KV Web Security:
Applications of Homomorphic
Encryption

Gerhard Potzelsberger, B.Eng.
May 23, 2013

Contents

1 Introduction 3
2 Usage Scenarios 4
2.1 Cloud Services i e 4
2.1.1 Medical Applications: Private data and Public functions . 5

2.1.2 Financial Applications: Private data and Private functions 6

2.1.3 Advertising and Pricing00 6

2.2 Electronic Votingo oo 7
2.3 DataMining 9
2.4 Biometric Authentication, 10

3 Homomorphic Encryption used in Practice 14
4 Conclusion 14

1 Introduction

Homomorphic encryption is a concept where specific computations can be per-
formed on the ciphertext of a message. The result of these computations is the
same as if the operations were performed on the plaintext first and encrypted
afterwards. So homomorphic encryption allows parties who do not have an de-
cryption key and thus don’t know the plaintext value, still perform computation
on this value.

Mathematically spoken is a homomorphic cryptosystem a cryptosystem whose
encryption function is a homomorphism, and thus preserves group operations
performed on ciphertexts. The two group operations are the arithmetic addition
and multiplication. A homomorphic encryption is additive if:

Elx+y) =E(x) &)

where £ denotes an encryption function, ® denotes an operation depending on
the used cipher and = and y are plaintext messages. A homomorphic encryption
is multiplicative if:

Ex-y) =E(x) ®E(Y)

where again £ denotes an encryption function, ® denotes an operation depend-
ing on the used cipher and x and y are plaintext messages.

There are two different types of homomorphic cryptosystems, fully homo-
morphic cryptosystems and partially homomorphic cryptosystems. Partially
homomorphic cryptosystems are defined over a group and therefore support
just a single operation on the ciphertext. This operation can either be an addi-
tion or a multiplication. Fully homomorphic cryptosystems are defined over a
ring and therefore support both operations, addition and multiplication.

The idea of computing with encrypted data is as old as public key cryptog-
raphy. It was first proposed in 1978 by Ron Rivest, Len Adleman and Michael
L. Dertouzos [15], who all worked at the MIT at this time. Just a few months
earlier, Rivest, Adleman and Adi Shamir had introduced the first implementa-
tion of a public-key cryptosystem, which is today known as RSA.

Rivest, Adleman and Dertouzos referred to computations on ciphertexts as
privacy homomorphisms. The original motivation for privacy homomorphisms
was to allow for an encrypted database to be stored by an untrusted third party,
while still allowing the owner to perform simple modifications such as updates
and queries. Nothing about the database contents is revealed to the third party.
In the conclusion of their paper, the authors outlined their optimism about find-
ing useful privacy homomorphisms which offer enough operations so the above
task could be accomplished.

The first homomorphic encryption schemes that were discovered were all
partially homomorphic. As mentioned above RSA was the first one and it is
multiplicative homomorphic when it is applied without padding. An example
for an additive homomorphic cryptosystem is the GoldwasserMicali cryptosys-
tem [11] which was proposed in 1982 or the Paillier cryptosystem [14] which

was proposed in 1999. A few years later, progress towards a fully homomorphic
cryptosystem was made. In 2005 Dan Boneh, Eu-Jin Goh and Kobbi Nissim [4]
devised a homomorphic cryptosystem that allowed an arbitrary number of ad-
ditions and a single multiplication on the ciphertext. Finally in 2009 IBM
researcher Craig Gentry [9] has published the first fully homomorphic encryp-
tion scheme which allows an arbitrary number of additions and multiplications
on the ciphertext. So with the scheme Gentry proposed any type of function
can be calculated on encrypted data.

In this work I will describe in which application scenarios researchers are
trying to make use of homomorphic encryption and what is already used in
practice.

2 Usage Scenarios

The demand for privacy of digital data is getting stronger as more and more
devices are using services that are offered over the Internet. Mostly this involves
communicating with a untrusted third party. Cryptosystems with the ability to
compute on encrypted data can help to implement services where the privacy
of a user is ensured despite the fact that private data is used.

This section will discuss possible applications of the homomorphic encryption
in the fields of cloud services, e-voting, data mining and biometric authentica-
tion.

2.1 Cloud Services

Since cloud storage and cloud computing platforms were developed, users have
the ability to outsource storage and computations on their data. Further it
allows businesses to offload the task of maintaining a data-center. However,
consumers and businesses are concerned about a possible loss of privacy which
leads to an slow adoption of cloud services. The privacy concerns can be miti-
gated if users encrypt the data they send to the cloud. If the used encryption
scheme is homomorphic, the cloud can still perform meaningful computations
on the encrypted data. As learned in Section 1 a fully homomorphic encryption
scheme is needed to perform arbitrary computation.

The main issue in this context is the question if fully homomorphic encryp-
tion schemes are efficient enough to be practical for cloud computing. Craig
Gentry estimated in an article [7] that performing a Google search with en-
crypted keywords would multiply the necessary computing time by around 1
trillion. A more scientific analysis of Gentry’s fully homomorphic encryption
system was done for example in [10], but Gentry’s estimation should make clear
that the performance penalty of this scheme is way to big to use it in practice.

Kristin Lauter, Michael Naehrig and Vinod Vaikuntanathan argued in their
paper [13] that there are many functions which could be useful for privacy pre-
serving cloud services, which can be computed by many additions and a small
number of multiplications on ciphertexts. For example, averages require no

multiplications, standard deviation requires one multiplication, and predictive
analysis such as logistical regression requires a few multiplications.

There is a class of homomorphic cryptosystems that satisfy exactly that need,
it is called somewhat homomorphic cryptosystems. Somewhat homomorphic
cryptosystems, which support a limited number of homomorphic operations, are
building blocks for fully homomorphic cryptosystems and provide much more
efficiency and shorter ciphertexts than their fully homomorphic counterparts.
A recent solution for such a scheme was introduced for example by Brakerski
and Vaikuntanathan [5].

Lauter, Baehrig and Vaikuntanathan [13] provided a few concrete applica-
tions where customer privacy is preserved while various kinds of computation
can be outsourced to the cloud. Namely, they detailed the medical, financial,
and advertising sectors which I will repeat here. There were two aspects of
the computation to consider: the data itself, and the function to be computed
on this data. They considered cases where one or both of these are private or
proprietary and should not be shared with the cloud. All data that is encrypted
and sent to the cloud is public-key encrypted with the content-owner’s public
key, using a semantically secure somewhat homomorphic encryption scheme.
Lauter, Baehrig and Vaikuntanathan described the three sectors as follows:

2.1.1 Medical Applications: Private data and Public functions

In [3], a private cloud medical records storage system (Patient Controlled En-
cryption) was proposed, in which all data for a patient’s medical record is
encrypted by the healthcare providers before being uploaded to the patient’s
record in the cloud storage system. The patient controls sharing and access to
the record by sharing secret keys with specific providers (features include a hier-
archical structure of the record, ability to search the encrypted data, and various
choices for how to handle key distribution). However this system does not pro-
vide for the cloud to do any computation other than search (exact keyword
match, or possibly conjunctive searches). With with homomorphic encryption,
we can add the ability for the cloud to do computation on the encrypted data
on behalf of the patient. Imagine a future where monitors or other devices may
be constantly streaming data on behalf of the patient to the cloud. With ho-
momorphic encryption, the cloud can compute functions on the encrypted data
and send the patient updates, alerts, or recommendations based on the received
data.

The functions to be computed in this scenario may include averages, stan-
dard deviations or other statistical functions such as logistical regression which
can help predict the likelihood of certain dangerous health episodes. Encrypted
input to the functions could include blood pressure or heart monitor or blood
sugar readings, for example, along with information about the patient such as
age, weight, gender, and other risk factors. The functions computed may not
need to be private in this case since they may be a matter of public health and
thus public.

2.1.2 Financial Applications: Private data and Private functions

In the financial industry there is a potential application scenario in which both
the data and the function to be computed on the data is private and proprietary.
As an example, data about corporations, their stock price or their performance
or inventory is often relevant to making investment decisions. Data may even
be streamed on a continuous basis reflecting the most up-to-date information
necessary for making decisions for trading purposes. Functions which do com-
putations on this data may be proprietary, based on new predictive models for
stock price performance and these models may be the product of costly research
done by financial analysts, so a company may want to keep these models private
to preserve their advantage and their investment.

With homomorphic encryption, some functions can be evaluated privately
as follows. The customer uploads an encrypted version of the function to the
cloud, for example a program where some of the evaluations involve encrypted
inputs which are specified. The streaming data is encrypted to the customers
public key and uploaded to the cloud. The cloud service evaluates the private
function by applying the encrypted description of the program to the encrypted
inputs it receives. After processing, the cloud returns the encrypted output to
the customer.

2.1.3 Advertising and Pricing

Imagine an advertiser, for example a cosmetics company, who wants to use con-
textual information to target advertising to potential customers. The consumer
uses a mobile phone as a computing device, and the device constantly uploads
contextual information about the consumer, including location, the time of day,
information from email or browsing activity such as keywords from email or
browser searches. In the future, imagine that information is uploaded poten-
tially constantly from video devices: either pictures of objects of interest such as
brands or faces which are automatically identified, or from a video stream from
a camera on the body which is identifying context in the room (objects, people,
workplace vs. home vs. store). When contextual information is uploaded to
the cloud server and made accessible to the cosmetics company, the company
computes some function of the contextual data and determine which targeted
advertisement to send back to the consumer’s phone.

Some examples of where context is important for advertising or providing
targeted coupons: beer commercials during sports events, or, you are near a
Starbucks in the morning and a coffee discount coupon for the Starbucks nearby
is sent to your phone, or, cosmetics companies market different products for dif-
ferent times of day (e.g. Friday night going out vs. Sunday morning hanging out
with the family), ads or coupons for shows if you are in New York near Broad-
way in the evening. Other (private) contextual data might be: your income,
your profession, your purchasing history, your travel history, your address, etc.

Encrypted version: The problem with these scenarios is the invasion of pri-
vacy resulting from giving that much detailed information about the consumer
to the server or to the advertising company. Now, imagine an encrypted version
of this entire picture. All the contextual data is encrypted and then uploaded to
the server; the advertiser uploads encrypted ads to the server; the server com-
putes a function on the encrypted inputs which determines which encrypted ad

to send to the consumer; this function could be either private/proprietary or
not. All contextual data and all ads are encrypted to the consumer’s public key.
Then the cloud can operate and compute on this data, and the consumer can
decrypt the received ad. As long as the cloud service provider does not collude
with the advertisers, and semantically secure homomorphic encryption is em-
ployed, the cloud and the advertisers dont learn anything about the consumer’s
data.

2.2 Electronic Voting

Electronic voting systems which are provided over the Internet could increase
the participants of an election as it eliminates the inconvenience of going to a
designated voting place. It would allow an eligible voter to participate from
any location that provides Internet access. However, guaranteeing security and
privacy are essential for electronic voting systems. Homomorphic encryption
schemes can help to hide the content of a ballot by calculating the tally without
decrypting any of the ballots. To counteract a corrupt authority the encryption
of the tally can be distributed to several authorities in such a way that only
coalitions of a certain size can decrypt the tally.

To get a carefully designed voting protocol that can’t be easily compromised
certain security parameters need to be fulfilled. The following list of security
parameters are quoted from [12]:

e Accuracy (Correctness) demands that the announced tally exactly
matches the actual outcome of the election. This means that no one can
change anyone elses vote (inalterability), all valid votes are included in
the final tally (completeness) and no invalid vote is included in the final
tally (soundness).

e Democracy: A system is considered to be ”democratic” if only eligible
voters are allowed to vote (eligibility) and if each eligible voter can only
cast a single vote (unreusability). An additional characteristic is that
no one should be allowed to duplicate anyone else’s vote.

e Privacy: According to this requirement no-one should be able to link a
voter’s identity to his vote, after the latter has been cast. Computational
privacy is a weak form of privacy ensuring that the relation between bal-
lots and voters will remain secret for an extremely large period of time,
assuming that computational power and techniques will continue to evolve
in today’s pace.

e Robustness guarantees that no reasonably sized coalition of voters or
authorities (either benign or malicious) may disrupt the election. This
includes allowing abstention of registered voters, without causing problems
or allowing other entities to cast legitimate votes on their behalf, as well
as preventing misbehaviour of voters and authorities from invalidating the
election outcome by claiming that some other actor of the system failed
to properly execute its part. Robustness implies that security should also
be provided against external threats and attacks, e.g. denial of service
attacks.

e Verifiability implies that there are mechanisms for auditing the election
in order to ensure that it has been properly conducted.

e Uncoercibility (receipt-freeness): An uncoercible scheme does not
allow the voters to convince any other participant (e.g. a coercer) on
what they have voted. More specifically, in an uncoercible voting scheme
a voter neither obtains, nor is able to construct, a receipt proving the
content of his vote.

e Fairness ensures that no one can learn the outcome of the election before
the announcement of the tally. Therefore acts like influencing the decision
of late voters by announcing an estimate, or provide a significant but
unequal advantage (being the first to know) to specific people or groups,
are prevented.

e Verifiable participation (declarability) ensures that it is possible to
find out whether a particular voter actually has participated in the elec-
tion by casting a ballot or not. This requirement is necessary in cases
where voter participation is compulsory by law (as in some countries, e.g.
Australia, Belgium and Greece) or social context (e.g. small or medium
scale elections for a distributed organisation board) where abstention is
considered a contemptuous behaviour.

There are several schemes proposed that adopt homomorphic encryption in
the domain of electronic voting. As an example I. Damgard and M. Jurik [8]
propose an electronic voting scheme that preserves the above parameters except
for the receipt-freeness. The following summary of the protocol is based on [12].

Their scheme involves M voters Vi,...,Vy , and N authorities Aq,..., An.
The initial scheme only allows for ”yes” or "no” voting, but it was later expanded
to allow l-out-of-L elections, essentially by holding L elections in parallel. A
bulletin board is used for communication among the participants.

In the announcement phase a key for the threshold generalised Paillier en-
cryption is generated and the public key is published on the bulletin board for
all to see, while the shares for the private key are secretly given to the corre-
sponding authorities Ay, ..., An.

In the voting phase each voter chooses a random r;, encrypts his vote v; as
E;, =&(vi,ri) =gY - r?s mod n*+! and attaches a proof that it encrypts either
0 or 1. The proof is generated using the Fiat-Shamir heuristic, incorporating
voter’s identity to prevent vote copying. The resulting vote consisting of the
ciphertext and the proof is published on the message board.

In the tallying phase each authority reads the posts on the bulletin board
submitted by the voters, and checks for each voter that he has only posted
one ciphertext accompanied by a valid proof that is an encryption of either
0 or 1. It then calculates the product of the ciphertext in the valid votes.
Because of the homomorphic property of the Paillier encryption scheme the
votes get added. The number of voters as well as the resulting product of
ciphertexts, E = [[, & (vi,) = (X, v; mod n [, ; mod n®t1), is published
on the message board. Each authority decrypts E with its key share and posts
the result on the message board together with a proof that the decryption was
correctly performed.

Having completed these steps, an appointed authority locates the first ¢
authorities that have posted a decryption share together with a valid proof of
it being legal. Using these shares the authority computes the product of the
published ciphertext to get the result of the election and posts it on the bulletin
board. The final tally consists of the number of valid votes and the number of
?yes” votes.

Anyone can verify that the votes that have been taken into account are
valid, by checking the proof of validity accompanying them. Correct partial
decryption by each authority can be verified by the proof of correct decryption
posted with the computed share. Finally, the actual result of the election can
be computed by anyone, by multiplying the published shares there is no need
for a key in order to do this.

2.3 Data Mining

Privacy concerns have become one of the major issues of data mining. Making
use of homomorphic encryption could help to protect sensitive attributes of cus-
tomers data. Current solutions that have been proposed to address the privacy
problem are using randomisation techniques on customer data. However such
solutions suffer from a trade-off of accuracy and privacy, the more privacy of
each customer has, the more accuracy the miner loses in his result.

Yang, Zhong and Wright [16] proposed a solution based on homomorphic
encryption that is both fully private and fully accurate. It allows a data miner
to compute frequencies of values or tuples of values in the customers’ data in a
privacy preserving manner. Technically, the problem can be reduced to a prob-
lem of securely summing private inputs, which is a similar to the problem of
e-voting (Section 2.2). The requirements for an efficient protocol in this domain
are that each customer only sends one flow of communication to the miner and
that no customer needs to communicate with other customers. Yang, Zhong
and Wright present a privacy-preserving joint frequency algorithm as well as a
naive Bayes classifier that uses the frequency algorithm as building block. For
simplicity reasons I will only detail their frequency mining algorithm here.

In the privacy-preserving primitive for frequency mining they consider a very
basic scenario where there are n customers (U;...U,) and each customer U; has
a Boolean value d;. The miner would like to find out how many d;’s are 1’s and
how many are 0’s without revealing any of the d;’s.

The protocol Yang, Zhong and Wright propose is based on the additively
homomorphic property of the ElGamal encryption scheme and works as follows.
Suppose that each customer U; has two pairs of keys, (z;, X; = ¢%), (y;,Y: =
g¥") where g is a generator of group G. The values x; and y; are private keys,
X; and Y; are public keys. Further, all customers have to know the values
X =TI, X,, Y =[], Y, as well as the generator g of group G. Each
customer U; sends the following to the miner:

m; = gdi . XYi

hy = Y%

Afterwards the miner calculates:

3

n
11
i=1

The miner can then find d, the sum of all d;’s, by checking for all d = 1...n if
g% = r. For the one d that holds the equation ¢¢ = r, d = i, di. A proof that
when the miner finds g¢ = 7, the value d is the desired sum, can be found in [16].

i
i

>

The privacy-preserving frequency mining algorithm was implemented in C
and a series of experiments was run by Yang, Zhong and Wright. They were
performed on a PC with a 1GHz processor and 512MB RAM. The length of the
cryptographic keys were 512 bit. In the protocol it takes each customer only
1 millisecond to prepare her message to the miner. The miner’s computation
is somewhat longer. Figure 1 shows the time the miner needs to compute one
frequency for different numbers of customers. For example, for 10.000 customers,
the miner’s computation takes 146 milliseconds.

160

140 |

120 4

146
117
100
83
53

a2
40 -
20 - I

0 . .

2000 4000 6000 8000 10000

Time (ms)
(=]
o

(=]
o
L

The Number of Customers

Figure 1: Servers Computation Time for a Single Frequency Calculation.

2.4 Biometric Authentication

With the emerge of biometric authentication systems and their ever growing
popularity in recent years, protecting peoples privacy has become increasingly
challenging. Biometric data is assumed to be public, as fingerprints, for instance,
are left on every object a person touches, and pictures of a persons facial area
can easily be taken without notice. It is therefore not the biometric data itself
that needs protection, but essentially the relationship between the identity and
the biometric feature of an individual.

I consider a generic environment, where an individual tries to authenticate
herself to a database using her biometric feature. Typically a reference biomet-
ric template for an individual is stored in the database. When a person wants
to authenticate herself she has to provide the system with a new sample of her
biometric trait, which is normally captured by a sensor (e.g. by a fingerprint

10

scanner or a camera for iris data). This sample is then matched against the
template in the database. As the relationship between the persons identity and
her biometric trait must be hidden, comparison of the enrolled template and
the newly captured sample has to take place in an encrypted domain. However,
the newly captured sample will vary heavily from the one already stored in the
database. Hence, using traditional cryptographic methods such as hash-values
is not suitable in this scenario but homomorphic encryption my help us here.

Biometric templates are data which often is represented as a binary feature
vector, such as iris codes, retina codes, or finger codes. Thus authentication
comes down to comparing two binary strings. Several proposals in this domain,
such as [6], have shown that one can use the Hamming distance between the
two feature vectors and a predefined threshold to achieve the comparison. Ho-
momorphic encryption can accomplish the privacy preserving binary template
similarity assessment in the encrypted domain.

Basically the biometric authentication protocol consists of two parts, the
enrollment phase and the identification phase. Enrollment is the process of
storing an individuals biometric trait in a database, whereas identification is a
one-to-many comparison in an attempt to identify an unknown individual. The
identification phase itself can again be divided into two parts. At the client side
a given template t is encrypted with the according public key and the resulting
binary string is transferred to the server component. The server component
consists of three independent parts, the authentication server AS, the database
server DB and a matcher M.

The authentication server AS deals with the clients service request and ran-
domly fetches all enrolled templates t;, i = 1,...,k where k denotes the number
of templates stored in the database. Each enrolled template is then zor-ed
against the encrypted template ¢t provided by the client. The resulting binary
string is randomly permuted using a permutation function 7 and sent to the
matcher M. As the permutation does not change the number of zeros and ones
in the binary string, the permutation has no effect on the resulting Hamming
weight. The matcher decrypts the permuted string using the private key and
calculates the Hamming weight h;, which again is sent back to authentications
server. If the minimum of all Hamming weights hq, ..., hi falls within a pre-
defined threshold 6 access to the system is granted, otherwise access is denied.
The whole identification process is depicted in Figure 2.

The privacy preserving property of this architecture is achieved by distribut-
ing the verification/identification process among several independent compo-
nents and it is essential that no single component is able to track a user and/or
can gain any sensitive relationship information between a persons identity and
her biometric trait.

One step of the above description needs to be further detailed. How can
the zor value of two binary templates be computed without revealing their
contents. Of course it is done by making use of the homomorphic property of
an encryption algorithm, but the exact way depends on the used encryption
algorithm. For the Goldwasser-Micali encryption scheme we can simply exploit

11

Step 3
E(t}, pk

k := No. of stored templates
t=rand(1,...,k)

Step 1
template t

Step 4

granted: min(h;) < 6
E(wor;) == m(E(t, pk) ®E(t;, pk))

denied: min(h;) >0

Step 5
hi == HW(D(E(zor;), sk))

Figure 2: Identification Architecture.

its homomorphic property. For any mj, ms € {0,1}
Dam(Eam(ma) - Ean(mz)) = my & ma

In contrast calculating the zor of two encrypted binary strings for the Paillier
cryptosystem is not as trivial. Thus the process of zor-ing two bit-strings needs
to be exermined more closely.

Definition 1. Let x = (z1...x),y = (y1...yk) be two binary strings of length
k. Then

As a consequence of Definition 1 a bit by bit encryption of the Paillier scheme
has to be applied and then the encrypted xor can finally be performed as follows:

; = —2y; mod n

Ep(i ® yi) = Ep(x) - Ep(yi) - (Ep(:))™ mod n?

where n is part of the public key for the Paillier cryptosystem and all encryption
steps also use the public key.

However, encrypting only a single bit is very inefficient as the Paillier cryp-
tosystem is designed to encrypt messages of length m < n. A different algorithm
for zor-ing two messages my, meo in the encrypted domain can be used which
exploits Paillier’s property to encrypt messages of length m < n. For the re-
mainder of this paper I refer to this algorithm as Paillier Chunkwise.

Before encrypting m; and ms, these messages are up-sampled as follows:

o [omyld], 21
M upli] = { 0, otherwise
i=1...2-length(m), j € {1,2}

Then two encrypted messages can be xor-ed as shown below:

12

(m1 @ ma)[i] = (Dp(Ep(mi,up) - Ep(m2,up) mod n?))[24]
i=1...length(m)
Finally I will look at the performance of the biometric identification archi-
tecture. The binary feature vectors got extracted from the Chinese Academy of
Science: CASIA V3 Interval Iris Database. All of the following results were ob-

tained using an Intel Core i7-2600 4x3400MHz PC with 4GB RAM. Moreover,
for all en- and decryption operations a key length of 1024 bits was chosen.

The first experiment in this section measures the identification performance
with only one person enrolled in the database. The results are summarized in
Table 1.

Table 1: Performance: 1 person enrolled

Scheme Time (sec)
Unencrypted < 0.1
Goldwasser-Micali 22.8
Paillier 551.9
Paillier Chunkwise 3.0

We can see that Goldwasser-Micali encryption scheme is approximately 24
times faster than the bit-by-bit Paillier encryption scheme, but still approxi-
mately 7 to 8 times slower than Paillier Chunkwise. Although Paillier Chunk-
wise is the fastest of the examined encryption schemes it is still 30 times slower
than using no encryption.

In the second experiment the identification performance with 30 individuals
enrolled in the database was measured. The results are presented in Table 2.

Table 2: Performance: 30 persons enrolled

Scheme Time (sec)
Unencrypted 2.5
Goldwasser-Micali 682.0
Paillier 16200.0
Paillier Chunkwise 90.0

We see that the identification performance of the encrypted schemes is now
approximately 30 times slower than with only one individual enrolled. This
means that the computing times of the encrypted schemes increase linearly for
each additionally enrolled individual. Therefore for large databases the iden-
tification process is very time consuming. For instance, if bitwise Paillier en-
cryption scheme is used a person has to wait 16200 seconds or 4.5 hours(!) for
its identification result. On the other hand the Goldwasser-Micali encryption
scheme reduces the waiting time to approximately 682.0 seconds (11.4 minutes).
By far the best results are obtained using Paillier Chunkwise which cuts down
identification time to 90 seconds. Still this is far too long to be applicable for a
real system.

13

3 Homomorphic Encryption used in Practice

The only real-life application that is using homomorphic encryption I was able
to find is the Helios e-voting system [1]. Helios offers a web-based, open-audit
voting system where anyone can create and run an election, and any willing ob-
server can audit the entire process. It is targeting online software communities,
local clubs, student government, and other environments where trustworthy,
secret-ballot elections are required but coercion is not a serious concern [2].

Helios uses the homomorphic property of the ElGamal cryptosystem to cal-
culate the tally without decrypting any of the ballots. The basic principle of
electronic voting described more detailed in Section 2.2.

The fact that it is very hard to find real-life applications that make use of
homomorphic encryption either means that it is not used very often in practice
or it is not mentioned in the application documentation. Knowing that opera-
tions on encrypted data are a huge computational overhead for an application,
the first statement might apply.

4 Conclusion

In this paper we saw that homomorphic encryption systems are very rarely used
in real-life applications. On the other hand it is an active research area where
different usage scenarios and protocols are proposed. In all usage scenarios ho-
momorphic encryption tries to ensure privacy of user data. It is remarkable
that usage scenarios which utilize fully- or somewhat homomorphic encryption
schemes are still quite abstract, without figures how they would perform in real
life. In contrast, usage scenarios that utilize a partially homomorphic encryp-
tion scheme include detailed protocols, often together with experiments from
implementations. The biggest drawback of applications that use homomorphic
encryption is the huge computational overhead that it takes to perform opera-
tions on encrypted data.

14

References

[1]

2]

Helios voting. http://http://heliosvoting.org/. Accessed: 2013-05-
14.

Ben Adida. Helios: web-based open-audit voting. In Proceedings of the
17th conference on Security symposium, SS’08, pages 335-348, Berkeley,
CA, USA, 2008. USENIX Association.

Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. Patient con-
trolled encryption: ensuring privacy of electronic medical records. In Pro-
ceedings of the 2009 ACM workshop on Cloud computing security, CCSW
'09, pages 103-114, New York, NY, USA, 2009. ACM.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas
on Ciphertexts. In Theory of Cryptography, pages 325-341. 2005.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-lwe and security for key dependent messages. In Proceed-
ings of the 81st annual conference on Advances in cryptology, CRYPTO’11,
pages 505-524, Berlin, Heidelberg, 2011. Springer-Verlag.

Julien Bringer, Hervé Chabanne, Malika Izabachene, David Pointcheval,
Qiang Tang, and Sébastien Zimmer. An application of the Goldwasser-
Micali cryptosystem to biometric authentication. In Proceedings of the 12th
Australasian Conference on Information Security and Privacy, ACISP’07,
pages 96-106, Berlin, Heidelberg, 2007. Springer-Verlag.

Michael Cooney. Ibm touts encryption innovation. http://www.
computerworld.com/s/article/9134823/IBM_touts_encryption_
innovation, 2009. Accessed: 2013-04-08.

Ivan Damgard and Mats Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In Proceedings
of the 4th International Workshop on Practice and Theory in Public Key
Cryptography: Public Key Cryptography, PKC 01, pages 119-136, London,
UK, UK, 2001. Springer-Verlag.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st annual ACM Symposium on Theory of Computing,
STOC ’09, pages 169-178, New York, NY, USA, 2009. ACM.

Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In Proceedings of the 30th Annual international con-
ference on Theory and applications of cryptographic techniques: advances
in cryptology, EUROCRYPT’11, pages 129-148, Berlin, Heidelberg, 2011.
Springer-Verlag.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play
mental poker keeping secret all partial information. In Proceedings of the
fourteenth annual ACM Symposium on Theory of Computing, STOC 82,
pages 365-377, New York, NY, USA, 1982. ACM.

15

[12]

[13]

Costas Lambrinoudakis, Dimitris Gritzalis, Vassilis Tsoumas, Maria
Karyda, and Spyros Ikonomopoulos. Secure electronic voting: the cur-
rent landscape. In DimitrisA. Gritzalis, editor, Secure FElectronic Voting,
volume 7 of Advances in Information Security, pages 101-122. Springer US,
2003.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homo-
morphic encryption be practical? In Proceedings of the 3rd ACM workshop
on Cloud computing security workshop, CCSW '11, pages 113-124, New
York, NY, USA, 2011. ACM.

Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Proceedings of the 17th International Conference on The-
ory and Application of Cryptographic Techniques, EUROCRYPT’99, pages
223-238, Berlin, Heidelberg, 1999. Springer-Verlag.

R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. pages 169-177. Academic Press, 1978.

Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-preserving
classification of customer data without loss of accuracy. In Proceedings
of the 5th SIAM International Conference on Data Mining, pages 21-23,
2005.

16

