therefore the following relation
holds:

(FOCF IR

However we conjecture that {FL} C {FK} and consequently {FL} = {FK}.
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