
DERIVING SUB-COURSES FROM CPS PACKAGES
BY METADATA TAXONOMY FILTERING

Michael Sonntag, Jörg R. Mühlbacher
Institute for Information Processing and Microprocessor Technology (FIM)

Johannes Kepler University Linz
Altenbergerstr. 69, A-4040 Linz, Austria

{sonntag, muehlbacher}@fim.uni-linz.ac.at

ABSTRACT
Creating learning objects (LO) is expensive, so reuse is
very important. One possibility is dividing larger packages
into small LO, allowing reuse through new assembly.
However, this always requires some “glue” between the
individual LO to create a new coherent, complete, and
larger one. Another possibility is creating a single larger
course and deriving various smaller or specific versions
from it automatically. These are then complete, or at least
much easier to finish, and even matching in look and feel.
Although not universally suitable, often for instance a
general overview or a detailed sub-topic can be extracted.
The only necessity for this is annotation of smaller parts
according to an arbitrary taxonomy. According to this
taxonomy the LO is then filtered to produce a subset con-
taining only specifically annotated elements. This paper
describes a tool for deriving such subsets through convert-
ing taxonomy annotations into XML, allowing the use of
XPath expressions for filtering.

KEY WORDS
Instructional technology, Learning objects, Metadata,
Taxonomy filtering

1. Introduction

The size of learning objects (LO; [1]) varies significantly.
While some describe even single pictures with additional
context as LO [2], this approach of making them “tiny”
has also been criticized [3]. Contrasting this theoretical
discussion, many teachers still create very large LO in
practice, typically according to the widely used Content
Packaging Specification (CPS, [4]): An existing presenta-
tion, covering a two-hour lecture or practice, or even a
complete course lasting a full semester, is converted to a
single package and often enhanced through additional
animations, videos or interactive elements. While such LO
are easier to create, they suffer from limited reusability:
Only the whole package can be transferred. If smaller
elements are needed, they can be extracted, but then only
as the “plain” content data, i.e. without their educational
context like metadata, references to other elements, etc., in
essence creating a new LO from individual resources.

One difficulty of this approach is that any changes to the
original (large) LO will not propagate to derived ones. If a
course consists of many independent LO, only those
changed need to be updated, which might be initiated and
performed automatically. It is therefore desirable to link
these smaller elements back to their source.
A similar consideration applies to small LO as well, al-
though in a later lifecycle stage. When having been
(re-)used to create a compound LO, they might be up-
dated, corrected, enhanced, etc. where currently used. But
such changes will not reflect back to the “original” ver-
sion, perhaps located in some repository [5]. This prevents
e.g. corrections to pass to other compound LO including
the same, perhaps previously erroneous, small part.
Therefore a method is needed to extract smaller parts from
a large LO, breaking it up into its constituting, in the fu-
ture semi-independent, LO. These smaller parts cannot
just be single resources or distinguished according to their
type: e.g. a single video files might be a small LO, but an
image from a webpage is probably useless without some
other page elements, like explanatory text. This is the
reverse direction as Wiley [6] describes: LO are not Lego
pieces and therefore cannot be combined arbitrarily, but
should rather be compared to atoms. Similarly, a com-
pound LO cannot just be split apart according to level of
navigation depth, file size/type, length, etc., but must be
partitioned according to subject and didactic aspects. Such
a method should satisfy the following demands:
• Require explicit semantic annotation: Currently only

humans can decide upon an exact content description.
To ensure consistent annotation the semantics, i.e.
their meaning, must be defined explicitly and clearly.

• Require few/no additional annotation. Metadata is of-
ten omitted by authors. Expecting additional one spe-
cifically and only for extracting parts is unrealistic.

• Reuse existing metadata standards: The annotation
used for selecting parts should ideally be semantically
identical to the standard or at least very close. Rein-
terpretations should be avoided.

• Reuse existing selection standards: Creating a new
query or expression language would inhibit adoption
by authors. Ideally selection would possess a gentle
learning curve, allowing easy start, but being power-
ful enough for complicated tasks too.

We have integrated a system for selecting subparts of LO
modeled according to CPS into a transformer for creating
offline views of learning content (see below). This allows
creating course representations consisting of a subset of a
large LO. Selection is based on the LOM (Learning Ob-
ject Metadata; [7]) individual elements are annotated with.
This allows selection criteria according to a variety of
methods, depending only on the information present in the
metadata. Examples are subject, keywords, target group,
and abstraction level. For actual selection, XPath expres-
sions [8] are used. These however do not operate on the
XML metadata representation as contained in the package,
but rather a modified one described below, where syntax
better matches semantics. The system has been applied in
practice to materials for a Java programming course,
which is used as an example for expressions.
The remainder of the paper is structured as follows: After
a discussion of taxonomy filtering the sample implementa-
tion is described. Then follows an example how elements
might be annotated and what sub-LO can be derived from
it. Section five consists of an evaluation, describing ad-
vantages and limitations. The paper ends with conclusions
on the usefulness of the method described.

2. Taxonomy filtering

While it would be possible to let users select sub-LO by
XPath expressions directly on a metadata representation,
this results in a complicated and error-prone solution.
Additionally, XML is not the only representation for
metadata: RDF (Resource Description Framework, [9]) is
available too, which is syntactically different and would
require completely new selection expressions. Theoreti-
cally seen this is also problematic: selecting semantic
parts according to their syntactic representation instead of
their content mixes layers. E.g. all resources belonging to
a single subordinate LO need not be represented in meta-
data as children of a single parent item, and with no other
intermingled content. Only when it is secured that syntax
exactly mirrors semantics, both in a specific LO for a
certain task as well as conceptually for all instances re-
garding a software tool, this could be acceptable.
Another option would be foregoing metadata information
and selecting parts directly from the navigation specifica-
tion in a CPS package. However, this is also problemati-
cal. While separating parts into chapters can be useful
(each chapter as a sub-LO), the depth of a section typi-
cally has no semantics. Creating a "general overview" is
therefore not possible through e.g. selecting all parts up to
a depth of three navigation links: In brief chapters this
might be detailed content, in longer ones still an overview.
This would also cause problems with special sections like
appendices. These occur “normally” within the naviga-
tion, but are annotated differently with metadata.
Filtering could be based on arbitrary base information, but
as identified above, already existing and well-defined
metadata should be used. If possible, it should also retain
its original semantics to avoid introducing errors on re-

purposing. Because of its prevalence and practical impor-
tance, LOM in the IMS variant [7] was selected as the
base. It is almost identical, and being actively aligned
with, the IEEE version [10] and part of the widely used
SCORM specification [11]. From the information con-
tained the “classification” element was selected, which
consists of a description, some keywords, purpose, and a
taxon path (Figure 1, top). A taxon path states all terms
from the top of the taxonomy to the most specialized ap-
plicable term. Only purpose and taxon path are of interest
here; description/keywords are intended for display to
humans and not for automatic processing (and omitted in
the picture).
The purpose states which characteristic of the resource is
described by this classification entry. While it can be set
arbitrarily, a vocabulary is defined which may be useful
here, although typically used to describe larger LO as a
whole. E.g., “discipline” is usually stated solely for the
LO, but not for sub-elements. Still, when present and suf-
ficiently detailed, it can be used for subdividing LO.
The taxon path consists of a single source referencing the
definition of the taxonomy and a taxon list. These are
described through an id, the “official” value from the tax-
onomy, and an "entry", a human-readable description of
the referenced taxonomy element. The entry can be in any
language, but the id should be unique for a specific taxon-
omy. The syntax of this information in XML representa-
tion poses an implementation problem: While IMS defines
the taxon path as taxons containing taxons (nesting), IEEE
(and probably the next IMS version too) specific these as
taxons after taxons (flat list). This example also confirms
the problems of working on the syntactic instead of the
semantic layer as discussed above.
As the query language XPath [8] was selected, because it
is easy to understand and with its "axes" concept matches
taxonomies. While other approaches exist (see [12] for a
Datalog example), these are typically difficult to under-
stand for novice users. Contrastingly in XPath expressions
are hierarchically arranged terms with a specific relation
between them, which is easy to understand. The relation is
typically specialization; every sub-term “is-a” parent term,
resembling a taxonomy. Additionally, taxonomies belong
to a certain specification or standard. In XML terms this
could be called a namespace. A further advantage of
XPath is, that although getting started is easy, it allows
very complex expressions as well when necessary.
Because XPath works on a syntactic level but matching
should take place on the semantic one a transformation is
required. Here a small variation is made in favour of han-
dling: While conceptually the important matching element
is the taxonomy id, it would be hard for humans to create
a selection based on them. Therefore, the taxon value is
used as the primary data element instead. Matching in
expressions is still possible on the id, too.
Unlike [13], the result is still XML and not RDF to better
support queries formulated in XPath. Both structure and
query are more natural and probably easier to understand
for users than RDF and query languages based on specific
types of logic.

The transformation works as follows:
1. An empty XML document, and for each classification

a new root element, is created. So any number of
classifications is available simultaneously. These
elements are named after the purpose of the classifi-
cations, with the source added as an attribute.

2. The first taxon value is added as child of the purpose
element, with its id as attribute. The namespace for it
is created from the source of the taxon path. This al-
lows ignoring it for more simple selection and when
only a single type of classification is present.

3. For each further taxon a new sub element is nested
within the previous (similar to the LOM XML bind-
ing) taxon representation. The nesting ensures, that
XPath expressions can be written according to the
child axis, regardless how the taxons are described in
the source; see the changing standards above.

A simple example is shown in Figure 1. The first part is
the original XML representation according to LOM, the
second the generated structure for use through XPath.

Figure 1: Transformation example

3. Implementation

The system has been integrated into existing Java software
to transform CPS packages into an offline version. It has
recently been added into the CPS editor jCAPT (see [14]
for more information and download), where it, in addition
to conversion, serves for previewing packages. Within
these programs it has to filter the individual elements ac-
cording to visibility anyway, which is a standard feature
of CPS. So integrating a further filtering step is straight-
forward. Although not supported by this software, it
would be simple to not convert the result but export it to a
(new) CPS package of only matching items.

The first step in filtering is converting the source metadata
into the new form as described before. While this is possi-
ble programmatically, a more flexible approach was cho-
sen: an XSLT stylesheet transforms a specific metadata
record into the new form. This stylesheet is applied to
each metadata record within the items separately. The
resulting XML document is kept in memory only and then
used as input for the filtering stage. Employing stylesheets
brings the additional advantage that source changes, both
in structure and content, can be easily integrated: The
various version of IMS and IEEE LOM are already
marked with different namespaces. These can be inte-
grated into stylesheets and easily extended for new varia-
tions, obviating program changes.
As “entry” values of taxons are arbitrary strings, a transla-
tion to valid XML element names is necessary. Because
there most Unicode characters are allowed, this is not
difficult. E.g. spaces are left out (Figure 1: “Information
Processing” → “InformationProcessing”). Similar meth-
ods are used to convert the taxon path source into an URI.
The filtering stage consists of applying the expression
entered by the user to the resulting document and convert-
ing the return value to a Boolean. Only if "true" the item is
shown in the output, otherwise it is suppressed. In the
software this means that also related resources, i.e. the
learning content, are not packed into the offline version.

Figure 2: UI for configuring taxonomy filtering

What has been an advantage above, the different name-
spaces, is a slight difficulty in the user interface (UI). As
the taxon path source is converted into a namespace, the
XPath expression must necessarily contain this name-
space, typically as a prefix for abbreviated writing. There-
fore the UI consists not only of the expression to use for
filtering. Additionally a box for entering the namespaces
with their prefixes is present, which are used in the ex-
pression (see Figure 2). These prefixes may differ from
those in the metadata, as XPath expression matching uses
the full namespaces for comparison; prefixes are used
only for easier construction and better readability. How-
ever, most expressions will only require a single name-
space. Exceptions are when several different classifica-
tions, not only several values from a single one, are com-
bined for selection.

Original (LOM):
<classification>
 <purpose>
 <source>LOMv1.0</source><value>discipline</value>
 </purpose>
 <taxonPath>
 <taxon>
 <id>9.3</id>
 <entry><string language = "en">Information

Science</string></entry>
 </taxon>
 <taxon>
 <id>9.3.1</id>
 <entry><string>Information Processing</string></entry>
 </taxon>
 <source>
 <string>http://www.example.com/science</string>
 </source>
 </taxonPath>
</classification>

Converted for filtering:
<discipline source="LOMv1.0">
 <InformationScience id="9.3"

xmlns ="http://www.example.com/ science">
 <InformationProcessing id="9.3.1"/>
 </InformationScience>
</discipline>

4. Example

The system has been tested through an introductory course
on Java programming. The manifest and the learning ma-
terials contain not only the lecture part, but also the ac-
companied practice, i.e. exercises assigned to students
(see Figure 4 for the basic structure; some chapters omit-
ted for clarity and size). However, these are actually two
separate courses, although tightly integrated (lecture and
practice). Therefore material must be provided separately
too: students may also (re-)take only one. The annotation
combined with taxonomy filtering allows creating both
practice and lecture material. Some elements are common,
e.g. introductory notes on course organization, while oth-
ers are specific, like required software and its installation
(practice) and final exam information (lecture).
Additionally two more “extracts” are used. Firstly, a sub-
set is created according to the topic, i.e. selecting a single
or several chapters. These could be used for special
courses, as repository for refreshing, or for obtaining
smaller parts, e.g. to transfer them to mobile devices with
limited resources. The second subset serves as an example
for a cross-section: all introductory parts are combined.
While probably not very useful for teaching, it could serve
as a kind of extended table of contents, showing prospec-
tive students all the topics contained in an overview.
For classifying the various parts two simple custom tax-
onomies were created. The first describes the topic of a
section. This is a classical subject hierarchy starting with
“Java” at the top and then covering sub-parts like “ar-
rays”, “strings”, etc. The second taxonomy is used to de-
scribe which part of a course some material belongs to and
what role it fulfills there. This hierarchy starts with “lec-
ture” or “practice” (other possibilities are irrelevant for
this specific course) and then continues with “slides”,
“examples”, “tasks”, etc. An example of a classification
taken from the course is shown in Figure 3.

4.1. Lecture/Practice extraction

For deriving the two separate materials the following ex-
pressions based on the educational objective are used:
• Lecture: educationalobjective/fceo:lecture
• Practice: educationalobjective/fceo:practice
For both, the namespace prefix “fceo” is mapped to “FIM-
course-educational-objectives”. As shown in Figure 5 and
Figure 6, only presentation and examples, respectively
tasks and their solutions are present. Not shown in this
example is, when a chapter is only present in one part of
the course. For instance, a section on software engineering
would perhaps be part of the lecture only. It would be
omitted completely in the practice, including the chapter
heading, etc. One specialty of this approach is, that, unlike
in the CPS specification, visibility is inherited: if a chapter
is invisible, all sub-parts are omitted too.

Figure 4: Complete course

Figure 5: Lecture subset

Figure 6: Practice subset

Therefore parent elements must be annotated according to
all classifications that some child elements might possess.
Otherwise, these would not be reached during the inspec-
tion to be checked against the expression, and therefore
also never shown in the result. This was a design decisions
to keep the system simple and intuitive, as local experi-
ence showed that teachers are easily confused by the non-
inheritance of visibility as specified by the CPS specifica-
tion: visible child elements are shown in place of their

<metadata xmlns="http://ltsc.ieee.org/xsd/LOMv1p0">
<lom><classification>
 <purpose>

 <source>LOMv1.0</source><value>discipline</value>
 </purpose>
 <taxonPath>
 <source>
 <string language="en">FIM-course-discipline</string>
 </source>
 <taxon>
 <id>Java</id>
 <entry>
 <string language="en">Progr. Lang. Java</string>
 </entry>
 </taxon>
 <taxon>
 <id>Strings</id>
 <entry>
 <string language="en">Strings</string>
 </entry>
 </taxon>
 </taxonPath>
</classification></lom>
</metadata>
Figure 3: Taxonomy annotation example
invisible parents.

4.2. Selecting the string chapter

Selecting a specific content chapter is simple. For exam-
ple, selecting only the part on strings would use the ex-
pression “discipline//dsc:Strings” with the namespace
“dsc” mapped to “FIM-course-discipline” (see Figure 7
for the resulting structure).

Figure 7: String chapter

Noteworthy within the expression are the double slashes,
resulting in all elements containing somewhere the anno-
tation “Strings” to be included. Although not present in
the example, this would include not only “Java/Strings”,
but also “API/Strings” or “HelperClasses/Strings”, reduc-
ing the expression complexity and allowing easy exten-
sion.

4.3. Introductory version

A more complex expression is needed for generating an
introductory course, i.e. including only the general sec-
tions but leaving out examples, tasks, etc. For this “educa-
tionalobjective/fceo:lecture/fceo:introduction | education-
alobjective//*[@id="organization"]” is used (see Figure
8). The prefix “fceo” is mapped identical as above.

Figure 8: Introductory version

This expression consists of a union of the introduction
section from the lecture and all organizational parts. For
the latter a different approach than before was taken. In-
stead of using the (language-dependent) entry here the id
is used exemplarily. Wherever in the hierarchy the id is
“organization”, this element is included in the output.

5. Evaluation

The approach of creating an intermediate representation
for classification metadata results in several advantages:
• Regardless of the metadata format (version/specifi-

cation) the selection is always identical. This is possi-
ble because the differences are only of syntactical na-
ture and the same content can be represented in all of
them. Expressions are therefore portable between ver-
sions but also between learning materials.

• A clear and simple syntax according to a public stan-
dard draws upon existing expertise by users. The learn-
ing curve starts slowly, so getting started is simple. Si-
multaneously complicated selections (see example on
introductory version) are possible as well.

• Separation from the syntax allows also different source
representations, e.g. derived from basic metadata in
RDF. Simultaneously the (previously purely technical)

format is changed to a more semantically-oriented rep-
resentation: sub-classes are described by consecutive
steps in the expression and the area they belong to is
converted to an easily understandable namespace.

However, some difficulties exist as well:
• As the main variant is based on the language-dependent

description, translated or misspelled content might lead
to erroneous results. Unfortunately, this is rather diffi-
cult to prevent. While using the ID is always possible
(see above) this would need extensive UI support for
constructing the expression. Such support is only pos-
sible when the taxonomy is known exactly and com-
pletely. As the taxonomy itself is not included in the
package, an improved user interface would only be
possible if the taxonomy were integrated into the soft-
ware or retrievable through a standard method and in a
standardized format.

• Conversion to element names and namespaces is re-
quired. While omitting spaces is quite simple to recog-
nize and remember for users, other changes which
might be necessary could complicate the expression.
As users must re-do these in their mind to create cor-
rect and matching expressions, this may become a li-
ability for complex naming schemes. However, espe-
cially the taxonomy values can be expected to be “or-
dinary” words for the creator of learning material and
not consist of special characters (signs). A different ap-
proach could be modeling the taxon path source not as
a namespace but rather as an attribute. In this case no
transformation would be required. However, then the
syntax would not be as similar to the semantics as pos-
sible and additionally collisions might occur through
the same term being used in two separate classifica-
tions, which is avoided here. Moreover, expressions
would become more complex.

The method has been applied to a course on Java pro-
gramming. Experiences with this system have been posi-
tive, as only a single source material package had to be
created and kept updated. An additional benefit is the
encouragement of adding metadata. While simple and
straightforward here, this metadata is available for later
reuse and for discovery in repositories as well. As not only
the course as a whole is described but its sub-elements as
well, reuse of parts is made easier.

6. Conclusions

While the approach is already useful and has proven its
suitability, further enhancements are possible. As identi-
fied previously, integrating at least some classifications
into software would help both authors during annotation
[15] as well as users in constructing selection expressions.
Adding these taxonomies should not be based on direct
hard-coding but rather in a standard exchange format. This
would allow institutions to add their custom taxonomies in
addition to publicly available ones. A specification that
could be used is VDEX [16], which supports both vocabu-
laries and taxonomies.

Another aspect for further improvement is annotation
itself. While technically simple to do, its amount could
perhaps be reduced. As previously identified, all elements
within a navigation path must be marked accordingly for
the “lowest” item to show up after filtering. While this
possesses the advantage of always working correctly, even
when extracting parts as new LO, it requires extensive
annotation. One possible approach to reduce the amount
of annotations is their inheritance.
Classification inheritance is already present in a certain
sense as items not annotated at all are implicitly defined as
similar to the annotation of their nearest ancestor. If this
ancestor is visible, all sub-elements without annotation are
visible as well. Interesting here is however the reverse
direction: If an element is marked for instance as
“A/B/C”, what can be said about its unannotated ances-
tors, so that these perhaps need not be annotated? All an-
cestors are probably at least of type “A/B”, otherwise the
specific classification would not be contained at that
place. It cannot however be determined whether there are
elements of type “A” only: all up to and including the root
might be “A/B” too in a specialized course.
But a significant problem occurs here: If the current item
is not part of a homogenous course but rather an inde-
pendent LO integrated at this specific position, this ap-
proach might err. The reason is that this method implicitly
assumes that the first occurrence of a sub-classification is
annotated. However, especially in the case described, this
need not be so. Elements might be present without meta-
data and only in the “middle” suddenly, e.g. through in-
cluding external resources, the annotation appears. More-
over, nothing can be derived about siblings. They might
be of the same classification (metadata omitted), of a par-
ent one (general overview on the detailed information in
the current item), of a sub-classification (additional de-
tails), or an unrelated one (separate chapter).
Therefore currently manual annotation is the only reliable
possibility and should be supported by tools to ease the
workload of authors and encourage them to add this in-
formation. Some help could be given through the guide-
lines outlined briefly, but a completely automatic system
seems not feasible in this way. Additionally, as the
IMS/IEEE LOM specifications provide no way to specify
that some metadata was derived automatically as com-
pared to manual annotation, parts extracted as new LO
would then contain this information as misleadingly “au-
thoritative” from the content author.
Automatically deriving subsets of courses through their
classification provides benefits based on existing meta-
data. Through this additional use case for metadata, au-
thors might be encouraged to add metadata to the LO
created by them, which is currently still a problem.
Through enabling the creation of a single master course
with various automatically derived sub-courses, problems
through missing updates or duplicated materials can be
avoided, reducing maintenance efforts.

References

[1] A. Ip, I. Morrison, M. Currie, What is a learning ob-
ject, technically? WebNet2001 Conference
http://users.tpg.com.au/adslfrcf/lo/learningObject(WebNet
2001).pdf
[2] M. Sosteric, S. Hesemeier. When is a Learning Object
not an Object: A first step towards a theory of learning
objects. International Review of Research in Open and
Distance Learning, 10/2002
http://www.irrodl.org/content/v3.2/soc-hes.html
[3] P. R. Polsani, Use and Abuse of Reusable Learning
Objects, Journal of Digital Information, 3(4), 2003
http://jodi.ecs.soton.ac.uk/Articles/v03/i04/Polsani/
[4] IMS Global Learning Consortium: Content Packaging
Specification.
http://www.imsglobal.org/content/packaging
[5] Z. Shen, Y. Shi, G. Xu, A Learning Resource Meta-
data Management System Based on LOM Specification.
The 1st International Conference on Web-based Learning
(ICWL2002). http://media.cs.tsinghua.edu.cn/~pervasive/
paper/200209-1.pdf
[6] D. A. Wiley, Connecting learning objects to instruc-
tional design theory: A definition, a metaphor, and a tax-
onomy. In: A. D. Wiley (Ed.). The Instructional Use of
Learning Objects, Bloomington, IN: Agency for Instruc-
tional Technology, 2002, 3–23
http://www.reusability.org/read/chapters/wiley.doc
[7] IMS Global Learning Consortium: Learning Resource
Meta-data specification.
http://www.imsglobal.org/metadata
[8] W3C: XML Path Language (XPath).
http://www.w3.org/TR/xpath
[9] W3C: Resource Description Framework (RDF)
http://www.w3.org/RDF/
[10] IEEE Standard for Learning Object Metadata
1484.12.1-2002
[11] Advances Distributed Learning Initiative: Sharable
Content Object Reference Model (SCORM)
http://www.adlnet.gov/scorm/
[12] J. Brase, W. Nejdl. Ontologies and Metadata for
eLearning. In: S. Staab, R. Studer (Eds.) Handbook on
Ontologies. Springer 2004, 555-574. http://www.kbs.uni-
hanno-
ver.de/Arbeiten/Publikationen/2003/Ontologies_for_elear
ning.pdf
[13] C. Qu, W. Nejdl. Integrating XQuery-enabled
SCORM XML Metadata Repositories into an RDF-based
E-Learning P2P Network. Educational Technology &
Society, 7 (2) (2004), 51-60
[14] jCAPT – Java Content Assembling and Packaging
Tools. http://jcapt.fim.uni-linz.ac.at/
[15] A. Brasher, P. McAndrew. Metadata vocabularies for
describing learning objects: implementation and exploita-
tion issues. Learning Technology Newsletter 5 (1), 24-27
http://lttf.ieee.org/learn_tech/issues/january2003/#9
[16] IMS Global Learning Consortium: Vocabulary Defi-
nition Exchange. http://www.imsglobal.org/vdex/

	ABSTRACT
	KEY WORDS

