
Single Sign-On: Reviewing the Field

Michael Grundmann, Erhard Pointl

Johannes Kepler University Linz

Abstract. The Idea of having only one password for every service has
led to the concept of single sign-on which is a much discussed topic
over the past years. This paper looks into the different architectural
approaches and uses them as a basis for categorizing the widely used
technologies today.

1 Introduction

The growing need for security and the even faster growing variety of applications,
services and systems requires an appropriate authentication infrastructure. The
diversity has led to an equally diverse range of authentication systems. Users
need to manage different usernames, passwords or other forms of authentication
to each of this systems. The wish for an single sign-on is therefore quite under-
standable. But the question of how such a single sing-on system should work is a
much discussed one. Apart from the benefits of having only one password there
could also be negative implications to the users security and privacy. Further-
more such a system would introduce a single point of failure, where one stolen
password can give access to a lot of services. Because of all this, it is time to
take a look at the current state of single sign-on systems.

2 Architectures

2.1 Pseudo SSO Systems[1][2]

One obvious approach for the relieve of the user is to support him or her with
the credential management. The user can store all passwords and authentication
information into an encrypted password file or database which is secured with a
master password. This password may be more complex than a normal password
because the user only has to memorize this single password. It is also possible to
secure the credential database with an fingerprint[3] or hardware based protec-
tion([4]). But as multiple different authentication processes are still taking place,
even if this happens without necessary user intervention, such systems can not
be called true single sign-on systems.

Implications[5][2] The credential database may be corrupted or lost, effec-
tively locking the user out if he can’t remember the passwords (which is likely



2 Michael Grundmann, Erhard Pointl

if they are not used regularly). On the other hand the user has to type the mas-
ter password very often, which may help him to memorize it. This also means
that an attacker only needs to get the master password to access all services
of the user. This solution also affects the users mobility because the credential
database has to be available on every computer he uses. To solve this problem
the credentials may also be stored online, but the user has to trust the provider
of such a service.

One main objective of single sign-on systems is the integration of different se-
curity domains. The different approaches to this can be classified in the following
categories:

2.2 Centralized SSO

The main characteristics of a centralized single sign-on systems are a centralized
authentication site and a centralized user database. Such a site has a trust re-
lationship with each of the Service Providers (SP) within a domain and is often
called a Trusted Third Party (TTP). The user only has to authenticate himself
to the TTP. Such systems differ in the way a user is authenticated and can be
further categorized as follows:

Token Based SSO[6] After a user is authenticated at the TTP he receives
a software token which is stored (cached) on his client machine. The Service
providers can validate such a token with cryptographic methods based on se-
cret keys (symmetric cryptography). Those keys establish a trust relationship
between the TTP and the SPs.

PKI Based SSO[6] In PKI based systems the user first has to generate an
asymmetric key pair. The public key of this pair has to be sent to the central
authentication site which is called Certification Authority (CA) in this case.
After the user has authenticated himself the CA signs his public key and sends
the certificate generated this way back to the user. The Service Providers are
now able to verify the users certificate by using the CA’s public key.

2.3 Federated SSO[6]

Centralized single sign-on Systems are limited to a single Environment, Com-
pany or Domain. To establish trust between different Domains, Federations are
needed. The goal is therefore a system in which a users credentials from his do-
main are accepted by a foreign domain without the user having to re-enter his
credentials. The foreign Domains TTP (or CA) has to accept the local Domains
credentials because of an existing contract or federation. No synchronization or
copying of credentials is needed. For PKI based Systems this may be accom-
plished by CA hierarchies or cross certification.

Structure[7]



Single Sign-On: Reviewing the Field 3

Circle of Trust The base of a Federated system is the Circle of Trust, where each
of the the Service Providers (Companies) have to trust each other. This Circle
not only has to be implemented technically (e.g.: CA hierarchies,..) but also via
business contracts between the participating Companies. Such contracts should
also include operating agreements on which each SP has to behave upon.

Identity Provider Inside a Domain it may be feasible to centralize the admin-
istration and management of user identity information using either one central
Identity Provider (IP) or forming a security domain containing of several IPs
each trusting each other. The later has a similar structure to the Circle of trust
but only within an organization.

Identity Federation Apart from the circle of trust SPs also have to negotiate
operating agreements with other SPs from other security domains. One possible
and important agreement is about the users privacy: A users identity (managed
by an IP) consists of a set of attributes[7], it should be possible to mark such
attributes as sensitive private data or as confidential information. Attributes
marked this way must not be transferred to other SPs. Normally such data is
not needed for authorization anyway. Those attributes which are allowed to be
transferred build a so called federated Identity of the user.

3 Comparison

First of all this section gives a few criteria of single sign-on systems and af-
terwards a categorization based on the criteria and the architectures. It ends
up with a classification of a few typical single sign-on products based on the
categorization.

3.1 Criteria

To be able to do a comparison, definitions of the following basic criteria are
needed: usability, security, performance, scalability, compatibility and mainte-
nance.

Usability The usability is defined as a measurement of how comfortable it is
to use such a system. The level of usability depends on the categorization. For
example a Federated single sign-on system increases the usability because the
users credentials from his domain are accepted by a foreign domain. A Central-
ized single sign-on decreases the usability because the user has to authenticate at
every domain. Using a pseudo single sign-on system is the worst case in respect
of usability.



4 Michael Grundmann, Erhard Pointl

Security Because SSO Solutions try to solve the multiple authentication prob-
lem security is always an issue. Not only needs the identity information (pass-
words, private data,..) be kept secure but it also has to be defined who may
access these information and how. If the information is kept at multiple loca-
tions the question of trust becomes more important. This is of course easier to
accomplish in centralized environments where typically only one company or
security domain is involved. In Federated systems security cannot be enforced
but only regulated by agreements along with the trust relationships. In Pseudo
SSO Systems Security depends heavily on the encryption of the authentication
information but may also be influenced by the reachability.

Performance The performance is another very important criteria which can
be reviewed by values like response time, time for doing a logon. This depth of
evaluation is not possible at this level, so the behavior of many users is evaluated
here. If the number of users increases, also the authentication authority has do
consist of multiple authentication servers[6]. Of course this criteria depends very
strongly on the real implementation and the architecture of the single sign-on
system.

Scalability As shown in [6] it doesn’t mean that if a single sign-on system is
used for authentication that there is not only one authentication server behind
the system. In terms of scalability it may have several authentication servers.
The grade of scalability depends on the already given categorization. The use of
an pseudo single sign-on system would decrease the scalability, because such a
system can only consist of a single password file.

Compatibility This criteria means, that it should be easy to integrate logins
and it should also be based on known standards. For example a password file as
known from pseudo single sign-on system would decrease the level of compati-
bility. In most cases they are developed internally. For centralized and federated
single sign-on systems a general classification is nearly impossible, because the
rating would depend to much on the real implementation of the system and the
used standards.

Maintenance The afford of spending time in maintenance of a single sign-on
system is measured here. This also can be weighted as maintenance costs which
is done in [1]. This costs are based on the architecture of the used single sign-
on system. For example in general maintenance costs for pseudo single sign-on
systems are high and for centralized and federated single sign-on systems they
are typically low[1].

Deployment This criteria measures the afford of spending time in deployment
of a single sign-on system. As shown in [1] this can also be weighted as de-
ployment costs and this costs are lower for pseudo single sign-on systems and



Single Sign-On: Reviewing the Field 5

higher for centralized and federated single sign-on systems. As an example for the
higher deployment costs of such a system the increasing importance of security
is marked out here.

3.2 Categorization

To give a kind of categorization the now defined criteria are assigned to the
architectures. For this the Table 1, where the architectures are outlined in the
horizontal and the criteria in the vertical is used. For categorization the following
signs are introduced: ”+” ,”-”, ”◦” and applied to the tuple of (criteria, archi-
tecture). The sign ”+” means that this criteria is fulfilled quite good for a given
architecture. A ”-” means that it is not or nearly not fulfilled. The ”◦” defines a
symbol between the other two, which means that the criteria is partially fulfilled
for the given architecture.

Pseudo SSO Centralized SSO Federated SSO

Usability - ◦ +

Security ◦ + ◦
Performance - ◦ ◦
Scalability - + +

Compatibility - * *

Maintenance - ◦ +

Deployment + - -
Table 1. Categorization of single sign-on systems

As Table 1 shows Pseudo SSO Systems are almost categorized with the ”-”
sign. But as already the name says this are only pseudo single sign-on systems
and such systems can’t be called true single sign-on systems. The only criteria
where the pseudo single sign-on system was good in rating was the deployment.
The reason therefore is that there the afford or the spent money for such a
system was rated. Because such a system is rather simple to implement, its costs
are quite low.

The next architecture to categorize are centralized single sign-on systems.
The result of the categorization is in average better than the one from the pseudo
single sign-on system, because they already implement parts of real single sign-on
systems. The major part which they don’t implement is the federation.

Federated SSO Systems had the best categorization in our case, because
they support all the criteria the other also do and they additionally support
the federation. Because of this very important point the federated single sign-
on is rated better in usability and maintenance. Usability of course increases
because now the user must not authenticate so often compared with different
centralized single sign-on systems. Comparing all different systems of course the



6 Michael Grundmann, Erhard Pointl

federated version would be better to maintain than several centralized single
sign-on systems.

For the criteria compatibility some architectures are marked by an ”*”. This
means that no conclusion can be given by only knowing the architecture. It
depends to much on the real implementation of the system. But as shown in
Table 1 pseudo single sign-on systems can be categorized by an ”-”, because
they mostly use proprietary password files or databases.

3.3 Products

Now some typical single sign-on products are categorized. Also their application
areas are discussed.

Kerberos[8],[9] Kerberos is a very famous centralized token based single sign-
on system. It was first developed in the 80’s at the Massachusetts Institute
of Technology (MIT). For using Kerberos, there must be a server providing a
service, a client and the KDC (Key Distribution Center). This KDC is splitted
into two parts (the Authentication Server AS and the Ticket Granting Server
TGS). The Client has to authenticate at the KDC before using a service on
the server. A so called TGT (Ticket Granting Ticket) is created and given to
the user after authentication. If the client want to use another service, another
authentication at the AS is not needed. Now he can directly contact the TGS
with his TGT to get a ticket for another service. The server of the new service
has to check whether the ticket of the client is valid or not. To summarize the
client has only to authenticate once and afterwards he only communicates with
the TGS as long as his ticket is valid.

To show up a known usage of Kerberos Microsoft Windows 2000[6] is given
as an example here.

PKI Based SSO as proposed in [10] by Eian and Mjølsnes. Their paper
suggests a system in which certificates with short validity periods are used for
single sign-on. Clients have to generate a cryptographic public-private key pair
and send the public key to the CA (called Authentication Server (AS)) upon
login. Based on the AS security policy the user is either authenticated via a
strong password or a hardware cryptographic token. If successful the AS signs
the public key generating a certificate which is sent back to the client. The
user may now access different servers (which trust the AS) by using the issued
certificate. Because of the short validity period of the certificate it may have to
be renewed several times during a session. This is done by creating a new key
pair and signing the renewal request with the old pair. After receiving the new
certificate the old key pair is destroyed. Of course this has to be done before the
validity of the certificate ends.

The Authentication Server only provides a centralized authentication, the
servers can therefore perform authorization and access control themselves. This
is important because most services need to store additional user attributes or



Single Sign-On: Reviewing the Field 7

access rights which would be difficult to centralize. This of course still fullfills
the single sign-on idea because the user has to identify himself only once (at the
beginning of each session).

Such an implementation is typically used in a company environment where
different services need to be connected via central authentication providing single
sign-on.

shibboleth[8], [11] shibboleth is an open source project based on SAML (Se-
curity Assertions Markup Language). It is categorized into the federated single
sign-on systems. As federated single sign-on describes, shibboleth supports au-
thentication over federated domains. If a user tries to access a service on a
different domain the user can choose which information is sent from the local
domain of the user to the federated domain. This is the case to save the privacy
of the user. For example in an academic field the personality is not needed ev-
ery time, it would be enough if the system knows that for example the user is
participant on a course to authorize for getting course material. Of course the
user has to be authenticated on the local system before he can visit a federated
domain.

A typical implementation of shibboleth consists of an identity provider, a ser-
vice provider and a WAYF (where are you from?)-Service. The identity provider
holds all the users and their additional attributes. The service provider provides
services to the user. If he would like to use such service, the service provider con-
tacts the identity provider to get information about authorization. The identity
provider creates so called assertions which describes the authorization and sends
them back to the service provider. The WAYF-service is optional and it can
automatically find the preferred identity provider and it also can act as proxy
between the service provider and the identity provider while the authorization
process.

Shibboleth is often used in academic fields. To give a local example also the
university of Vienna uses shibboleth.

Microsoft Passport[12] Passport from Microsoft is a centralized single sign-
on system and was first introduced in 1999. This system is centralized, because
only one entity (Microsoft) can authenticate a user. For using the Passport both,
the service provider and the user, have to register at the Passport Server. The
user has to register with email address and password. After this registration a
pseudonym (Microsoft call it PUID) is assigned to the user. The Service Provider
has to provide Microsoft information about his service and his safety guidelines.
Afterwards a unique id is assigned to the Service Provider and a key for encryp-
tion of the communication with the Passport is given to the Service Provider.

While the user tries to access the service provider, he is redirected to the
login of the Passport Server. The login is done with the already registered email
address and password. After a valid login the user is redirected back to the service
provider and cookies are stored on the users maschine. In this cookies among
other things the users PUID is stored. With this pseudonym, which doesn’t say



8 Michael Grundmann, Erhard Pointl

any details about the user, now the service provider can identify the user behind
it. Also while connecting to another service, this cookie can be used. Therefore
the cookie will be sent to the Passport Server. So the user hasn’t to sign on with
email address and passwort again. The server validates the cookie and when this
was successful he redirects to the service provider again. The cookies are deleted
when signing out of the system. Afterwards the Passport server also notifies the
service provider with the information of the sign out of the user.

Microsoft Passport of course is used by Microsoft themself. For example their
email service Hotmail uses this system. Also other service provider are using this
single sign-on system. But as already mentioned before there is only one entity
to authenticate.

4 Conclusion

The Idea of single sign-on is not a new one but some time has passed since its
first appearance therefore it was time look at the current state of SSO systems.
This paper described the main architectures and their advantages and disadvan-
tages. No single system has come out as the winner and the right system for an
application area has to be chosen according to its needs and circumstances. To
aid this decision this paper categorized single sign-on systems and picked out
the main interesting criteria of every category. The result of this comparison can
be found in Table 1. There were also given examples of in-use products for each
architecture and their typical field of usage.

References

1. Pashalidis, A., Mitchell, C.J.: A taxonomy of single sign-on systems. LECTURE
NOTES IN COMPUTER SCIENCE (2003)

2. Roßnagel, H., Zibuschka, J.: Single sign on mit signaturen. Datenschutz und
Datensicherheit - DuD 30(12) (2006)

3. Park, B., Hong, S., Oh, J., Lee, H., Won, Y.: One touch logon: Replacing multiple
passwords with single fingerprint recognition. In: CIT ’06: Proceedings of the
Sixth IEEE International Conference on Computer and Information Technology,
Washington, DC, USA, IEEE Computer Society (2006) 163

4. Jones, M.F., Zachai, A.: Encrypted data storage card including smartcard inte-
grated circuit for storing an access password and encryption keys (April 1997)

5. Adams, A., Sasse, M., Lunt, P.: Making Passwords Secure and Usable. PEOPLE
AND COMPUTERS (1997) 1–20

6. De Clercq, J.: Single Sign-On Architectures. LECTURE NOTES IN COMPUTER
SCIENCE (2002) 40–58

7. Delessy, N., Fernandez, E.B., Larrondo-Petrie, M.M.: A pattern language for iden-
tity management. Computing in the Global Information Technology, International
Multi-Conference on 0 (2007) 31

8. Zwattendorfer, B.: Single sign-on unter verwendung der bürgerkarte. Master’s
thesis, Graz University of Technology (May 2006)



Single Sign-On: Reviewing the Field 9

9. Stojceski, D.: Konzeption einer kerberos-basierten single sign-on lösung für ein
ausgewähltes szenario im hoch-schulbereich. Master’s thesis, University of Applied
Sciences of Bonn-Rhein-Sieg (March 2006)

10. Eian, M., Mjølsnes, S.: Large scale single sign-on scheme by digital certificates
on-the-fly. In: Norwegian Network Research Seminar. (2005)

11. Morgan, R.L., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Federated
security : The shibboleth approach. EDUCAUSE Quarterly 27(4) (2004)

12. Geihs, K., Kalcklösch, R., Grode, A.: Single sign-on in service-oriented computing.
In: ICSOC. (2003) 384–394


