
Technisch-Naturwissenschaftliche
Fakultät

Improving security when using the Internet
Message Access Protocol

(IMAP) – in a corporate environment

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

NETWORKS AND SECURITY

Eingereicht von:
Macskási Csaba, BSc

Angefertigt am:
Institut für Informationsverarbeitung und Mikroprozessortechnik

Beurteilung:
o. Univ. Prof. Dr. Jörg R. Mühlbacher

Assoz.Prof. Priv.-Doz. Mag. Dipl.-Ing. Dr. Michael Sonntag

Mitwirkung:
Dr. Dipl.-Ing. Oberrat Rudolf Hörmanseder

Linz, Juli 2011

Abstract (English)

IMAP is a widely used protocol for retrieving e-mail messages. It's popularity is caused by

features like support for multiple connections, centralized storage and notification in case of

new messages. Remarkably, current security solutions such as firewalls and antivirus software

cannot control or limit IMAP communication based on the content of the transferred

messages. E-mails cannot be reviewed appropriately regarding threat due to viruses, spam and

extrusion prevention while being transferred over this protocol. This thesis analyzes the

possibilities of the IMAP protocol and provides possible solutions for the mentioned issues.

Finally an own proxy software solution for corporations is built, which has the capability to

inspect live, TLS / SSL-encrypted IMAP traffic and alter it on the fly, if required.

Documentation for this software is provided in form of a handbook in an own chapter. The

consequence is better handling and safer operation of the IMAP protocol in corporate

networks.

2

Abstrakt (Deutsch)

IMAP ist ein weit verbreitetes Protokoll zum Abrufen von elektronischer Post. Es ist populär,

weil es Funktionen wie gleichzeitige Verbindungen, zentrales Speichern und das Melden

neuer Nachrichten unterstützt. Erstaunlicherweise können aktuelle Sicherheitslösungen wie

Firewalls oder Antivirensoftware die IMAP-Kommunikation nicht aufgrund dessen Inhaltes

kontrollieren oder einschränken. Nachrichten können nicht angemessen auf Gefahren durch

Viren, Spam und Datendiebstahl überprüft werden, wenn sie über dieses Protokoll gesandt

werden. Diese Diplomarbeit analysiert die Möglichkeiten des IMAP-Protokolls und bietet

mögliche Lösungen für die genannten Themen. Zum Schluss wird eine eigene Software für

Unternehmen entwickelt, welche die Fähigkeit hat, in Echtzeit TLS / SSL-verschlüsselten

IMAP-Datenverkehr zu inspizieren, und zu verändern, falls dies erwünscht ist.

Dokumentation für diese Software gibt es in Form eines Handbuchs in einem eigenen Kapitel

dieser Arbeit. Die Konsequenz ist ein besserer Umgang und die sicherere Verwendung des

IMAP-Protokolls in Netzwerken von Unternehmen.

3

Content

Acknowledgment.. 7

1.Introduction..7

2. Theory... 8

2.1.Why IMAP is an issue..8

2.2.Available products..8

2.3.Possible architectures... 9

2.4.Timing and performance ... 12

2.5.Keep Alive Bytes..21

2.6.TLS / SSL...24

2.7.Determining protected IMAP accounts..26

Automatic protection with timeout..27

Administrator's O.K. for protection...29

2.8.Virus scanning..30

2.9.Detecting begin and end tags..33

2.10.Partial fetching... 36

2.11.Inserting a virus warning message... 40

2.12.Mail User Agents..43

3.Implementation.. 46

3.1.An early attempt... 46

3.2.Final design.. 47

3.3.Flowchart: HandleClientSide... 51

3.4.Access control.. 53

3.5.Handbook for administrators..55

3.5.1.Quick setup of TLS-proxy with IMAP plugin..55

3.5.2.Configuration file options...56

3.6.Debian package.. 59

4

3.7.Dependencies..61

3.8.INIT scripts...63

3.9.Testing architecture.. 64

3.10.MUA test results...69

4.Summary.. 78

4.1.Results.. 78

4.2.Problems and shortcomings..79

Bug No. 1...79

Bug No. 2...80

4.3.Ideas for further work...80

Literature...81

Abbreviations.. 84

Appendix...85

Appendix A: Sourcecode of an early attempt:... 85

Appendix B: Prepare-network.sh... 86

Appendix C: Init script... 87

Illustration Index

Illustration 1: IMAP-filtering architecture with application level proxy..................................10

Illustration 2: Consistency between IMAP clients..10

Illustration 3: possible IMAP-filtering architecture..12

Illustration 4: Flowchart: Solution to the timing problem.. 15

Illustration 5: Flowchart: improved solution to the timing problem...16

Illustration 6: IMAP proxy delay.. 20

Illustration 7: way through the ISO-OSI layers.. 23

Illustration 8: STARTTLS.. 24

5

Illustration 9: End to end point security..26

Illustration 10: Determining protected IMAP accounts..27

Illustration 11: WEB-GUI...30

Illustration 12: Direction of protection... 32

Illustration 13: Chunked fetching... 39

Illustration 14: Mozilla Thinderbird v3.1.9: fetch by chunks... 40

Illustration 15: MUA distribution... 43

Illustration 16: Desktop MUA distribution...44

Illustration 17: IMAP-filtering architecture, early attempt...46

Illustration 18: TLS-Proxy entities... 48

Illustration 19: TLS-Proxy entities exploded..50

Illustration 20: Flowchart: HandleClientSide... 52

Illustration 21: environment during development...66

Illustration 22: environment during long term test: network architecture................................ 68

Illustration 23: environment during long term test: flow of information..................................69

Illustration 24: Mutt.. 70

Illustration 25: Infected Message..71

Illustration 26: IMAP plugin, debug output..72

Illustration 27: Testing STARTTLS... 73

Illustration 28: Thunderbird, attachments...74

Illustration 29: Thunderbird, success.. 75

Illustration 30: Windows Live Mail, success..76

Illustration 31: Wireshark, proof of TLS.. 77

6

Acknowledgment
I would like to thank all persons who contributed to the success of this Master thesis with

their professional or personal support.

A special thank goes to o. Univ. Prof. Dr. Mühlbacher for the supervision of this thesis.

Dr. Dipl.-Ing. Oberrat Hörmanseder provided me with valuable technical information which I

am especially grateful for.

I would also like to thank Mr. Wiesauer who made my internship at Underground_8 Secure

Computing GmbH possible in the first place and Dipl.-Ing. Aspetsberger who provided me

with technical information on a daily basis.

I further want to thank my parents Dipl.-Ing. Macskási Gábor and Mag. Macskásiné Kiss

Márta and my grandfather vitéz Dr. Kiss Ernő, who supported me the whole time and made it

possible for me to study in the first place.

1. Introduction
One of the most used protocols for e-mail retrieval by mail user agents is IMAP. However,

tools to filter this kind of network traffic are very rare and not frequently used. This is a

serious security hole as to achieve better security traffic should be either blocked or filtered.

This is like the security check at the border of two countries: In order to prevent unwanted

persons from entering a country, either all vehicles must be checked for these targets, or

alternately no one may be allowed to enter the country. These two options can be considered

safe. Right now IMAP is a black minivan which is almost always allowed to pass borders

without being stopped. This thesis describes thoughts on how to make these minivans stop for

a security screening. The acquired theoretical knowledge is used to develop a proxy

application which can handle also the black van called IMAP.

In order to give this thesis some practical meaning and to avoid being stuck on a theoretical

level the mentioned application was designed and developed during an internship at a

company called Underground_8 Secure Computing GmbH [23]. This company produces

firewall appliances which lacked an application level support of IMAP. The gist of the

7

internship is that they can include the developed proxy into their “MF”-series firewall

appliances [19].

2. Theory

2.1. Why IMAP is an issue

Compared to other mail retrieval protocols such as POP3, IMAP is quite complex and

difficult to handle. It nativly supports a great number of authentication methods. It can be

either tunneled over SSL/TLS by an additional layer, or alternately the „STARTTLS“

command can be used to negotiate unencryptedly which encryption methods are supported

and then to switch to an encrypted channel. According to RFC3501, IMAP contains 50

different commands and responses without experimental ones. Unlike in case of POP3,

developing a semantic layer, which understands the logic of IMAP is necessary for an IMAP-

proxy which alters connection data and communicates over the same connection to the real

IMAP server as the client. IMAP is an interactive protocol. Filtering communication data in

real time requires many resources and causes mail retrieval not to be as interactive as without

filtering. While the proxy is scanning for viruses or spam, the client has to wait. The issues

caused by delays are even mentioned in the corresponding RFC:

„The LIST command SHOULD return its data quickly, without undue delay. For example, it

SHOULD NOT go to excess trouble to calculate the \Marked or \Unmarked status or perform

other processing; if each name requires 1 second of processing, then a list of 1200 names

would take 20 minutes!“ [1]

As a consequence designing an IMAP-proxy for our own needs from scratch would be a non

trivial issue and is not the optimal solution to the given problem.

2.2. Available products

A more satisfying solution than developing an own proxy is to review the available open

source software and to consider extending or altering an existing solution. Conveniently the

used development system comes with a variety of IMAP software:

• “imapproxy”: This is a caching proxy for the IMAP protocol which needs an own

instance for every backend (destination). It's main objective is session handling for

8

webmail clients which have a tendency to drop connections easily. From the legal

point of view imapproxy could have been used easily as a base for this thesis as it is

licensed under the GNU General Public License version 2 [24]. However, after careful

reviewing it was clear that because of the difficult backend management, usage as a

transparent filtering proxy cannot be considered.

• “imapfilter” [26]: This tool is an IMAP client, which alters mailboxes, copies and

moves mail according to predefined rules. It is not a proxy server, but could be useful

to remotely manage or filter mails. It is also free software and is included in the

Debian [25] distribution.

• “perdition”: This software is a mail retrieval proxy server which supports the

protocols POP3 and IMAP. Support for SSL/TLS/STARTTLS is built in and it

supports multiple backends. This seems to be the optimal candidate as a base for a

spam filtering proxy solution. Due to its license which is GNU GPL version 2 [24] it is

possible to modify the source code in according to our needs.

There are commercial products such as Junos Security from Juniper Networks [27], which offer

similar functionality as needed in this thesis. The issue with these are their licenses. Source

code is not available and their usage is not free, so they could not be used as basis for this

thesis. Also the research within this thesis resulted in similar functionality and limitations as

in case of Junos Security. Such limitations are described in section 2.10. of this document.

2.3. Possible architectures

In order to manipulate the data stream of an IMAP connection the proxy server needs to have

application level understanding of the connection and needs support for the semantic level of

the communication. This would imply that there is a single connection between the proxy and

the backend. This connection is used to retrieve requested data for the client and to filter /

scan messages on the server for viruses and spam. This architecture would look something

like this:

9

The spam scanning software (in this case Spamassassin) would have access to mails via the

proxy server. After evaluation of the messages it would be the proxy server's job to mark or

delete them accordingly. That again implies, that the proxy needs to have a cache, which can

be accessed by the client and the spam scanning software. This however leads to consistency

problems:

Illustration 2: Consistency between IMAP clients

This image shows how two clients communicate with the same server, accessing the same

mailbox simultaneously. The connection of client A is filtered, while client B has a non

10

Illustration 1: IMAP-filtering architecture with application level proxy

filtered connection. This means that client B has access to messages (which are probably

spam or contain malware), which are invisible for client A. One could assume that there is

nothing wrong with this, as client B sees the “regular” mailbox, while client A has an

“improved” version. In fact there are cases where this is not acceptable. Imagine the

following: Rob sits in his office and checks his incoming mail with his desktop machine,

which connects to the IMAP server over the proxy with spam scanning abilities. Rob likes to

be up to date and has an e-mail client running also on his smart phone at all times. The phone

however connects to the external IMAP server via 3G and bypasses the spam scanning proxy

successfully. The result is inconsistency, where Rob gets alerts on his cell phone from

incoming mails, which are not present when viewed from his desktop machine.

The solution for this issue is a proxy, which does not filter the connection, but instead

modifies the data directly on the IMAP server. As a result the same messages are visible for

all clients, independent of the source of their connection.

As the best candidate for an existing proxy which could be modified to our needs is called

“perdition” and does not fully understand IMAP. However, it is only used to handle

encryption as a trusted third party and to dump login data which was sent by the client. From

this point on the proxy has nothing to do except to shovel data through the TCP connection.

The rest is done by another piece of software, which is called “scan connector”:

11

Illustration 3: possible IMAP-filtering architecture

In this design a second IMAP connection is established to the backend. This connection is

used to retrieve messages, scan them by a third party spam scanning solution such as

spamassassin and to flag or delete inappropriate messages. From the server's point of view,

the spam scanning solution is just another client which reads and deletes messages. Unlike

POP3, IMAP accepts several connections to the same mailbox and according to RFC3501

(IMAP4rev1) the server is responsible for keeping the clients in a consistent, synchronized

state. The advantage of this solution is not only consistency, but also spam scanning for all

clients, even those, which are not behind the proxy after the proxy was used the first time. In

other words, Rob connects from his work machine to the IMAP server, the transparent proxy

successfully gathers login and password and checks the mailbox periodically for spam

regardless whether Rob's work machine is turned on or off. This way also Rob's smartphone's

mail client is well protected against spam, even if Rob is outside his office.

2.4. Timing and performance

Beside quality, also quantity is an entity of mission critical importance. On one hand, quantity

in this case refers to the amount of messages, which have to be scanned within a given period

of time. If the speed is not assured which is needed to scan the given quantity of mail, IMAP

12

will be useless due to delays. On the other hand, quality stands for the accuracy of the virus

scan's result. IMAP, being an interactive protocol has to be considerably responsive. This is

true especially for the LIST command, which according to the corresponding RFC “should

return it's data quickly”. This command is issued right when an IMAP connection is

established and when the proxy should scan these messages, which have to be delivered

instantly. Just to get a feeling how much time the scanning process consumes, some tests have

been performed.

The test was performed on one desktop computer which has one 3Ghz Northwood core, 2gb

RAM and Ubuntu as operating system. This box run spamassassin and isbg.py (the script,

which fetches messages and passes them on to spamassassin) natively. A virtual computer

with Debian and sufficient RAM was serving as IMAP-server. The network connection

between these boxes was a 1000 Mbps connection bridged to the physical interface.

A simple script has sent 50 spam messages to the server with a rather simple bash command:

imap­server:~# for i in `seq 1 50`; do cat message_sample | mail u8; done

The file “message_sample” is an unwanted message with 3.1kb. Then the host computer was

searching for spam, which was measured be the “time” command:

root@mcs­desktop:/home/mcs/imap_proxy# time ./isbg.py ­­imaphost
192.168.0.249 ­­imapuser u8 ­­imappassword u8pw
0 spams found in 50 messages
0/0 was automaticaly deleted

real 2m24.415s
user 1m51.660s
sys 0m4.080s

The careful reader will ask the question, why 0 spams were found. There are two explanations

for this: Either the sensitivity of spamassassin was not set high enough, or I prepared the

sample “spam” not carefully enough: The sender was root and the header (especially the

“received”-lines) were valid. This process has been performed several times under slightly

different conditions. The differences in run time are not worth mentioning.

Even an other connected IMAP client, which has to be informed all the time about changes in

the mailbox via untagged server responses did not produce any measurable drop in processing

speed. Don't forget that such updates occur not just if spam messages are moved or expunged,

but also when the “\read” or “\recent” flag is removed.

13

For each message the test system needed 2.88 seconds for scanning. This result was

calculated from the code sniplet above. The duration of the command is divided by the

amount of scanned mail:

(2*60sec + 24.4 sec) / 50 = 2.88sec.
If the implementation of the proxy server and spam scan is blocking, than the response of the

“LIST” command is delayed by 2.88 seconds per message. In case of one or two incoming

mails at a time this seems to be acceptable, but just imagine the typical use case of a

businessman opening his laptop in the morning or an e-mail address of any company's support

department. They would have to wait several minutes until they can view their incoming

mails. This does absolutely not comply with rfc3501.

The result of this experiment clarified that the original, blocking architecture of the imap-filter

solution cannot be final. The following flowchart shows a solution to this problem:

14

Illustration 4: Flowchart: Solution to the timing problem

Upon the connection attempt from the client, instead of blocking the IMAP connection the

proxy shows a fake mailbox with a kind note that the user's mails are being examined. The

messages are shown for the user only after the examination process. Although this seems to

be a quite elegant solution, consistency is not given in case of multiple devices where at least

one device is not behind the proxy. Also for the realization of this flowchart application level

understanding of IMAP has to be implemented in the proxy.

It could be a better compromise to show all incoming mails instantly and to run periodic

checks where spam is filtered or deleted. This would not delay mail delivery and could

15

*

provide reasonable protection against spam with acceptable speed after the first time a

mailbox is retrieved. The flow chart of this improved model could look something like this:

Illustration 5: Flowchart: improved solution to the timing problem

 * 'Untagged' refers to the IMAP response from the server without a command number tag

16

“Sighup” [28] is a standard signal found in POSIX [29] systems which indicates the death of the

controlling process / terminal. In this case sighup means immediate termination of the

program.

As one can see this flowchart shows a non blocking spam filtering architecture because the

first action of the proxy is to establish an unfiltered connection to the real IMAP server for

client communication. In case of a newly learned account all mails (also older ones) will be

checked for spam. Later just those with the “\unread” flag have to be checked. This means

that read messages are not checked twice. This is of crucial importance regarding

performance. Just consider how long it would take to recheck a typical mailbox containing

several hundreds of mails every time a connection is established.

As for general performance, this spam-scanning proxy does not need more resources than

other solutions which are directly connected to the MTA or filter SMTP traffic, because it

uses the same backend as other software in it's environment: Spamassassin. That means that

the performance of any typical appliance (specified in filtered messages / time) is not affected

by the presence of IMAP filtering. The minimal overhead of the proxy server itself is not

worth mentioning as it does not have application level understanding of the protocol and

basically all it's job is to shovel data from one connection into another one without altering or

analyzing it in any way.

The idling time between two spam scans should be the administrator's choice. If this time is

chosen too large, spam is not filtered effectively: In case of an interval of one hour the user

would receive an hour's spam until it is properly dealt with. On the other hand if this value is

too small like a few seconds, it will open connections more frequently thereby unnecessarily

using resources. It could even occur that two scanning instances overlap and scan the same

account simultaneously. This does not have to be prevented by the software because this case

should never occur while using a reasonable configuration. The recommended value for this

setting depends on the amount of new messages and the available computing power and

varies between 5 and 60 minutes.

Another important aspect of timing is the scanning for viruses. As mentioned in section 2.8.

of this document, in contrary to spam scanning, virus scanning has do be performed on the fly

as it is not an option to let viruses into the protected network even temporarily. The duration

of the scanning procedure depends of course on the computing power of the computer as well

17

as on the virus scanning software and the size of the message being scanned. In case of a dual

level architecture, which means that more than one virus scanner is used, the needed resources

roughly double. In case of uniprocessor systems this means that also the duration of scanning

doubles. Depending on the actual performance of the proxy system it is not obvious that the

added security of having two virus scanners is more important than being able to download

the message faster.

Within this thesis the Clam AV software is used for timing tests. This software will also be

used on the appliance which the IMAP proxy will run on. In order to get a feeling for the

performance of the virus scanner a flash video file with a size of 1.5 mb was scanned. In case

of e-mail a message of this size could contain for instance two high resolution pictures. This

amount of data can be considered a quite common scenario. Here are the results using the

„clamscan“ command:

bitumen@turul:/home/bitumen/filmek/youtube$ ls ­lh italian_in_malta.flv
­rw­r­­r­­ 1 bitumen bitumen 1.6M Jun 29 2008 italian_in_malta.flv
bitumen@turul:/home/bitumen/filmek/youtube$ clamscan italian_in_malta.flv
italian_in_malta.flv: OK

­­­­­­­­­­­ SCAN SUMMARY ­­­­­­­­­­­
Known viruses: 852564
Engine version: 0.96.4
Scanned directories: 0
Scanned files: 1
Infected files: 0
Data scanned: 1.51 MB
Data read: 1.50 MB (ratio 1.00:1)
Time: 6.377 sec (0 m 6 s)
bitumen@turul:/home/bitumen/filmek/youtube$
For this file with a size of 1.5 mb clamscan needed 6.38 seconds. This is a quite unfavorable

result. Imagine that when fetching a message additionally to a probably slow network

connection there is a delay of over 6 seconds. That would render the planned software

unusable. One could think that 1.5 mb are quite big and that the delay would be smaller in

case of messages with plain text content. However scanning a file with a file size of 4 Bytes

needed also 6.07 seconds. The difference between the durations of the performed scanning

operations are too small to be greatly influenced by file size. Obviously if a file is bigger,

scanning it takes more time. However the scanning overhead in case of the 1.5mb file

compared to the 4 Byte file was 6.38-6.07=0.31 seconds. That means that scanning 1mb of

data additionally takes approximately 0.31/1.5=0.2066 seconds. 200ms/mb is an acceptable

number. However, the scanning duration of approximately additionally 6 seconds regardless

18

of file size has to be improved and cannot be accepted in a production environment. As it

turns out, Clam AV loads it's virus signatures into the memory in these 6 seconds.

Conveniently that can be done in advance by using the command “clamdscan” instead of

“clamscan”. The difference between these two commands is that “clamscan” is a stand alone

binary and “clamdscan” uses a scanning daemon which runns all the time in the brackground

and holds the virus signatures in memory. A requirement for this is that this daemon called

“clamd” is running. Scanning the 1.5mb file from the previous example with the “clamdscan”

command looks like this:

bitumen@turul:/home/bitumen/filmek/youtube$ ps ax | grep clam
 1993 ? Ssl 0:05 /usr/sbin/clamd
 4603 pts/3 S+ 0:00 grep clam
bitumen@turul:/home/bitumen/filmek/youtube$ clamdscan italian_in_malta.flv
/home/bitumen/filmek/youtube/italian_in_malta.flv: OK

­­­­­­­­­­­ SCAN SUMMARY ­­­­­­­­­­­
Infected files: 0
Time: 0.182 sec (0 m 0 s)
bitumen@turul:/home/bitumen/filmek/youtube$
The result shows that scanning with the scanning daemon is even faster than expected: The

duration for the 1.5mb test file was 182ms which gives us 121.3ms per mb which equals 8mb

per second. Keep in mind that the accuracy of measuring this short durations is greatly

influenced by the resolution of the system time. Measuring larger values clarified that

accuracy is sufficient. In case of a linear relation for a 10mb file the scanning daemon would

need about 1.2 seconds. Tests show that the relation is in fact linear:

bitumen@turul:/tmp$ dd if=/dev/urandom of=rand bs=1M count=10
10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 3.0535 s, 3.4 MB/s
bitumen@turul:/tmp$ clamdscan rand
/tmp/rand: OK

­­­­­­­­­­­ SCAN SUMMARY ­­­­­­­­­­­
Infected files: 0
Time: 1.093 sec (0 m 1 s)
bitumen@turul:/tmp$
Scanning took 1.09 seconds instead of the estimated 1.2 seconds. The conclusion is that if

“clamdscan” is used to scan messages, scanning will take approximately 120ms/mb on a

machine with a Pentium M 745 processor which provides sufficient performance for

messages of a few mega bytes.

Additionally to the duration of the virus scan there is additional delay due to caching behavior

within the proxy. Without proxy the message is delivered by shoveling the requested parts of

19

the RFC 2822 encoded message (Internet Message Format) over a TCP connection. In order

to actually find viruses it is necessary for the virus scanner to scan the message in once piece.

It is not possible to apply a virus scanner on a TCP stream. Even if that was possible it would

not make sense to do so as if a virus is found in the middle of the stream it is not possible to

“unsend” the first part of the stream which the client already received. Instead the message

has to be cached, scanned and then forwarded in case of it being free of viruses. The

consequence of caching is delay.

Illustration 6: IMAP proxy delay

Assuming that the network connection between server and proxy and between proxy and

client both have the same bandwidth, the following formula specifies the total delay caused

by the virus scanning proxy in case of message retrieval:

 Tdelay = ttransfer + tscanning

To get a better feeling for the delay, here is an example from an everyday scenario: The

bandwidth between server and proxy is 5MBitps (broadband connection), and between proxy

and client 100Mbitps (full speed Ethernet). The e-mail which is retrieved via IMAP consists

of 2MB (RFC 2822 size, header included). The proxy needs 120ms/MB to scan the message.

Without proxy downloading the message takes:

2MB / 5Mbitps = 2*8Mbit / 5Mbitps = 3.2sec

20

This value is increased by the imap proxy to:

(2*8Mbit / 5Mbit/s)*1000 + 2*120ms + (2*8Mbit / 100Mbitps)

*1000 = 3600ms = 3. 6sec

Keep in mind, that the integer 1000 as multiplier refers to time (ms) and not to data volume.

These calculations do not include internal computations performed by the proxy such as the

overhead of memory allocation or parsing the traffic for keywords. The partial fetching

feature of the IMAP protocol can cause much more significant delays. This is usually the case

just with certain IMAP clients and is described in chapter 2.10.

Another aspect of timing which has to be considered are timeouts. The only timeout which is

specified by RFC 3501 for IMAP is the auto logout timeout on the server side. This should

not affect an IMAP proxy at all as it occurs just if the IMAP server does not receive any

command from the client for at least 30 minutes. The only case where the proxy could alter

the behavior of the auto logout mechanism is if the client sends an idle command every 29

minutes and a few seconds to keep the connection alive and the delay of the proxy causes this

command to arrive more than 30 minutes after the last one at the server. In case of the server

having a 30 minute timeout it drops the connection. As a result the IMAP client has to log in

again.

2.5. Keep Alive Bytes

A more important part of timeouts which is not dealt with by the RFC is how long it may take

to send the response to commands like “fetch”. This is especially important for an IMAP

proxy as messages which are downloaded have to be cached for scanning before they can be

sent to the client. During this time the client may drop the connection and reissue the fetch

command because it is not aware of the proxy and it's effect on the IMAP server's behavior.

This issue has been experienced in case of large attachments and the MUA Mozilla

Thunderbird / Icedove with the partial fetch feature turned off.

One possible solution is that the proxy sends small parts of the message which is being cached

to the client before it is evaluated. If too much is sent in advance, the proxy looses it's

functionality. However, even a rather short e-mail header with one “received” entry has about

200 bytes. As the smallest amount of data which can be sent to the MUA is one Byte, even in

the worst case 200 messages can be sent without the risk of allowing the message body or

21

even attachments to pass to the client. If we consider that in the default configuration of the

mail transfer agents Exim and Postfix in the Debian distribution the maximal message size of

e-mails is 50MBytes, even in case of the biggest attachments one Byte of the message can be

safely sent to the IMAP client every 50MB*(1024^2)/200 = 262144B = 256KB. The

following calculation determines the duration between Bytes which are sent in advance in this

worst case scenario if the 3G connection with a bandwidth of 5MBitps from the example

above is used:

5Mbitps * 1024 / 256*8kBit = 5120kbitps / 256*8 kBit =

2. 5 /s ec .

2.5 such keep alive Bytes can be sent per second which allows even a ridiculous timeout of

less then half a second on client side. Keep in mind that this value is true for the most

probable maximum message size with a small message header. Let us look at a more probable

case in which a 2MB message with a 400Byte header is retrieved with a bandwidth of

0.2Mbitps:

0.2Mbitps * 1024 / (2*8Mbit*1024/400B) = 5/sec

It is known that by delivering bytes of the header one by one while caching or evaluating the

message timeouts on client side can be avoided. There is no need for such a timeout to be

known in case the header is sent to the client in advance as the system works even in case of

very short timeouts. However it would be an advantage if there was a standardized value as

that would make it possible to prevent unnecessary keep alive Bytes to be sent to the client.

The absence of timing requirements on server side except for the vague description of the

“LIST” command is definitely a shortcoming of RFC 3501.

As good as the working principle of keep alive bytes is, it proves to be just as effective as the

underlying system makes it possible. In order to see what is under the IMAP plugin of TLS-

Proxy, first it has to be placed somewhere in the ISO-OSI model [31]. It's place within the

ISO-OSI model is the application layer, which is layer number 7. It cannot be placed on

lower layers because it has the ability to alter the communication on layer 7. The fact that the

IMAP-plugin cannot talk IMAP itself implies that the proxy lies just “almost” on layer 7.

Within a computer's networking stack the information has to be reached from layer 1 up to

layer 7 where it is processed by the IMAP proxy before it is sent back down to layer 1 where

it is sent in the client's direction:

22

Illustration 7: way through the ISO-OSI layers

On the way of the information through the layers delay is caused by several factors. The most

significant aspect are buffers. Especially layer 4, the transport layer which is responsible for

flow control can cause delay while waiting to fill buffers before sending data to improve

overall throughput performance. IMAP uses TCP on layer 4 so some sort of buffering is

always present. IMAP over UDP is not defined. In case of keep alive bytes the time of arrival

is of crucial importance because it's main purpose is to prevent timeouts. If it arrives after the

timeout has already occurred communication is interrupted and the keep alive byte is useless.

Every layer in the communication causes additional overhead due to protocol headers. So

does TCP. The goal of it is to collect the ideal amount of data in a buffer and then send it. If

an application tries to send just one Byte, TCP is likely not to send it right away because the

protocol headers' sizes are multiple times as big as the one byte which the proxy wants to

send. The drop of performance due to small buffer- / window-sizes is described further in

section 2.10.

However, the idea behind the keep alive byte is not high throughput performance but more the

urgent delivery of the smallest amount of data which can be transmitted at one. For this

purpose the Transmission Control Protocol provides an own flag within it's protocol header

which causes some TCP stacks to handle it with higher priority. This flag is called the PSH or

push flag:

“The sending user indicates in each SEND call whether the data in that call (and any

preceeding calls) should be immediately pushed through to the receiving user by the setting

of the PUSH flag.”, [32]

23

So in theory the PSH flag solves the timing issue of keep alive bytes. Practically it can work

similarly as in case of Telnet and SSH: Keystrokes are sent immediately despite of their small

data size. However, it is not guarantied that packets are delivered instantly:

“A TCP MAY implement PUSH flags on SEND calls. If PUSH flags are not implemented,

then the sending TCP: (1) must not buffer data indefinitely, and (2) MUST set the PSH bit in

the last buffered segment (i.e., when there is no more queued data to be sent).”, [30]

This means that the implementation of the PSH bit in TCP stacks is optional. If it exists on the

host where the proxy is being run, the PSH flag can be set to increase the probability of

timeout prevention.

2.6. TLS / SSL

Using IMAP as a clear text protocol causes similar problems as other legacy protocols such as

FTP or Telnet. Due to privacy issues an encrypted version of IMAP was needed. RFC2595 [12]

specifies how to use IMAP on top of a TLS layer. There are basically two solutions:

• The first one is to wrap SSL around IMAP and offer this service on the dedicated port

993. Doing this would result in port 143 being obsolete as clear text connections are

not wanted.

• The second possibility is introduced by RFC2595 and provides a more elegant

solution to the problem. Only the original port 143 is used and an own command

named “STARTTLS” was introduced.

Illustration 8: STARTTLS

At the very beginning of an IMAP conversation the client issues the “CAPABILITY”

command. The server answers by sending a list of supported features, usually including

STARTTLS. In this way the client knows that encrypting the connection is possible and may

24

issue the STARTTLS command. After the handshake, which includes negotiating keys and

checking either one or both certificates, the TLS layer is set up and all further communication

is done over this additional TLS layer. It is crucial to note how important the handling and

checking of certificates are in order to prevent person-in-the-middle attacks, which is

basically the illegal way of what the TLS-Proxy does under the name “trusted third party”.

The aspect of certificate checking is also mentioned in RFC2595:

“During the TLS negotiation, the client MUST check its understanding of the server

hostname against the server's identity as presented in the server Certificate message, in order

to prevent man-in-the-middle attacks.” [12]

Another interesting capability of IMAP is called “LOGINDISABLED”. If the corresponding

feature is enabled, this capability is advertised just until “STARTTLS” is issued. An example

for this is given in RFC2595 [12]:

“C: a001 CAPABILITY
S: * CAPABILITY IMAP4rev1 STARTTLS LOGINDISABLED
S: a001 OK CAPABILITY completed
C: a002 STARTTLS
S: a002 OK Begin TLS negotiation now
<TLS negotiation, further commands are under TLS layer>
C: a003 CAPABILITY
S: * CAPABILITY IMAP4rev1 AUTH=EXTERNAL
S: a003 OK CAPABILITY completed
C: a004 LOGIN joe password
S: a004 OK LOGIN completed”
After the encrypted channel has been set up it is not advertised any more. This makes sense as

“LOGINDISABLED” forbids authentication with login credentials. The result is that sending

login name and password over the connection is not accepted unless the channel of

communication is encrypted. This measure makes it more difficult to sniff login credentials

which enhances security. However, the online scanner which is part of this thesis and scans

IMAP accounts for spam requires login credentials to be sniffed by the proxy which is used.

This means that the proxy server has to filter the IMAP-server's capabilities so that login

credentials would be used. This does not affect security as TLS is still used externally.

Another aspect of security which is worth emphasizing is that TLS does not guaranty that

only the recipient of the message is able to read it. TLS makes it nearly impossible to

eavesdrop on the network traffic in clear text. However, MTAs may store or transfer these

messages without encryption before they are fetched over IMAP. Looking at the delivery

chain of a message there are several nodes where security can be compromised:

25

Illustration 9: End to end point security

As the graphic shows beside IMAP there is also the SMTP protocol which can be

eavesdropped on. SMTP is used for communication between the Mail Transfer Agent,

possible mail relays and finally the Mail Delivery Agent. One possible solution to this

security issue is to use end to end point security products such as PGP [33]. This program

encrypts the content of messages which means that scanning for spam or viruses is useless.

The application, which was developed in this thesis is not compatible with end to end point

security products.

2.7. Determining protected IMAP accounts

A general issue while designing or configuring security solutions is the philosophy of

protection. There are two extremes: Either the firewall allows all traffic and has no filtering

effect at all, or it blocks all traffic, making communication impossible and rendering the

product totally useless as well. The goal is to have a design which does not need to be

configured excessively and preferably offers protection just by activating a checkbox on some

web GUI. In case of IMAP filtering inside of a firewall two different ways can be considered

possible, which are shown in the following flowcharts and are described below:

26

Illustration 10: Determining protected IMAP accounts

Automatic protection with timeout

Using this method the proxy scans authentications on the fly in case of plain text

authentication or even as a trusted third party with an own, valid certificate in case of

encrypted connections and learns login credentials of IMAP mailboxes on the fly. Triggering

protection is done just by the presence of an IMAP connection if filtering is activated on the

web GUI of the software. This solution requires just one check box to be set, but is affected

by the guest problem.

Think of a company network where mail servers and their administration are outsourced. It is

a desired behavior that all employees messages are checked for spam and viruses. Private

27

accounts can be included as well due to possible company policies. However the question,

whether guest's mailboxes should be checked or not does not have a clear answer:

• On one hand filtering spam can be considered harmless and useful also for guests.

• On the other hand it is most probably not the desired behavior that guest's mailboxes

are filtered even after they left the office. This could affect also other companies' mail

accounts! There is no trivial way of determining whether the guest has already left the

building / the company's site or not. To use GPS [34] tracking or MAC-address

registering and tracking would have to be used to determine the physical location of a

device. This however could be overridden by malicious users by faking mac addresses

and would hereby open a whole new spectrum of issues. Also such a tracking system

is way beyond the borders of this thesis.

This also concludes that if automatic protection without explicit confirmation of an

administrator is only acceptable if there is a reasonable timeout in case of user inactivity. This

way also guests' accounts are filtered. After they leave the protected network with their

devices their accounts are still checked until a timeout triggers the removal of the given

account from the list of protected accounts. This timeout has to be chosen very carefully:

If chosen too small, even own employees' accounts can be left unscanned if their desktop

computer is turned off for too long or their notebooks are out of the office network. The

consequence of the accidental removing of accounts is that until the next connection to the

mailbox, messages are left unfiltered. This way successful spam protection cannot be

provided.

If the timeout is chosen too big, the above mentioned guest problem occurs. Depending on the

amount of guests and mail traffic also performance problems can occur as the system tries to

scan an unnecessarily large pool of mail accounts. Note that all messages with the “\unread”

flag are checked. Accounts which are not checked frequently can contain a large amount of

messages which probably should not even be filtered. An example for this case is an account

with automatically generated mail like logs. It is quite likely that a frequently running cron

job or a daemon will have some problem and will start to send error messages for root. For

such messages spam filtering just does not make sense.

Also automatic protection of mailboxes can be a potential attack vector for denial of service

attacks. If a malicious user named “Rob” fills some mailboxes with spam collected from the

28

internet or any other generated messages and then connects to these mailboxes simultaneously

from within the protected network the firewall's resources will be used to filter these messages

which are never going to be read or used in any way. Think of following scenario: Our test

hardware which has been used to determine the software's performance (see chapter 2.4.)

needs in average 2.88 seconds to check one message. So all Rob has to do is filling 5

mailboxes with 150 messages. This is still a rather small value! Each mailbox requires

150*2.88 sec = 432 sec of processor time. Considering 5 mailboxes and assuming that spam

filtering is done by one core 432sec*5= 2160 sec which is equal to 36 minutes. By a relatively

small amount of mails and with little effort Rob could cause excessively high load for more

than half an hour. This issue could be worked around by giving spamassassin a relatively low

priority and thereby preserving the responsiveness of other application running on the same

hardware. However this behavior is likely to be considered a design flaw. A down to earth

solution is not to check any mailboxes automatically thereby eliminating the guest problem as

well as the possible attack vector for DoS attacks.

Taking the edge of the guest problem does not mean that there will not be any performance

issues at all. There has to be sufficient computing power available to scan non-guest

mailboxes.

Administrator's O.K. for protection

Instead of automatically scanning newly learned accounts another possibility would be to

store the names of these accounts in a list, present them to the administrator and let him

decide whether that account should be checked or not. This could be done over a web

interface with one main switch which turns on IMAP filtering and one check box for each

learned account. In this case the system would not interfere with guest's computers and their

mail accounts. It would be also possible to choose just those mailboxes which really need

scanning and thereby save resources.

Beside of all these advantages the only known problem with this design is that human

intervention is needed for the system to work. Especially in case of a bigger network with

several hundred IMAP connections this would result in a performance issue on the human

side. Options on the web interface which allow to select all mailboxes and uncheck those

which are not needed could provide a satisfactory solution.

29

This is an example of how the web interface could look like after integration into the

Underground_8 MF70 firewall. Here the administrator has to enable scanning of accounts one

by one. Note, that the lines in the image above represent the IMAP login name and the IMAP

server in the format “login@server”. They are not necessarily E-mail addresses. This format

is common. It is for example used by the command line client of the secure shell.

2.8. Virus scanning

After already having a first impression of how to implement the spam scanning software

during an internal meeting the question was raised, what is more important: Spam scanning or

virus scanning? While spam is annoying and more a convenience factor, computer viruses can

compromise workstations or even a whole network. At this point it became clear that spam

scanning has to be the secondary goal of this thesis, as the main purpose is to enhance security

which is done by keeping viruses and other malware outside of the protected network. In

30

Illustration 11: WEB-GUI

mailto:login@server

order to secure the internal network it is essential to scan all traffic from the internet. Because

of this there are two choices: either blocking the IMAP ports (143 and 993) or to filter the

traffic over these ports which requires a transparent proxy with virus scanning capability.

Also the design of an asynchronous online scanner as described in section 2.3. had to be

rethought as virus protection has to be done on the fly. It is a no go criteria if a potentially

dangerous message can be downloaded over IMAP before being scanned by the asynchronous

scanner at a later point in time. It became clear that the practical part of this thesis will be split

into a transparent proxy with virus scanning capability and an online scanner which deletes or

moves spam on the IMAP server. Following criteria were agreed upon:

must have:

• transparent proxy

• logging login information on the fly for the asynchronous scanner

• no caching (storage of messages on the firewall)

• scanning of the message body for viruses on the fly

• account / domain exclusion (“blacklisting”)

• scanning of TLS connections done by the existing TLS-Proxy

optional features:

• asynchronous client / online scanner

• anti virus and anti spam solution for remote IMAP clients which do not communicate

over the IMAP proxy

• account management interface (WEB-UI)

After evaluation of available proxies it became clear that in order to support the scanning of

TLS encrypted connections an existing, general TLS proxy with this feature has to be

extended by an IMAP module which supports the scanning and finding of viruses. This leads

to the question, where viruses or other malicious code can be located within the IMAP traffic.

Two attack vectors were found:

• The first is the sending of manipulated commands which do not comply with RFC

3501. Implementations of IMAP servers, which contain bugs may be vulnerable to

certain buffer overflow or denial or service attacks. If for example an IMAP server

does not perform sufficient bounds checking on message UIDs or the length of login

credentials, the whole service could be taken down by a manipulated fetch or login

31

command. This thesis is not going to deal with the enforcement of syntactic and

semantic correctness of IMAP traffic and therefor cannot protect against such attacks.

• In case of the second attack vector the target of the attack is the MUA. The proxy is

just used to forward the malicious code to the IMAP client. Such code can be located

within the header of the message which includes the subject, or in the body which can

contain text or attachments. The subject is important on its own as the IMAP protocol

makes it possible to download just the subject or just the header of a message so it can

be considered an own attack vector. The subjects of the messages have to be returned

by the IMAP server upon request of the client immediately, so scanning for viruses is

not recommended here. However, the message body with attachments is the most

probable place for malware to be located at. This means that the developed software

must be able to locate message bodies within the stream, cache them until the server

has sent the whole message, evaluate it and depending on the result of the virus scan

either send it to the client, or cut out the content, leave the header, insert a virus

warning and then send it to the client.

At first glace it seems to be straight forward that only the data stream has to be analyzed

where the server is the source and the client is the destination. However IMAP also has a

feature where messages can be uploaded to the mailbox. This happens for example if

messages are moved to the “sent” folder or the draft “folder”.

If traffic, where the server is the destination and the client is the source is not scanned,

messages containing malicious code can be uploaded to the mailbox located on the IMAP

server. This could be potentially dangerous for other IMAP clients which access the same

mailbox but are not located behind the proxy server.

Illustration 12: Direction of protection

On this picture it is visible that the network behind the IMAP proxy is secure even if one of

the machines within the network uploads messages with malicious content to the IMAP

32

server. However, these messages can infect those clients, which connect to the same server

and are not using the proxy (e.g. client B).

Another important aspect of message scanning is the input format of the e-mail being

scanned. The knowledge which is available about these messages are that they comply with

the Internet Message Format as described in RFC 2822 [18]. In order for the virus scanner(s) to

be successfully scanned multipart messages have to be split and attachments have to be

extracted into separate files to be scanned independently. The following command can be

used for MIME decoding [17]:

~$ ripmime ­i <msg> ­d <output_dir>
The separated parts of the multipart message can be found in the directory “output_dir”. If the

decoding of MIME is not done, many virus scanners will not produce any usable result

because they cannot decode MIME themselves and as a result their virus signatures will not

match. Viruses will not be found.

Testing of the IMAP plugin's virus filtering capabilities had to be tested. As sending real

viruses in e-mails over several networks is not something what a responsible software

developer would do, the EICAR signature [35] was used. This rather short string's signature is

implemented in all up to date virus scanners and was designed especially for testing purposes.

The signature itself looks like this:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR­STANDARD­ANTIVIRUS­TEST­FILE!$H+H*
After MIME decoding of messages the IMAP plugin handles messages with this content as

infected.

2.9. Detecting begin and end tags

In order scan messages for viruses on the fly the most difficult and important aspect is to

detect the beginnings and ends of messages. If either of these does not work, the proxy looses

functionality: Either it lets messages pass without being scanned because they are were not

found, or it just caches without writing to the client as all IMAP traffic is handled as part of

the message.

As writing a parser for IMAP traffic which can detect messages semantically from the context

was out of the scope of this thesis, another method of handling at least the fetch command had

to be found in order to detect the transfer of e-mails within the IMAP stream. The first idea

was to look for the „FETCH“ command originating from the client to detect when a message

33

is requested. This command can be executed according to RFC 3501 with the following

arguments:

“ALL, FAST, FULL, BODY, BODY[<section>]<<partial>>, BODY.PEEK[<section>]
<<partial>>, BODYSTRUCTURE, ENVELOPE, FLAGS, INTERNALDATE, RFC822,
RFC822.HEADER, RFC822.SIZE”
Due to the large number of options and possible responses handling the “FETCH” command

issued by the client seemed to be an overkill for the needed functionality. This is the reason

why this command is not described further. Also not all responses to these commands have to

be scanned. If just the size of the message according to RFC 822 or the header is requested,

scanning is not necessary as viruses are not located there. If these commands were used to

detect messages, also the tagged server response would have to be analyzed as it is possible

that instead of the message body the server simply sends “NO - fetch error: can't fetch that

data” or “BAD - command unknown or arguments invalid”. Both responses comply with RFC

3501 and could cause unwanted behavior of the proxy. Also the structure of a message

transferred over IMAP can not be known in advance for sure as it is not specified completely

by RFC 3501: „Any following extension data are not yet defined in this version of the

protocol. Such extension data can consist of zero or more NILs, strings, numbers, or

potentially nested parenthesized lists of such data.“, [1]

A much simpler and more robust solution to this issue is not to pay any attention to the

command which the client issues, but rather parsing the traffic originating from the IMAP

server for message bodies. This way fetch requests which don't cause any message bodies to

be sent are ignored. Negative server responses such as “NO” or “BAD” are no issues either,

as message bodies are not transferred and not detected. A consequence of this behavior is that

messages can be scanned just in one direction: when they are transmitted from the server to

the client. The effect of this one way scanning is described in section 2.8.

The only requirement for this solution is that a reliable way of finding the begin- and end-

positions of messages in the traffic which is sent by the server has to be found. This can be

tricky as if not the RFC822 message or an equivalent macro is requested as message format,

the e-mail can contain arbitrary character sequences including symbols which have semantic

meaning in the IMAP protocol. This has to be taken very seriously to prevent code injection.

In such a scenario the attacker could fake a tag at the beginning of the message which signals

the end of an IMAP response and then append any kind of malware to the message. The proxy

would scan the message just until the faked end tag. This is not acceptable as it is an

34

exploitable design flaw. The solution to this lies within the header of the IMAP response.

Before sending the message to the client, the server calculates the size of the message which

is being transferred and places it's size in bytes in the message header. If an end tag is found

within the message at a position which is smaller than the message size, that end tag is faked

and must be handled as plain text without semantic meaning. The amount of bytes in the

message header can be safely skipped before starting to scan for end tags without the risk of

overlooking end tags which would be fatal as well.

The tags which have been determined to be usable are the following: The beginning of a

message being transferred over IMAP can be determined by the string "FETCH (UID"

followed by "BODY[" in the same line. Both strings must be present in order to get a valid

start tag. The end of the message is usually locatable by searching for CRLF followed by “)”

and CRLF. However, some mail transfer agents such as Courier Imapd do not put the “)”

character in a new line in case of attachments which makes the search for this pattern

unreliable. So the CRLF in the beginning has to be dropped and the remaining pattern 0x29,

0xD, 0xA which is equivalent to “)CRLF” delivers satisfactory results.

These two tags identify the body of a message which transferred over IMAP. After extracting

the data between these two tags, it can be scanned for malware.

a0006 UID FETCH 771 BODY.PEEK[]
* 125 FETCH (UID 771 BODY[] {437}
Return­Path: <root@imap­server.localdomain>
X­Original­To: u8
Delivered­To: u8@imap­server.localdomain
Received: by imap­server.localdomain (Postfix, from userid 0)
.id DC5174C225; Mon, 21 Feb 2011 12:17:56 ­0500 (EST)
To: u8@imap­server.localdomain
Subject:)))
Message­Id: <20110221171756.DC5174C225@imap­server.localdomain>
Date: Mon, 21 Feb 2011 12:17:56 ­0500 (EST)
From: root@imap­server.localdomain (root)

)
))
)))
)
a0006 OK Fetch completed.
In this example start- and end tags have been marked by bold characters. The additional “)”

characters have been inserted to show that even tough these characters are not escaped in any

way, just the last one was recognized by the MUA due to to the RFC822.SIZE attribute in the

header. The line below the end tag contains the command tag (a0006 in this case) and the

“OK” response which indicates that the message was sent successfully.

35

RFC822.SIZE

In this sense messages have a structure which is similar to TLV – Type Length Value entries.

The type is RFC822 [9], the length is specified by the RFC822.SIZE attribute and the value is

the message itself. Internally the IMAP plugin handles messages in this format.

To understand the size attribute it is important to know that the RFC822.SIZE is not actually

specified in RFC822. It is determined by formatting the message according to the internet

message format (RFC822) and then counting it's size in bytes.

2.10. Partial fetching

The fetching of messages is of great importance for this thesis because messages are that part

of the IMAP traffic which has to be scanned for viruses. The simplest way to fetch a whole

message is to use the command “86 FETCH 1 body[all]” where 86 is a freely chosen number

by the client and 1 is the index (UID) of the message on the server. The reply to this

command will be the imap header, the requested mail header with the message body and

finally the line “01 OK – fetch completed”. This last line indicates that the command which

was issued with the number 01 was completed successfully. So far fetching messages seems

to be straight forward.

In order to make things more complicated the Network Working Group which is responsible

for IMAP 4rev1 decided to add an additional feature to the protocol called partial fetching.

The idea behind partial fetching is that messages can be retrieved in several pieces. The

syntax is the following:

FETCH <uid> BODY[<section>]<<partial>>
The command “FETCH 87 BODY[1]<245764.16388>” would fetch 16388 Bytes of

the message with the UID 87 with an offset of 245764 Bytes.

Partial fetching is not optional, but must be supported by the IMAP server.

This feature adds the functionality to continue the fetching of a message at an arbitrary point

if the connection was dropped. In such a case parts of the message do not have to be fetched

twice. The environment in which this feature makes sense includes 56k modems, GSM data

calls and ever so unstable WiFi connections over long distances during harsh weather

conditions. In a network which provides sophisticated ISO OSI layer 2 and layer 4 solutions,

partial fetching has no right to exist. One could argue that it is helpful in case of large

attachments such as CD or DVD images. The counterpoint is that e-mail with attachments

36

was not designed for such amount of data. There are perfectly good solutions like scp or rsync

to transfer large amounts of data from one host to another. In the worst case even FTP could

be a better choice than sending large files over e-mail. Also depending on the configurations

of the mail transfer agents between the sender of the message and the receiver the maximum

message size is most probably limited to a few megabytes. The MTA Exim 4 for instance has

a quite high default size limit according to it's config file:

“# Message size limit. The default (used when MESSAGE_SIZE_LIMIT # is unset
) is 50 MB”, [15]

In case of Postfix the limit is the same:

bitumen@tuxworld:~$ cat /etc/postfix/main.cf | grep message_size
message_size_limit = 52428800
These values were taken from a Debian GNU/Linux, version 6.0 installation. Typically this

limit is set even smaller and can be reduced also by the maximum upload size of web

interfaces in case of web mail. The point is, that in the worst case of a dropped connection

almost at the end of a message being transferred causes about 50mb to be resent without using

partial fetching. Typically this value is much smaller. If an administrator of an MTA decides

to increase this setting to a much higher value, that results in a unique case which cannot be

considered here and is likely to be a misconfiguration. As shown, with the exception of

unstable network connections partial fetching is not needed.

Apart from the mentioned advantage in obsolete networks, this feature can raise issues in

several other layers, one of the most important being layer 4 and TCP. TCP implementations

have mature and stable code with support for the TCP sliding window: “The well-known

Sliding Window protocol caters for the reliable and efficient transmission of data over

unreliable channels that can lose, reorder and duplicate messages.”, [16]

Trying to perform the job of a lower OSI layer in an upper layer compromises the

functionality of the lower layer and most probably delivers worse performance. After all, the

OSI layers were designed like this for a reason. If the MUA for instance requests a message in

chunks of 16kBytes, TCP cannot increase the window size over 16kBytes because there is not

that much data available at once. This is inefficient not just on OSI layers 2-4, but also on

application layer due to the overhead in IMAP headers. Some IMAP clients such as Mozilla

Thunderbird / Dovecot do not only use partial fetching, but also use a kind of window scaling.

In other words the MUA may implement a sort of “IMAP sliding window” like TCP does on

OSI layer 4 for all traffic. The MUA mentioned above starts to fetch with a window size of

37

16kBytes and upon quick response of the server it increases the size by 8kBytes until the

maximum IMAP-window size of 64kBytes is reached. 64kByte is exactly the layer 4 packet

size where TCP window scaling starts to be efficient and can utilize the available bandwidth

properly. More information about TCP window scaling can be found in the book TCP/IP

Illustrated, Volume 1 [37].

Instead of letting TCP do it's job, the IMAP window size is kept at maximally 64kByte and

because TCP does not have more data at it's disposal the window size cannot be increased

anymore. The result is a transfer of messages in chunks of maximally 64kBytes, but possibly

just 16kBytes in case of a connection with rather big round trip times due to routing or using a

proxy. This also means that every 16 or 64kBytes the system has to wait for the duration of

the round trip time because of the issuing of the following IMAP fetch command after the last

“OK – fetch completed” response from the server. The effect of this is visible on the

following example:

A message with the size of 2MB (headers included) is downloaded over a connection with a

bandwidth of 0.5Mb/s and a round trip time of 600ms which is an admissible value in case of

a 3G connection. Without partial fetching the message can be downloaded in

2Mb / (0.5Mb/s) + 600ms = 4600ms = 4.6 sec .

With partial fetching and calculated with the maximum window size of 16kByte the same

operation takes

(2Mb / (0.5Mb/s))*1000 +(2Mb * 1024 / 16kByte) * 600ms =

80800ms = 80.8 sec .

Due to this feature the fetching of the message took 80.8 seconds instead of 4.6 seconds. The

communication was slowed down by a factor of 17.57 even in the case of a not too big

message with the size of 2MB and where the initial window size of 16kBytes was not even

considered!

38

Illustration 13: Chunked fetching

The reason why partial fetching is mentioned in such extent in this thesis is that a proxy not

only decreases the bandwidth due to virus scanning, but also increases the round trip time due

to memory operations. The effect of combining partial fetching with a slightly higher round

trip time have been shown to be fatal. For anything else than short plain text messages partial

fetching has to be disabled in the MUA to get acceptable performance. However, there is one

exception: If a message with considerable size is transferred and the connection is dropped,

not all message has to be transferred again, because all previously successfully transferred

parts can be used. The good news is that from the two MUAs supported by the software

which is developed in this thesis, just Mozilla Thunderbird / Icedove has the described

problem in the default configuration while Microsoft Outlook does not use this feature. If an

IMAP proxy is used, the following setting has to be edited in the advanced configuration

editor of Mozilla Thunderbird / Icedove:

39

Illustration 14: Mozilla Thinderbird v3.1.9: fetch by chunks

Switching “mail.server.default.fetch_by_chunks” to “false” will probably reduce the duration

of message downloading by a factor of 16.7 as calculated in this section.

2.11. Inserting a virus warning message

Until this point of the document it was discussed what could be potentially dangerous, where

malware can be located within the IMAP stream and what the technical possibilities are to

locate these parts of the communication. However it was not described how to proceed once

an e-mail with malicious code was found.

The most obvious thought is that the message has to be prevented from reaching the mail

client. One possibility is to simply drop the connection or not to send any more data of that

message. This way the client is protected without question, but this cannot be a satisfactory

solution as the MUA still waits for the message which it has requested to be sent. Within one

connection several messages can be downloaded so with this method the delivery of

legitimate, virus free messages would also be blocked. Dropping the connection could also be

used to trigger a Denial of Service attack by sending virus infected messages [38]. Also it is

unpleasant for the user if the MUA seems to stop working without an error message and mails

cannot be downloaded. This behavior is also against RFC 3501 which states that a fetch

command must be followed by untagged fetch responses containing the requested parts of the

message, followed by a tagged response which informs about the success of the command's

40

execution. Also the developed software has to comply to the standard in order to guaranty

interoperability.

The proper way of handling these situations is to copy the cached message which contains

malware to a separate buffer, remove the malicious part and insert a message that parts of it

have been removed due to security reasons. Determining which parts to remove can be done

by separately scanning parts of the message. First, separate files have to be created from the

MIME encoded, cached message. This can be done for example by a tool called “Ripime” [17]

which can differentiate between the text part of the message and attachments. After having

distinct files for the mentioned parts, they can be evaluated one by one by a virus scanner.

Harmless parts can be assembled to a clean message. After inserting a note about removing

parts, the message header has to be rewritten so that it would contain valid information about

the MIME structure of the message. Also the encoding of the Internet Message Format has to

be verified so that characters or character sequences within the message would not have

unwanted semantic meaning in any upper layer protocol such as IMAP. The freshly

assembled message can be written to the client.

The easier way to proceed is instead of cutting out malicious parts of the message, is to

simply remove the whole message body and to insert a virus warning instead. Also in this

case the message is copied to a separate buffer, which is used for manipulation. As during this

scenario the header of the message will not be modified, it has to be left in it's original state

and it is necessary to seek to the beginning of the message body. This position can be found

quite easily according to the internet message format: “The body is simply a sequence of

characters that follows the header and is separated from the header by an empty line (i.e., a

line with nothing preceding the CRLF).” [18]

“CRLF” stands in this case for a new line. So in order to find the beginning of the message

body the buffer has to be searched for the first occurrence of the Byte sequence 0x0A 0x0D.

After these two bytes it is safe to simply delete the rest of the buffer's content thereby

removing the whole message body. A user defined string can be appended as a virus warning

message. In the developed application the string “Virus found. Mail body removed.” was

used. The modified message is best terminated by “CRLF)CRLF”.

This is also visible in the following example. Here is a short message with IMAP header and

tagged response included:

41

a0006 UID FETCH 476 BODY.PEEK[]
* 1 FETCH (UID 476 BODY[] {498}
Return­Path: <root@imap­server.localdomain>
X­Original­To: u8
Delivered­To: u8@imap­server.localdomain
Received: by imap­server.localdomain (Postfix, from userid 0)
.id E1B3A4C1AD; Mon, 29 Nov 2010 03:59:04 ­0500 (EST)
To: u8@imap­server.localdomain
Subject: testmail
Message­Id: <20101129085904.E1B3A4C1AD@imap­server.localdomain>
Date: Mon, 29 Nov 2010 03:59:04 ­0500 (EST)
From: root@imap­server.localdomain (root)

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR­STANDARD­ANTIVIRUS­TEST­FILE!$H+H*
)
a0006 OK Fetch completed.
Just for this example the Eicar signature is treated as a virus and the message has to be

nullified:

a0006 UID FETCH 476 BODY.PEEK[]
* 1 FETCH (UID 476 BODY[] {467}
Return­Path: <root@imap­server.localdomain>
X­Original­To: u8
Delivered­To: u8@imap­server.localdomain
Received: by imap­server.localdomain (Postfix, from userid 0)
.id E1B3A4C1AD; Mon, 29 Nov 2010 03:59:04 ­0500 (EST)
To: u8@imap­server.localdomain
Subject: testmail
Message­Id: <20101129085904.E1B3A4C1AD@imap­server.localdomain>
Date: Mon, 29 Nov 2010 03:59:04 ­0500 (EST)
From: root@imap­server.localdomain (root)

Virus detected. Mail body removed.
)
a0006 OK Fetch completed.
Note especially the bold parts. The first line is the fetch request from the IMAP client

followed by the untagged response from the IMAP server which starts in line two. The

number in brackets “{}” is the RFC 822 size of the message. It is calculated by counting all

bytes of the untagged response of the server starting from the e-mail header (not the IMAP

header!). CRLF at the end of every line is included. This value has to be recalculated after

modifying the message as the IMAP client reads this amount of bytes as untagged response. If

this is not done, the MUA is likely to hang while waiting for a proper response.

The e-mail header which does not correspond with the message body and it's attachments can

also be the source of issues for the MUA as it might not display the message correctly. If this

occurs, the header has to be altered aswell.

42

2.12. Mail User Agents

After having gathered some knowledge about the inner working of the IMAP protocol and the

IMAP plugin which has to be designed the question has to be raised what server and client

software should be supported. Despite being comporatible with RFC 3501 programs using

IMAP will do things slightly differently. This can cause issues with the IMAP plugin if it is

not designed carefully enough. So first of all it has to be determined which IMAP servers and

mail user agents should be supported. Of course it is nearly impossible to guaranty

compatibility with all kinds of MUAs. To determine what software to support in order to

work in most use cases a mail client statistics from lintian.com [13] has been used:

“Data collected from 250,000,000 email recipients using our Fingerprint analysis tool. This

chart shows the top 10 email clients by market share. Compiled 24 February 2010.”, [13]

Email client Market share

Illustration 15: MUA distribution

Outlook 43.00%

Hotmail 17.00%

Yahoo! Mail 13.00%

Gmail 5.00%

Apple Mail 4.00%

Iphone 4.00%

Thunderbird 2.40%

Windows Live Mail

(Desktop)

2.00%

AOL Mail 1.2%

Lotus Notes 0.40%

Others 8.00%

This data contains some information, which is misleading for us. Before using it some

numbers have to be recalculated. As already stated, if the IMAP proxy is used it is expected,

that the mail user agent software is run from within the internal, protected network and the

IMAP server is located somewhere on the internet which is outside our network. This implies

that the IMAP is “spoken” over a connection which goes through the firewall where the

43

IMAP proxy is located on. This assumption is correct as long as a desktop application is used

as MUA. The table above however shows that at least 35% of e-mails are handled by web

based mail systems (Hotmail, Yahoo! Mail, Gmail, etc.). In this case either these web based

services fetch mail from other accounts via IMAP or POP3 which means that traffic is not

routed through our firewall using these protocols or that they do not fetch mails at all because

the MTA is included in the same system as the webmail interface. This is the case if addresses

with the FQDN of the web based mail system is used like “@hotmail.com” or “@gmail.com”.

However keep in mind that this refers only to these systems acting as MUA. If messages are

retrieved by desktop clients such as Outlook or Thunderbird from the POP3 or IMAP servers

of these online services obviously the traffic is routed over our firewall either in form of

POP3 or IMAP.

The gist of all this is that web based MUAs have to be removed from the table above and the

market shares of desktop based MUAs have to be calculated separately. The results of these

calucations are the following:

Email client Market share

Outlook 67.40%

Apple Mail 6.27%

Iphone 6.27%

Thunderbird 3.76%

Windows Live Mail (Desktop) 3.13%

Lotus Notes 0.63%

Others 12.54%

Illustration 16: Desktop MUA distribution

44

Outlook

Apple Mail
Iphone
Thunderbird

Windows Live
Mail (Desktop
)
Lotus Notes
Others

The consequence of these calculations is that it was decided to provide support for the MUAs

Microsoft Outlook, Mozilla Thunderbird and Mutt. The choice of supporting the first two is

based on the aim to support the biggest possible market share. The easiest way to perform

tests of the developed software was a virtual machine with a very basic setup of Debian

without a graphical user interface. This is the reason why mutt was mainly used in the first

stages of development to test the proxy as Mutt is text based and needs very little resources.

Other mail clients such as Apple Mail and Iphone will not be tested due to lack off access to

them. Clients with no significant market shares such as Opera Mail or Eudora will not be

tested either. Considering that 12.5% of mail clients are either unknown, are very rare clients

or are other webmail clients it is possible to cover at least 2/3 of the market. Furthermore if

there is no official support for a MUA that does not mean that it will not work with the IMAP

proxy. Support in this case means just that software has been tested and is guarantied to be

usable in combination with the developed product.

After writing most of the source code the alpha version of the TLS-Proxy's IMAP support has

been tested. Opensource software has been working flawless. Using Mutt and Thunderbird

issues or bugs have not been found yet. Microsoft Outlook however tends to drop the IMAP

connection. The reason for this behavior has yet to be determined.

On server side Dovecot has been used during development. Testing was performed also with

the Courier IMAP server [39]. Compatibility of TLS-Proxy does not depend directly on the

MTA, but on the IMAP server. These two can be implemented by the same software solution.

This is the case in the examples mentioned above.

Compatibility with other IMAP servers which have not been mentioned above has not been

tested and can be the target of work beyond this thesis.

45

3. Implementation

3.1. An early attempt

After the first steps of functional analysis and design considerations a working proof of

concept has been written in shell script (see appendix A). This script uses Perdition, which

was also intended to be part of the final solution. First of all existing rules of Iptables are

deleted that they would not interfere with this experiment:

iptables ­t nat ­F
Then IMAP connections to the TCP port 143 are matched by the prerouting chain:

iptables ­t nat ­A prerouting ­p tcp ­­dport 143 ­j DNAT ­­to 127.0.0.1:143
The prerouting [40] chain is the right place for this, because rules in this chain are applied while

matching packets before the route is calculated or the packet is forwarded. This is the chain

which has to be used for filtering for packages which are addressed not to the host, but are

just routed over it.

The matched connections are rerouted via DNAT to the perdition proxy, which dumps

username and password of successfully established IMAP connections into the logs which are

parsed. Login data is extracted as well. With this data a tool called Isbg [2] is called, which

provides the functionality to connect to IMAP servers and to handle spam in different ways

46

Illustration 17: IMAP-filtering architecture, early attempt

such as marking, moving or deleting. Isbg is being run periodically after a given delay has

passed. Simultaneously the client can transparently access the mail account over Perdition[4].:

It is an additional advantage, that the AS-line of Underground_8's anti spam appliances [41] use

Spamassassin as well. This means that this script fits well into the software environment of

the used systems. No extra software except for Perdition and Isbg has to be installed.

Disadvantages of this early attempt are the inelegant invoking of programs and extraction of

login credentials from log files. Also a centralized way to manage settings and software

options is missing. The biggest issue however is, that the client can establish a connection and

check mails before the spam-scanning has been completed. This has to be fixed within the

source code of Perdition and was not done because Perdition was abandoned within this

thesis.

After careful inspection of the source code of Perdition some issues occurred. Perdition uses

Vanessa libraries such as “libvanessa-logger0” or “libvanessa-socket-pipe” [5]. These libraries

greatly simplify logging and handling of Unix sockets in the C programming language.

Generally it can be said that they are useful. However in this case it is necessary to buffer

IMAP traffic, to parse for strings which indicate the retrieval of messages and to deny the

forwarding of traffic if it is dangerous. This cannot be done directly within the source code of

Perdition as it calls the socket-pipe from the Vanessa [5] library and traffic does not necessarily

directly pass Perdition in a way that it can be buffered or altered. After several unsuccessful

attempts to dump network traffic in a useful way it was realized that if Perdition is used as

Proxy server, also the Vanessa socket-pipe library has to be modified. Altering it would

potentially break other packages. This was not acceptable as the library is used by other

software within the given distribution as well due to dynamic linking [42]. A possible solution

to this issue is to compile Perdition with statically linked libraries and by that accepting

redundancies in the system.

 The idea of using Perdition as a proxy server was finally abandoned.

3.2. Final design

As Perdition did not meet the given requirements the available options were either to write an

own proxy server or to search for another existing one which can be extended by the required

47

features. The decision fell on an existing proxy server called TLS-Proxy [3]. The main

advantage of it is, that it supports the trusted filtering of SSL/TLS connections if the provided

certificates are installed on the client. This is basically a trusted man in the middle [43] feature.

Be aware that in order to to have privacy, SSL/TLS is not sufficient and content encryption

such as PGP [32] has to be used. The proxy uses an encrypted connection to communicate with

the real server and uses it's own certificate to encrypt the connection between the client and

itself. TLS-Proxy is a framework and currently contains support for the application protocols

HTTPS and SMTPS as well as raw TCP connections for test purposes. During the creation of

this thesis a plugin for IMAP over SSL/TLS (IMAPS) support was written. The following

diagram illustrates the architecture of this software solution:

Illustration 18: TLS-Proxy entities

TLS-Proxy is responsible to handle the client- and the server-side of the IMAP(S) connection.

Traffic is routed through the IMAP plugin which scans the connection for viruses. The attack

vector of IMAP connection is the body of a retrieved message as this is the place where

viruses can be transmitted. To identify these places in the IMAP traffic parsing for the

keyword “FETCH (UID” followed by the UID in form of an integer and immediately

followed by “BODY[]” is necessary in the stream, where the source is the IMAP server and

the destination is the client. Like this incoming message bodies are identified. The filtering of

the outgoing traffic is out of the scope of this thesis as the main concern is to protect the

internal network from the internet and not vice versa. Other commands also exist to retrieve

48

parts of a message, like “FETCH” combined with “BODY.PEEK[]”, but viruses are

essentially in the attachment of the message so infection is only possible if the whole message

is retrieved and not just the header or the first few ASCII lines of it. The end of the message is

identified by reading the amount of bytes which are specified in the beginning of the IMAP

server response and indicate the message size according to RFC-822 and RFC-2822[6]. After

that parsing for a line with the content “OK Fetch completed” terminated by CR LF is

necessary.

If the beginning of the transmission of a message is detected, writing to the client side is

blocked, until the content of the message is identified as harmless. That means that the

message has to be buffered and written into a temporary file which is ripped of the mime

extension and passed to the anti virus software for scanning. Currently ClamAV[7] is used for

scanning, but in future the calling of an antivirus solution will be done by a currently

unpublished scanning daemon called Sambucus. The advantage of this solution is that there

will be just one API which has to be called for virus scanning, but the implementation of

Sambucus can support multiple virus scanners internally. This means that more reliable

results can be achieved by combining the analysis of at least two virus scanners. This

additional layer of abstraction also results in flexibility: If one anti virus solution is swapped

for an other, the code within the IMAP plugin of the TLS-Proxy does not need to be modified.

It is sufficient to remove one scanner and add another one within Sambucus.

Depending on the result of the virus scan either the existing buffer is written to the client, or

the content of the message is nullified. This is done by creating a new buffer which the

original header of the message is copied into. Then a message has to be appended which states

that a virus was found and the mail body inclusive attachments was removed. An additional

feature is to include the number of infected files as well as the name(s) of the virus(es) found.

After that the line “OK Fetch completed” is appended after the current command

number which is the response of the IMAP server and indicates that the execution of the

command is finished and further lines do not follow. If the correct command number is

missing or the message “OK Fetch completed” is not placed at the proper position IMAP

clients may not work properly. This was observed with a command line e-mail client called

Mutt[8]. It ended up being in an endless loop waiting for the end of the command complying to

the IMAP 4rev1 RFC.

49

Before sending the nullified message to the client, the message size attribute has to be

calculated and sent within the first line of the IMAP response. The IMAP size is calculated by

counting the bytes of the message. This is referred often to as RFC 822 [9] size. If this value is

not set correctly the behavior of the IMAP client depends on it's implementation. In case of

Mutt the nullified message is cut to the specified size, which can result in a partly displayed

message.

After completing these tasks the nullified message with the virus warning included is ready to

be sent to the client. The IMAP plugin can do this by writing to the available file descriptor

in the TLS-Proxy framework.

An additional capability of the IMAP plugin is to capture the command “STARTTLS” at the

beginning of an IMAP session so that TLS-Proxy could start the trusted man in the middle

feature for scanning encrypted connections.

Illustration 19: TLS-Proxy entities exploded

This diagram shows the complete structure of the software components used for IMAP

scanning. It includes not just the TLS-Proxy with the IMAP plugin and the virus scanning

solution, but also the custom connector script for spam scanning. An early version of this

script was described in section 2.3 and has been referred to as asynchronous online scanner.

The main difference in this new architecture is that the connector script has to communicate

with the IMAP plugin directly and does not get any login information from Perdition as it is

not part of this thesis.

50

3.3. Flowchart: HandleClientSide

The TLS-Proxy scans and manipulates IMAP streams on the network if required. Streams

have some properties which are not trivial to work with. For example streams can be

processed just in one way. It is not possible to iterate backwards, to seek like in a file or an

array. Sending of data cannot be undone. A proxy server has to be able to work under these

conditions without causing major delays. Caching data in order to be processed in a block

with specified size is thereby not recommended. Also in most cases it is unknown how much

data will follow in the streams and when it ends.

The TLS-Proxy provides a method for every protocol which is responsible to receive and to

send data. These are called “HandleClientSide()” and “HandleServerSide()”. The maximal

amount of data which is received at once is limited to 64kByte. However, it does not have a

lower limit. As data arrives over TCP, the buffer of the proxy is filled with it and the already

mentioned methods are executed. As a consequence these methods receive data in form of

chunks of arbitrary sizes. In the first, experimental design of the IMAP plugin every chunk

was inspected and in case of a found start or end tag the whole chunk was considered to be

part of a message. This worked well for test messages of less than the maximal buffer size of

64kByte. However if several e-mails were received after each other or in case of attachments

which are usually bigger than 64kByte the IMAP plugin was destroying messages by cutting

them at arbitrary positions and appending data from other chunks which did not belong to the

message at all. It was necessary to develop an algorithm which deals with this inconvenient

stream of data which arrives from the IMAP server. This issue could be solved by introducing

a separate buffer in which messages are cached. Note, that no other parts of IMAP traffic but

messages are cached like this. Also a flag was needed which showed whether the current

position within the stream is within a message or not. The position was within a message if a

“start tag” of the FETCH command had already been processed and an “end tag” not. The

flag for this purpose is named “fetch” in the flowchart below which shows a simplified

version of the used algorithm:

51

Illustration 20: Flowchart: HandleClientSide

Parts of the stream which are after an end tag and before a start tag must be written to the

client immediately without being scanned or delayed in any other way. Messages must be

detected even if they are fragmented over several chunks of data. This happens in case of

attachments. The end of a message has to be detected so that caching the stream could be

stopped and evaluation could be started. This caching and parsing over several chunks had to

work very reliable as in any other case the usage of the IMAP plugin would result in

destroyed messages which renders the software unusable. The algorithm which is shown on

the flowchart handles this issue satisfactorily. Debug output of the retrieval of a message

using this algorithm looks like this:

end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 14630
end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 14630
end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 14630
end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 16223
­ caching until end (end found at 30854) pos=0
­ eval msg
read filename: /tmp/imapB2AEug

result buffer: /tmp/imapB2AEug.dir: OK

­­­­­­­­­­­ SCAN SUMMARY ­­­­­­­­­­­

52

Infected files: 0
Time: 0.023 sec (0 m 0 s)

E­Mail clean.

­ writing until end of chunk. pos=30854
In the example above the algorithm loops through the chunks delivered by TCP and searches

for the end of the e-mail in the data stream. It caches data until position 3054 which is the end

of the e-mail in the buffer. This cache is is then written to the disk, evaluated by anti virus

software and the result which is located in a file is loaded into the memory. After considering

the e-mail to be clean the whole buffer is written to the IMAP client.

3.4. Access control

One of the mandatory features of the developed program was some kind of access control.

Several variants were plausible: Having configuration files, black- and whitelists, a web based

management interface, different settings for the proxy itself and the online scanner seemed to

be reasonable solutions. However the idea of disabling the scanning of specified accounts

within the proxy was abandoned in an early stage of development: Beside logging login

information, the main functionality of the IMAP proxy is to actually scan messages for

viruses. Disabling this functionality is not a matter of convenience, but a matter of security.

Reasons for disabling scanning are mostly the unwanted changes which are made to the

IMAP mailbox on the remote server. This affects the online scanner, but not the IMAP proxy

itself. This is the reason why it is mandatory for messages to be scanned by the proxy and not

just an option.

For the online scanner however user management greatly affects useability as without it in

case of a user, who does not want spam scanning the whole online scanner would have to be

turned off. The internal working of this user management is the following: The online scanner

uses two plain text files called “listAvailable” and “listEnabled”. While being invoked by the

IMAP plugin of the TLS proxy, the online scanner receives a list of accounts with hosts,

usernames and passwords. It dumps the mailboxes in the fomat “username@host”, one entry

per line into the file “listAvailable”. This file can be read by an arbitrary management

interface – like a web based user interface – to list the available accounts. The lines containing

accounts where scanning is desired are copied into the file “listEnabled”. While being run, the

53

mailto:username@host

online scanner has the whole database of login information in memory, but scans just those

accounts, which are contained in the file “listEnabled”. It is crucially important that these files

do not contain the passwords of the accounts. Passwords are stored in an Sqlite3 [44] database

within the IMAP plugin of the TLS proxy and are transferred to the online scanner's standard

input. If an account is present in the file “listEnabled” but does not have the corresponding

password in memory, it is ignored until the password is learned by the proxy on the fly. The

file “listAvailable” provides just a source for accounts for the management interface and does

not contain accounts which were added manually into the “listEnabled” file.

There are two issues of this behavior which have to be considered if the asynchronous scanner

is used:

1. The IMAP plugin simply invokes the third party tool which is responsible to scan

IMAP accounts for SPAM without monitoring it. The functionality of the IMAP

plugin is not more than a trigger to start the scanning procedure and a safe storage

facility for passwords. The consequence is that the validity of login credentials is not

ensured. Passwords which are sniffed from the network traffic are sent to the third

party scanner and may or may not be valid. An attacker who knows about this

behavior could try to use a large number of incorrect login credentials which the

scanner would try to use periodically. With a large enough number of logins this is

considered to be a DoS attack [38].

2. The idea behind an in-memory database is that data which is not written to disks is

safer. Also topics like encryption and file permissions are avoided thereby keeping the

design simple an almost without drawbacks. The issue with data which is stored in

memory for security reasons is virtual memory. If an attacker can manage to examine

the hard-drive' s content, passwords can be revealed. Risk mitigation is done by

turning off virtual memory (paging) or limiting the physical access to the hard-drive in

the long term. Also non-pageable memory can be used to prevent login credentials to

be swapped to the hard disk. A slight drawback of an in-memory database is also that

login credentials have to be learned again after every reboot. The impact of this

behavior is not big as proxies and firewalls should not be rebooted often in the first

place.

54

3.5. Handbook for administrators

3.5.1. Quick setup of TLS-proxy with IMAP plugin

Before trying to run the developed software some thought has to be given to the network

architecture which this system is run in. It is not trivial to set up a test system on one host. It is

already clear from the previous chapters that what we are dealing with is a transparent proxy

server. As a consequence it has to run on a host which is a gateway between the „real“ client

and server from the application protocol's point of view. In order to understand this it is

important to know how the „redirect“ command of Linux's Iptables [10] is used:

iptables ­t nat ­A PREROUTING
­p tcp ­­dport 143
­j REDIRECT ­­to­port 4430;

The effect of this is that all TCP traffic from port 143 which is routed through the gateway is

intercepted and redirected to the port 4430 on localhost where the transparent proxy is

listening. Note the importance of the “PREROUTING” chain in the command above: It

means that this rule matches only packets which are routed from one network interface to the

other. However it does not match packets which are sent by localhost. For that the

“OUTPUT” chain would have to be used. If someone decides to use the output chain instead

of the prerouting chain for testing purposes so that the proxy could intercept connections from

localhost too, the person will encounter the following problem: A packet is intercepted on

port 143, is redirected to the proxy on port 4430. After being processed it is sent by the proxy

again on port 143 to the server, but it is intercepted again because the wrong chain has been

used in the Iptables rule. This results in a continuous loop which is undesirable. The gist of

this theoretical case is not to modify the chain of the packet filter and to use a clean setup with

multiple hosts for testing purposes. However, by using two separate virtual hosts as client and

server and realizing the network infrastructure with VLANs it is possible to create a clean

single-host setup. A script demonstrating this can be found in appendix B. This setup is

described in great retail in chapter 3.9.

After the variables in the script from appendix B are set to match the network environment

and the script was executed the next step is starting TLSProxy:

./TLSProxy ­P IMAPS ­c /etc/tlsproxy/proxy.conf

55

The option “P” specifies the protocol to use. Other supported protocols include SMTPS and

HTTPS. These are described in the thesis “TLS-Proxy” [3] and are not further explained here.

The option “c” specifies the configuration file. If it does not exist or this option is not

specified at all hardcoded default values are used. The configuration options will be described

in chapter 3.5.2.

To be able to intercept also encrypted connections two extra requirements have to be fulfilled:

The client has to accept the certificate which is used by TLSProxy to encrypt connections and

the proxy must be able to generate certificates. The first depends on the design of the client.

Most mail user agents ask whether the received certificate should be accepted or not and some

also offer to permanently accept it. It must be empathized how important it is to check

whether the certificate's origin is really the TLSProxy and not another program trying to

perform a man-in-the-middle attack.

The second can be done easily by starting the certificate store daemon by executing the

“./CA” command in the corresponding folder. This daemon generates certificates for every

connection and used to be part of TLSProxy. Meanwhile it has been extracted and made into a

separate daemon [11].

By now TLSProxy should be up and running and should automatically intercept connections.

3.5.2. Configuration file options

Additionally to the undocumented options of the TLSProxy the IMAPS plugin supports

following options, which have to be set in the configuration file of TLSProxy. If they are not

specified, a hardcoded default value is used:

Option Default value

ENABLE_ONLINE_SCANNER yes

IMAP_SCAN_INTERVAL 300

IMAP_ONLINE_SCANNER_PATH /usr/bin/onlineScanner.sh

IMAP_FORCE_LOGIN yes

IMAP_HIDE_STARTTLS_CAP No

IMAP_CLAM_DAEMONIZED No

IMAP_USE_SAMBUCUS Yes

HANDLE_UNSCANNABLE_AS_INFECTED Yes

IMAP_PRINT_ALL_CLIENT_TRAFFIC No

56

IMAP_PRINT_ALL_SERVER_TRAFFIC No

• ENABLE_ONLINE_SCANNER: Enabling the online scanner is the option which

turns on spam-protection. As already described above in this document, spam filtering

is done by the asynchronous client and not by the proxy itself. If this feature is enabled

spam scanning is done by a separate thread. Possible values are “yes” and “no”.

• IMAP_SCAN_INTERVAL: The IMAP scan interval only gains meaning if the online

scanner is enabled. It specifies how much time has to elapse between the

asynchronous client finishes scanning IMAP folders and is executed again. Specifying

the scanning delay this way was intentional, so that the scanner could not be started

while another instance is still running in case that scanning takes a considerable

amount of time due to the number of mailboxes which are scanned. The value of this

option has to be specified in seconds.

• IMAP_ONLINE_SCANNER_PATH: The online scanner path is, as the name already

suggests, the absolute path to the executable online scanner script. In case that

TLSProxy was installed from the Debian package this value should be already set

correctly.

• IMAP_FORCE_LOGIN: Force login is an option which hides certain capabilities of

the IMAP server which allow a challenge-response style authentication. You may

want to prevent this kind of authentication because it makes it impossible to sniff

username and password which are needed for the online scanner. If this option is

disabled and the IMAP client decides to use challenge-response, the online scanner

will not work.

• IMAP_HIDE_STARTTLS_CAP: Hiding the starttls capability is not really

productive, results most probably in security holes by using a clear text protocol and

was designed for testing purposes only. Severe problems can occur if this is combined

with the force login option: If the authentication succeeds, username and password

will be sent in clear text over the internet which should be prevented. However many

IMAP servers advertise the “nologin” capability when communicating over an

unencrypted channel. This means that authentication with username and password is

not possible and other methods like NTLM are prevented by the proxy. The result is

57

that the client cannot connect to the server because of the bad proxy configuration.

The intended way of using these features is to allow starttls and to force logins. Like

this login credentials can be sniffed by the proxy and the connection is safe anyway

because of the encrypted TLS layer underneath. The theoretical case that an IMAP

server requires the usage of challenge-response authentication and does not support

TLS is absolutely not common and suggests a misconfiguration of the IMAP server.

However if TLSProxy has to be able to work with such an IMAP server, the

“IMAP_FORCE_LOGIN” option can be disabled thereby allowing connections.

• IMAP_CLAM_DAEMONIZED: As already mentioned in the timing section 2.4. of

this thesis, ClamAV provides two commands which can be used for scanning:

Clamscan and clamdscan. One is faster, the other one does not require the ClamAV

daemon to be installed. To give the decision which of the two commands to use into

the hands of the administrator, the parameter “IMAP_CLAM_DAEMONIZED” was

introduced. It can be set to the boolean values “yes” or “no”.

• IMAP_USE_SAMBUCUS: As the IMAP plugin of the TLS-Proxy was designed to fit

especially into MF security gateways also the antivirus solution was integrated, which

is available in that environment. It is called Sambucus and has an own configuration

parameter: “IMAP_USE_SAMBUCUS”. If it is set to “yes”, the Sambucus daemon is

used to evaluate messages. This parameter was necessary to provide usable

functionality also in other environments. If it is set to “no”, ClamAV is used.

• HANDLE_UNSCANNABLE_AS_INFECTED: This parameter was introduced quite

late and specifies how the TLS-Proxy behaves in a special case. ClamAV can

terminate prematurely without returning results. This happens if the system runs out of

memory while a scan is being performed. In this case the IMAP plugin caused a

segmentation fault and terminated due to the lack of input validation while opening

the scan results. During the design phase of adding proper input validation the

question raised what should be done with e-mails which could not be scanned. On one

hand if they are treated as infected it is likely that they will cause a false positive. On

the other hand if it is assumed that the messages do not contain malicious code it is

possible that a virus enters the network. Neither is a good solution and this issue can

be easily prevented by running the IMAP plugin on a machine which sufficient

58

available resources. However if the system runs out of memory, the administrator

should be able to decide how the proxy behaves.

• The parameters “IMAP_PRINT_ALL_CLIENT_TRAFFIC” and it's counterpart

“IMAP_PRINT_ALL_SERVER_TRAFFIC” are not present in the default

configuration file. They can be inserted manually to override the hardcoded default

value which is “no” for both parameters. The functionality which can be enabled by

setting them to “on” is the dumping of all IMAP traffic which passes the proxy to

stdout in plain text without TLS. This was very useful during development in order to

see what the proxy actually does. However these options could be easily used for

eavesdropping and are neither present in the default configuration file, nor in the

binary which is intended for distribution, for this reason. If access to TLS-Proxy with

IMAP support is provided to the public, this functionality may not be compiled into

the binary in order to prevent script kiddies to take advantage of this functionality.

3.6. Debian package

As this thesis was written not just for academic purposes, but also for a company developing

firewalls and other network security appliances it was an objective to enhance the usability of

the developed software. During the process of development files were put to many different

locations on the file system. This is acceptable on the host which is used for development, but

it is not on a production system. Instead of providing the software just in form of source code,

it was decided to build precompiled packages for the i386 architecture in form of Debian

archives. Installing and removing the software is done by DPKG [45] , which is considered to

be an elegant way of managing software. The advantages of this format include the simplicity

of creating archives for newer versions or other CPU architectures. The building process is

automatized by a simple shell script which calls “dpkg-deb”.

The most important part of a Debian archive is the control file. It specifies the package name,

version number, dependencies and the maintainer of the package. It has to be created very

carefully as erroneously specified dependencies can cause malfunction of the software. The

whole power of the Debian archive management lies in the careful specification of

dependencies. If dependencies or their version numbers are set incorrectly, dynamic linking

will not work in case of libraries and the program will not run.

59

 The current control file of the TLS-Proxy package is the following:

Package: tlsproxy
Version: 1.0­1
Section: base
Priority: standard
Architecture: i386
Depends: libsqlite3­0 (>=3.5.9­6), bash (>=3.2­4), iptables (>=1.4.8­3),
gawk (>=1:3.1.7.dfsg­5), python, libc6 (>=2.11.2­7), ripmime (>=1.4.0.9­1),
isbg (>=0.99­1)
Maintainer: Macskasi Csaba <bitumen@tuxworld.homelinux.org>
Description: Transparent proxy with following features:
 TLS MITM support, HTTPS, SMTPS, IMAPS with on the fly virus
 checking, spam scanning online scanner
Note that the Python package does not have a version number because it is a metapackage. It

is so to say “implemented” by arbitrary implementations of the Python language. The version

numbers of the dependencies were copied from the list of installed software on the

development host which was up to date. TLS-Proxy may work also with older versions of the

listed software. However this was not tested as systems should be kept up to date. As TLS-

Proxy is responsible for virus- and spam scanning it is usually run on a firewall located on the

border of the network which should be protected. It is one of the critical points regarding

security. At least security updates should be performed frequently. However in case of a

freshly developed firewall appliance it can be expected that recent software is used which also

means that the dependencies stated above should not prevent any reasonable system from

installing the archive.

On the development system a source tree exists, from which the binary files are copied by a

shell script to the correct subfolders within the building environment of the archive. After also

copying the control file into it's folder the package is built by executing the command “dpkg-

deb –build”.

A Debian package has to satisfy strict expectations to comply with Debian standards and to

eventually become part of the official Debian archives. A tool named Lintian exists which

checks packages for compatibility with these requirements. It was designed specially to grant

the high expectations of the Debian distribution. [13]

The TLS-Proxy package which was built as part of this thesis has also been checked by

Lintian. Several shortcomings exist which will most probably not be fixed. There are no

intentions to write man pages [36] for the whole application nor is it planned to make the whole

directory structure to conform Debian guidelines. The main issue is that TLS-Proxy is not free

software and it is not possible to make arbitrary changes to the whole software as it is under

60

copyright. This part is well documented in form of this thesis. TLS-Proxy is not free software,

it will not be distributed freely and has no chance of becoming part of the Debian distribution.

It is intended for internal use on firewall appliances only. Furthermore full Debian

compatibility was not part of the requirements for this thesis.

Originally it was intended to split the package into several sub packages so that features could

be installed separately. That way packages like tlsproxy-base, tlsproxy-https, tlsproxy-smtps

and tlsproxy-imaps could be built. The issue regarding this otherwise elegant modularized

architecture is the following: When compiling TLS-Proxy, the binary either contains certain

features or it does not. If the binary is included in the base package but the other packages are

not installed, the program will not work and produce an error when being invoked. However

if the binary is included in the plugin packages, there is no way to determine which package

contains the main binary. The only reasonable solution is to create just one package

containing all modules, all features. The split architecture can be achieved only if the source

code is modified. This is not part of the thesis.

The current version number “1.0-1” was freely chosen. The Debian build version which is the

part of the version number after the dash is one, as it is the first try to build this package and it

has not been distributed yet. The version number of TLS-Proxy itself is freely chosen aswell

as it's version is neither indicated in the documentation nor in the source code.

The current package (v1.0-1) contains next to the TLS-Proxy also the asynchronous scanner

which is responsible for scanning spam on IMAP accounts.

It is intended to build virtual packages for all plugins of the TLS-Proxy in the future. As all

binaries will be contained by the main package. These would be used just for additional

dependencies, configuration files and INIT scripts.

3.7. Dependencies

In order not to reinvent the wheel, TLS-Proxy and the IMAP plugin depend on libraries and

other software. This helps to keep the design of the software clean and without redundancies.

The availability of libraries was not an issue because all which were needed can be installed

from Debian packages. The IMAP plugin requires just one additional library in comparison to

the TLS-Proxy without IMAP plugin. This library is libsqlite3, which is used to store the

extracted login credentials in memory. If TLS-Proxy is built from the source code, the

61

configure script checks for the availability of the required libraries before the software can be

compiled. If TLS-Proxy is installed from a Debian package, the package management system

of Debian (Dpkg) will install all dependencies which are specified in the Debian package of

TLS-Proxy.

However there was an issue in case of two dependencies of the IMAP plugin: The availability

of the tools “Ripmime” [17] and “Isbg” [2] was not checked during compile time as these

programs are not included in form of libraries into TLS-Proxy, but are called as binaries

instead. Also there was no Debian package available for these programs neither in any

GNU/Linux distribution, nor on open source software websites. Including these binaries into

the Debian package of the TLS-Proxy did not seem to be an elegant solution because they are

third party software products and one should have the choice to install them independently. It

was decided that separate Debian packages have to be assembled for these two tools, which

can be listed as dependencies in the package of the IMAP plugin.

After compiling Ripmime the following control file was created:

Package: ripmime
Version: 1.4.0.9­1
Section: base
Priority: standard
Architecture: i386
Depends: libc6 (>=2.11.2­7)
Maintainer: Macskasi Csaba <bitumen@tuxworld.homelinux.org>
Description: Tool to remove MIME extentions and extract the contained
 files to a directory. It is mostly useful to automatically process e­
mails.
As Ripmime is a simple C program without any extra dependencies, just the C library was

listed as dependency which is available on every system. Packages were built for the

architechtures i386 and x86_64 (amd64) which should cover the majority of CPUs running

TLS-Proxy. For Isbg, which is a Python script used for scanning remote IMAP mailboxes for

spam, the following control file was created:

Package: isbg
Version: 0.99­1
Section: base
Priority: standard
Architecture: all
Depends: spamassassin (>=3.3.1­1), python­openssl (>=0.10­1), python2.3
(>=2.3.5­16) | python2.4 (>=2.4.6­1+lenny1)
Maintainer: Macskasi Csaba <bitumen@tuxworld.homelinux.org>
Description: Tool to remotely scan IMAP mailboxes for spam. Unwanted
 messages can be moved into the spam directory if configured so. Support
 for SSL is included, but not for STARTTLS. Afaik isbg has poor
 error handling.

62

Isbg depends on spamassassin which is used for spam detection, and on Python binaries with

SSL support for IMAP over TLS/SSL. As Isbg is a script and is not compiled for any specific

architecture, this package fits for every possible hardware architecture which provides an

interpreter for the Python language.

After building these packages the dependencies of the IMAP plugin are satisfied by available

packages so the following line was adjusted in the control file:

Depends: tlsproxy (>=1.0­1), bash (>=3.2­4), gawk (>=1:3.1.7.dfsg­5),
python, ripmime (>=1.4.0.9­1), isbg (>=0.99­1)
The issue of dependencies was hereby elegantly resolved. Version numbers of the listed

packages were taken from the installed software on the development computer. The version

numbers are not necessarily the minimal requirements. However a host which is running a

Debian based distribution from the stable branch can satisfy the dependencies easily.

3.8. INIT scripts

Integration of the developed software into an existing environment is an important part of this

thesis. The TLS-Proxy is different from software which is directly used interactively by the

user. Apart from the binaries being copied to the directory hierarchy on the host's file system

launching and stopping the application is more complex. TLS-Proxy should be started in

previously defined runlevels automatically because it is run as a daemon and it has to be

terminated correctly when the host is shut down. In Unix-like environments there are in

general two alternatives of doing so:

• System V which is still being used in *BSD systems and

• Init which is typical for GNU based systems such as GNU/Linux.

Note that Solaris style services were not considered.

As the MF Security Gateway which the TLS-Proxy should be run on is using GNU/Linux as

operating system, it was decided to write a script for the INIT system. This script can be used

for 4 use cases:

• Starting,

• stopping,

• restarting the deamonized TLS-Proxy and

• giving information about it's current status (running / stopped).

63

An aspect which also had to be considered is that the TLS-Proxy currently supports the

application protocols IMAPS, SMTPS, HTTPS and raw TCP connections. Support for all

these protocols is located within the same executable file. However, one instance can handle

just one protocol, which is specified in a command line parameter. So in order to enable

support for IMAPS and SMTPS at the same time on a security gateway, two instances of

TLS-Proxy are required. According to the original design, each protocol should have an own

config file with protocol specific parameters. Starting all services would look like this:*

$ TLSProxy ­P IMAPS ­c /etc/tlsproxy/imap.conf &
$ TLSProxy ­P SMTPS ­c /etc/tlsproxy/smtp.conf &
$ TLSProxy ­P HTTPS ­c /etc/tlsproxy/http.conf &
In order to enable or disable support for these protocols independently three separate INIT

scripts are needed, each controlling a separate instance. All three protocols use the same

binary and PID-files are not used by TLS-Proxy, which means that stopping one can not be

done by issuing the command “killall TLSProxy”, or all three instances would be killed. In

order to differentiate between instances it is necessary to parse the command line parameters

which were used while executing the program. This information can be extracted from the

output of the “ps” utility by using the following bash commands:

$ tmp=`ps ax | grep TLSProxy | grep $PROTOCOL`;
$ pid=`echo $tmp | awk '{ print $1 }'`;
The process ID of the TLS-Proxy instance which uses $PROTOCOL will be located in the

variable $pid. This way the process can be safely terminated by issuing “kill $pid”. Such an

INIT script has been written just for IMAP support. Modifying it to support other protocols

consists just out of changing variables in the “config” section of the script. The whole INIT

script can be found in appendix “C”.

3.9. Testing architecture

It is well known, that testing is an important part of software development. This is especially

true for this thesis as the IMAP plugin of the TLS-Proxy which was developed is planned to

be used in a commercial product. It will not be an application which is run by the end user and

can be restarted any time it crashes so it has to be ensured by intensive testing that it works

* Note: The dollar sign „$“ at the beginning of a line represents the prompt of the command interpreter and not

the beginning of a variable. For variable assignments „$“ is not needed in GNU/Linux.

64

reliably also in the long term. It will be installed most probably on the MF series security

gateways [19], which should be able to run over a very long time without user intervention or

forced reboot. This is especially important regarding memory leaks which are present in many

applications written in C language. However, memory leaks turned out not to be an issue.

The first part of testing begins already during development. Instead of running the TLS-Proxy

on an MF security gateway, a virtualized network was created for this purpose. The

environment of the proxy was given lots of thought due to architectural limitations which are

also stated in the kernel documentation: “Transparent proxying often involves "intercepting"

traffic on a router. This is usually done with the iptables REDIRECT target; however, there

are serious limitations of that method.”, [20] This means, that the proxy has to be run on a

router between source and destination of the traffic. The interception of the packets is done by

the packet filter called Iptables which is built into Linux kernel inside the PREROUTING

chain. The command for this is typically the following:

iptables ­t nat ­A PREROUTING ­p tcp ­­dport 143 ­j REDIRECT ­­to­port
<port>
This firewall rule matches all packets which are routed by the system and where the

destination port is 143 which is the standardized port of IMAP. Such packets are redirected to

localhost to a port where the used transparent proxy listens. Note that the original destination

address is still being stored by the kernel, so the transparent proxy can use this information to

send the packet to it's intended destination after being processed. Packets, which are sent from

localhost are matched by the OUTPUT chain of iptables and are therefor ignored by the

redirection command above. This is true also for packets whose destination is the host where

the transparent proxy is being run, as these are matched by the INPUT chain. The

consequence is that a transparent proxy under Linux must not run neither on the source host,

nor on the destination host of traffic in order to work as intended. Also it must be run on the

same host where the traffic is intercepted because the original destination can be recovered

only from the kernel which is inaccessible for other hosts. An exception are reverse proxies in

which the destination is known in advance because it is static. In that case instead of redirect,

a destination network address translation (DNAT) can be applied to forward the traffic to

another host which the reverse proxy runs on. An alternative design is to run at least the

asynchronous scanner on another host with a separate public IP address. In this way by

analyzing the log files on the IMAP server it can be determined whether a real user has

65

established a connection with a MUA from behind the firewall which runs the transparent

proxy, or the log entry has been caused by the asynchronous scanner without user

intervention. This feature needs two public IP addresses. In many real world scenarios just

one IP address is available which was the reason why this idea was abandoned.

Also a convenient single-host solution is needed that the whole environment could be stored

on the laptop, which I use for development. These requirements are fulfilled with the

following setup: The host which is used for development runs also the proxy and provides the

redirect rule in the firewall. This is rather convenient as after saving and compiling the source

code the software is run on the same host where it is located and does not have to be copied to

a separate router. This host provides resources for two virtual machines: The IMAP server

and the IMAP client (MUA):

Illustration 21: environment during development

These virtual machines are completely separated from each other and from the development

host's real network despite using the same physical interface of the host computer. This is

done by adding separate VLANs [46] to the network interface of the host computer. Through

this the development host has two additional VLAN tagged interfaces. For virtualization the

open source software “VirtualBox” [21] is used. A useful feature of it is, that virtual network

interfaces can be bridged not only to real physical ones, but also separately to a specified

VLAN on the physical interface. This way the virtual machine gets an untagged port which is

connected to a VLAN interface of the host computer. This is convenient as it is not necessary

to deal with VLANs on virtual computers. The network setup on ISO OSI layers 2 and 3

looked like this:

66

Host L2 network Address

Tproxy / development 11, tagged 192.168.11.1

Tproxy / development 12, tagged 192.168.12.1

ImapServer 11, untagged 192.168.11.2

ImapClient 12, untagged 192.168.12.2

The script, which sets up the virtual test network according to these parameters can be found

in appendix B.

In this design the ImapClient, which is in the network 192.168.12.0/24, has to use the

development host in order to connect to the ImapServer in the network 192.168.11.0/24. This

setup is suitable to check for basic functionality and for experiments with the IMAP protocol.

An additional feature is that the development host has an interface on both sides of the proxy.

The interface “eth0.11” is in VLAN 11 and “eth0.12” in VLAN 12. This makes it possible to

sniff the traffic which is sent from the client or the server and also the traffic which was

manipulated by the TLS-Proxy. Comparing the two streams is a good way to analyze the

functionality of the developed software on a low level. Doing so made sense only when the

communication was done without TLS. Testing and verifying the IMAP stream while using a

layer of TLS is just possible when enabling the dumping of traffic within the IMAP plugin.

The result is that both the client and the server were using encryption, but the whole traffic is

dumped to stdout by the TLS-Proxy. For an admin with malicious intentions this is an easy

way to perform a person-in-the-middle attack on encrypted IMAP.

This way of testing the software is reasonable until basic functionality works without errors,

the performance tests are done and the software seems to be ready to use. However as in case

of every software there can be still hidden bugs which are hard to find and could stay hidden

while testing in a lab environment. An additional way of testing was needed. Because this

software is not intended to be used directly by users or system administrators and will rather

be installed on security appliances by professionals, monkey testing has not been performed.

However a long term test under real conditions is mandatory. There was a host with an MTA,

an IMAP server and several users in an existing network environment which seemed to be the

right equipment for the long term test. However integrating the TLS-Proxy into this

environment is far from trivial. As already mentioned, a transparent proxy running on Linux

needs to be placed on a router. In the existing infrastructure the only router is an appliance

from Linksys with NAT, port forwarding and a rather limited firmware. This router forwards

67

the ports 25 and 143 to the server which was in the LAN with a privat IP address. The TLS-

Proxy cannot be placed between the router and the server as the router performs DNAT

during port forwarding and if IMAP traffic is forwarded to the address of the TLS-Proxy

instead, the packets will never reach the IMAP server.

The solution to this issue was to use again two virtual machines: One was a router with TLS-

Proxy installed with two virtual network interfaces, the other one contained just an IMAP

server and had two network interfaces as well:

Illustration 22: environment during long term test: network architecture

The trick to direct traffic over the TLS-Proxy was to use an internal network between the

virtual IMAP server and the virtual router. This way clients had to connect to the virtual

server over the virtual router. The virtual server however needed to get mails from the real

server in order to act as an IMAP server. To avoid double checking this was not done over the

virtual router, but rather over the second network interface. That virtual NIC was connected

over the NAT feature of VirtualBox. This way the virtual server could fetch mail from the

real server with the IP address of the host computer's network interface. The fetching has been

done over the IMAP protocol using a mail retrieval tool called “fetchmail” [22]. On client side

the address of the IMAP server had to be changed to the address of the virtual server. The

following figure shows an overview of the flow of information in the test environment. Red

68

lines symbolize unscanned SMTP / IMAP traffic, while the green one stands for traffic, which

was scanned by the IMAP plugin of the TLS-Proxy:

Illustration 23: environment during long term test: flow of information

Until now the IMAP plugin has been working as expected. Apart from the issues described in

section 4.2. of this document additional bugs have not been found yet.

3.10. MUA test results

Using the architectures explained above tests have been performed with several mail user

agents. Important requirements were that the developed software would not damage messages

during retrieval, that usable performance would be provided and that all the developed

features must work flawlessly. Also the software may not crash as in it's natural environment

uptimes of several months or even years are expected. The performed long term tests show

that the proxy with the IMAP plugin is still working after more than one week of usage.

Errors have not been logged. Much longer explicit testing is not possible within this thesis.

However the developed software will continue to run in the virtualized production

environment and will be used in future. This way testing will be done simply by reading lots

69

of e-mails every day. If issues occur they will be noticed because of the production

environment around it.

Some parts of the testing process were documented using screen shots. These were used to

show the functionality on the following pages.

Illustration 24: Mutt

This picture shows the mail user agent Mutt after retrieving headers of 121 test messages

Mutt is the most tolerant mail client and showed already successful results during

development where other mail clients failed due to incorrect IMAP responses.

70

Illustration 25: Infected Message

This instance of mutt wanted to fetch a message which was infected by a virus. The malware

has been scanned, identified and removed from the message. A warning has been sent instead

of the original message body. The warning message is marked with red color. This scenario

shows how the IMAP plugin of the TLS-Proxy protects the network behind the firewall.

Testing of ZIP archives is not part of this thesis, because the result depends only on the used

antivirus software. The IMAP plugin does not unpack ZIP archives. Apart from that,

password protected ZIP files cannot be unpacked for analysis.

71

Illustration 26: IMAP plugin, debug output

This terminal window was captured in debug mode which is very verbose and prints the

whole network traffic on application layer as well as debug messages of the IMAP plugin. It

is visible that the client issued a STARTTLS command. This triggered the proxy to start TLS

on server- and client side in order to encrypt traffic (red). After this logging in via challenge-

response protocols has been disabled. As a consequence the MUA has to use login credentials

(“u8” and “u8pw”) which is sniffed and parsed by the IMAP plugin (red).

These extracted usernames and passwords are kept in memory only. Unless an attacker has

access to the memory or to the page files (virtual memory) of a running system they are safe.

Of course debug mode has to be disabled as it does not make sense to dump login credentials

to stdout which is a serious security risk. If the online scanner was enabled, it would be called

directly by the IMAP plugin with the necessary login parameters.

72

Illustration 27: Testing STARTTLS

The screenshot above shows Mozilla Thunderbird operating with STARTTLS as security

setting. Messages are retrieved without problems. Thunderbird is compatible with the

developed IMAP plugin and the TLS-Proxy. Note the small lock symbol within the red

square. It shows that the connection to the IMAP server is secure.

The same mailbox has been used to test all mail clients. It contained various documents from

the documentation of the Linux kernel, pictures as attachments and large files (>10mb tar file)

to search for possible issues with the developed software. It was decided to use kernel

documentation because it includes code examples with many non letter characters which

could have been potentially difficult for the IMAP plugin to handle. With this payload several

bugs have been found and also fixed. Large files were needed for testing as they are for sure

fragmented and are sent in chunks. This test case was designed for the algorithm in the

method “handleClientSide()” which was already mentioned in section 3.3. of this document.

Pictures were very convenient test subjects as it is visible immediately after the retrieval of

the mail whether all parts were downloaded correctly or not. This is shown on the following

picture. Note that in order to see the whole picture scrolling would be necessary which was

73

not an option, because this way it can be shown that a multi-part message was retrieved. Also

scrolling within a screenshot is not possible.

Illustration 28: Thunderbird, attachments

74

Illustration 29: Thunderbird, success

The picture above shows the retrieval of plain text messages with Mozilla Thunderbird. Note

that all headers already had been retrieved, but the status indicator shows only about 50%

because the message bodies were still being scanned and downloaded in the background. The

bodies of those messages which were clicked on, had been given a higher priority while

downloading.

75

Illustration 30: Windows Live Mail, success

This screenshot indicates that the developed software is also compatible with the other

officially supported mail used agent: Windows Live Mail. It is visible that messages can be

downloaded successfully.

The window which was captured below contains dumped network traffic from the application

Wireshark which was executed on the router on the interface of the IMAP client. It shows that

the STARTTLS capability is advertised and that the client also issues this command. After the

response “1 OK Beginning TLS negotiation now.” traffic is encrypted and the connection is

secure. By sniffing the encrypted network traffic it is not possible to eavesdrop on the

unencrypted IMAP traffic.

76

Illustration 31: Wireshark, proof of TLS

77

4. Summary
Beside all the success and usable results the extent of a master thesis is limited. Therefor there

are still topics which could be investigated around IMAP. This is the reason why there has to

be a section dedicated to shortcomings right after the next section which summarizes what

was achieved in this thesis.

4.1. Results

During the creation of this thesis significant investigation was made into the inner working of

the IMAP protocol. It was researched why IMAP is an issue for proxy software and how such

proxies can be developed anyway. Available software solutions were reviewed. It was found

out, that currently available free software which makes IMAP connections safer does not

exist. Shortcomings of RFC 3501 such as the partial fetching feature or the missing timing

requirements have been found. It was investigated how these limitations can be overcome by

workarounds. For this also underlying layers were inspected as parts of the system. Data

throughput and timing were analyzed as critical aspects of communication. After reviewing

the timeouts specified by RFCs features such as keep alive bytes were implemented. Further

ideas include setting of the PSH bit in TCP headers.

After identifying the attack vectors appropriate measures where created to keep the network

safe from threats due to the usage of IMAP. The most important attack vector was malware

which could enter the network by being packed into attachments of multipart e-mails. A

solution was described how IMAP traffic can be scanned and malware can be blocked.

The introduced measures have been realized by implementing a working, usable IMAP plugin

for the existing TLS-Proxy, which fulfills the previously set requirements. This software

consists of a virus scanning transparent proxy which filters IMAP traffic and an asynchronous

online scanner which can be used to handle unwanted spam messages. Also INIT scripts were

written and a Debian package was built for comfortable installation and integration into an

existing system. Informative documentation was written within this thesis including

descriptions of configuration file options.

Another feature is the safe logging of login credentials without writing them to the harddrive

even tough the connection is encrypted. These credentials can be passed on to additional

78

scanners. Therefor the developed software solution provides a tool for network administrators

to handle IMAP appropriately. The result was tested on a variety of systems and these tests

were documented. The gist of this thesis is that using the developed IMAP plugin

communication over the IMAP protocol can be scanned for viruses or spam thereby adding

security to the system. This is a big step towards security for organizations, which use IMAP

servers which are outside of their network.

4.2. Problems and shortcomings

As this project was developed as a master thesis resources were limited. Additional ideas exist

which could be investigated and implemented. These include moving messages with viruses

in them into a separate quarantine folder or appending more detailed virus warning messages.

A shortcoming is definitely that spam is not filtered in real time. A solution for this issue has

not been found yet. Also the code of the online scanner is has not received too much attention

after virus filtering was considered as the main field of investigation. It supports only plain

text IMAP and IMAP over SSL using the TCP port 993, but not the STARTTLS feature of

IMAP. This is a limitation of Isbg[2] and affects spam scanning only. Virus scanning is not

affected by this limitation and works well also with STARTTLS. The topic of extrusion

prevention has not been analyzed yet. For that feature a statistical filter for keywords could be

used.

Due to the lack of resources, such as time or a realistic test environment for stress testing and

reproducing errors during the end of development, currently there are still two known bugs

which have not been fixed yet:

Bug No. 1

Before the transfer of actual messages over IMAP, there is a field in the header indicating the

RFC822.SIZE attribute of the message. This is important information as it is further

processed during the process which determines the end of a message. In case of Microsoft

Exchange being used as an IMAP server, this value may not be parsed correctly which

renders the input validation of the IMAP plugin useless. In the worst case if the message

contains a virus and in the beginning of the message the character sequence “)\r\n\r\n” is

present the infected message reaches the IMAP client. To determine the source of this bug it

79

would be necessary to print debug information about the processed data directly in that part of

the source code, where this attribute is extracted.

Bug No. 2

If a large amount of mail is retrieved on one connection (about >200 messages) it may occur

that the proxy only caches and does not write data to the client. A probable cause is that the

start tag of a message is split into two separate buffer chunks and is not recognized by the

algorithm. This bug is not caused by the special structure of a message as the affected

message can be downloaded after being given a second try. The cause of this bug may lay

also in the the end tag detection of the IMAP proxy, or in non RFC 3511 conform traffic sent

by the IMAP server. The real cause of this bug is hard to find as hundreds of messages have

to be retrieved to encounter this mentioned issue. Also additional debug output would be

necessary which could falsify results in case of a race condition.

Apart from these two bugs no other malfunction is known.

4.3. Ideas for further work

Further work includes fixing the problems and shortcomings above. The spam filtering which

has been developed in this thesis is asynchronous. In most cases this is fine, but it would be

elegant to offer also a synchronous version. A missing piece of the puzzle is a web interface

for administrators which can be used to activate spam protection for IMAP accounts. Another

idea would be a quarantine where suspicious messages are moved into via IMAP.

80

Literature

[1] RFC 3501, page 39, http://www.networksorcery.com/enp/rfc/rfc3501.txt (2011.12.28)

[2] Isbg, http://redmine.ookook.fr/projects/isbg/wiki (2011.12.28)

[3] Trusted Persion in the Middle: TLS-Proxy, Aspetsberger R.

[4] Perdition, Horman S., http://horms.net/projects/perdition/ (2011.12.28)

[5] Vanessa Socket, Horman S., http://hg.vergenet.net/vanessa/vanessa_socket/ (2011.12.28)

[6] RFC 3501, page 12, http://tools.ietf.org/html/rfc3501 (2011.12.28)

[7] ClamAV, http://www.clamav.net/lang/en/ (2011.12.28)

[8] Mutt, http://www.mutt.org/ (2011.12.28)

[9] RFC 822, http://www.ietf.org/rfc/rfc0822.txt (2011.12.28)

[10] Linux 2.6.32 source code: Documentation/networking/tproxy.txt

[11] Untersuchung von verschlüsselter E-Mail Kommunikation nach Spam und Viren,

Grundmann M.

[12] Rfc2595, http://www.faqs.org/rfcs/rfc2595.html (2011.12.28)

[13] Lintian, http://lintian.debian.org (2011.12.28)

[14] Litmus, http://litmus.com/resources/email-client-stats (2011.12.28)

[15] Exim 4 default configuration in Debian 6.0: /etc/exim4/exim4.conf.template

[16] Verification and improvement of the sliding window protocol, D. Chkliaev, J. Hooman,

E. de Vink, www.cs.ru.nl/ita/publications/papers/hooman/SWP.pdf (2011.12.28)

[17] Ripmime, P. L. Daniels, http://www.pldaniels.com/ripmime/ (2011.12.28)

[18] RFC 2822, Internet Message Format, http://www.ietf.org/rfc/rfc2822.txt (2011.12.28)

[19] http://www.underground8.com/de/products/mf_security_gateway.html (2011.12.28)

[20] Linux kernel documentation: linux/Documentation/networking/tproxy.txt

[21] Oracle VirtualBox, http://www.virtualbox.org/ (2011.12.28)

[22] Fetchmail, http://fetchmail.berlios.de/ (2011.12.28)

[23] Underground_8, http://www.underground8.com/de/ (2011.12.28)

[24] GNU GPL version 2, http://www.gnu.org/licenses/gpl-2.0.html (2011.12.28)

[25] Debian, http://www.debian.org/intro/about (2011.12.28)

[26] Imapfilter, L. Chatzimparmpas, https://github.com/lefcha/imapfilter (2011.12.28)

81

https://github.com/lefcha/imapfilter
http://www.debian.org/intro/about
http://www.gnu.org/licenses/gpl-2.0.html
http://www.underground8.com/de/
http://fetchmail.berlios.de/
http://www.virtualbox.org/
http://www.underground8.com/de/products/mf_security_gateway.html
http://www.ietf.org/rfc/rfc2822.txt
http://www.pldaniels.com/ripmime/
http://www.cs.ru.nl/ita/publications/papers/hooman/SWP.pdf
http://litmus.com/resources/email-client-stats
http://lintian.debian.org/
http://www.faqs.org/rfcs/rfc2595.html
http://www.ietf.org/rfc/rfc0822.txt
http://www.mutt.org/
http://www.clamav.net/lang/en/
http://tools.ietf.org/html/rfc3501
http://hg.vergenet.net/vanessa/vanessa_socket/
http://horms.net/projects/perdition/
http://redmine.ookook.fr/projects/isbg/wiki
http://www.networksorcery.com/enp/rfc/rfc3501.txt

[27] Juniper IMAP Scanning, http://www.juniper.net/techpubs/software/junos-security/junos-

security10.0/junos-security-swconfig-security/jd0e63294.html (2011.12.28)

[28] Linux Programmer's Manual, Signal, http://www.kernel.org/doc/man-

pages/online/pages/man7/signal.7.html (2011.12.28)

[29] POSIX, http://standards.ieee.org/develop/wg/POSIX.html (2011.12.28)

[30] RFC1122 p. 81, PSH-flag, http://tools.ietf.org/html/rfc1122 (2011.12.28)

[31] ISO-OSI Model, Application layer, p. 32, http://www.itu.int/rec/dologin_pub.asp?

lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items (2011.12.28)

[32] RFC 793 p. 32, http://tools.ietf.org/html/rfc793#section-2.8 (2011.12.28)

[33] Zimmermann, Philip (1995). PGP Source Code and Internals. MIT Press. ISBN 0-262-

24039-4

[34] National Research Council (U.S.). Committee on the Future of the Global Positioning

System; The global positioning system: a shared national asset, ISBN 0-309-05283-1

[35] EICAR test file, http://www.eicar.org/anti_virus_test_file.htm (2011.12.28)

[36] Unix Programmer's Manual, http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html

(2011.12.28)

[37] TCP/IP Illustrated, Volume 1, Stevens, W. R., p. 282, ISBN 0-201-63346-9

[38] Proceeding of the Seminar Future Internet (FI), DoS, p. 40,

http://www.net.in.tum.de/fileadmin/TUM/NET/NET-2009-04-1.pdf#page=40

(2011.12.28)

[39] Courier IMAP server, http://www.courier-mta.org/imap/features.html (2011.12.28)

[40] Iptables, Prerouting http://dev.medozas.de/files/xtables/iptables.html (2011.12.28)

[41] MF series security appliances,

http://www.underground8.com/de/products/mf_security_gateway.html (2011.12.28)

[42], Linux Programmer's Manual, Dynamic linking, http://www.kernel.org/doc/man-

pages/online/pages/man8/ld-linux.so.8.html (2011.12.28)

[43], “Man in the Midde Attach”, Network Security, Kaufman C., Perlman R., Speciner M.,

p167, ISBN 0-13-046019-2

[44] “Sqlite 3”, http://www.sqlite.org/docs.html (2011.12.28)

82

http://www.sqlite.org/docs.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
http://www.underground8.com/de/products/mf_security_gateway.html
http://dev.medozas.de/files/xtables/iptables.html
http://www.courier-mta.org/imap/features.html
http://www.net.in.tum.de/fileadmin/TUM/NET/NET-2009-04-1.pdf#page=40
http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html
http://www.eicar.org/anti_virus_test_file.htm
http://tools.ietf.org/html/rfc793#section-2.8
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://tools.ietf.org/html/rfc1122
http://standards.ieee.org/develop/wg/POSIX.html
http://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html
http://www.juniper.net/techpubs/software/junos-security/junos-security10.0/junos-security-swconfig-security/jd0e63294.html
http://www.juniper.net/techpubs/software/junos-security/junos-security10.0/junos-security-swconfig-security/jd0e63294.html

[45] “DPKG – Package manager for Debian”, http://manpages.debian.net/cgi-bin/man.cgi?

query=dpkg&apropos=0&sektion=0&manpath=Debian+Sid&format=html&locale=en

(2011.12.28)

[46] IEEE standard: Virtual Bridged Local Area Networks,

http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf (2011.12.28)

83

http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://manpages.debian.net/cgi-bin/man.cgi?query=dpkg&apropos=0&sektion=0&manpath=Debian+Sid&format=html&locale=en
http://manpages.debian.net/cgi-bin/man.cgi?query=dpkg&apropos=0&sektion=0&manpath=Debian+Sid&format=html&locale=en

Abbreviations

• Scan connector: layer between the proxy and the spam handling solution

• NAT: Network Address Translation

• DNAT: Destination Network Address Translation

• RFC: Request For Comment

• ISBG: IMAP Spam Begone

• MTA: Mail Transfer Agent

• SMTP: Simple Mail Transfer Protocol

• DoS: Denial of Service

• TCP: Transmission Control Protocol

• CR: Carriage Return

• LF: Line Feed

• FD: File Descriptor

• NTLM: NT LAN Manager

• FQDN: Fully Qualified Domain Name

• MUA: Mail User Agent

• MIME: Multipurpose Internet Mail Extensions

• ASCII: American Standard Code for Information Interchange

• VLAN: Virtual Local Area Network

• DPKG: Debian Packaging system

• MDA Mail Delivery Agent

• GPS Global Positioning System

• TLV Type Length Value

84

Appendix

Appendix A: Sourcecode of an early attempt:

#!/bin/bash

author: Macskasi Csaba, 2010

This demo script starts a transparent imap proxy on port 143 (prerouting)
and a non transparent one on port 144 (output)
WARNING! All iptables rules are deleted!!!

how long to wait between scan (seconds). Note, that this value should be
at least a few minutes:
DELAY="15"

flushing all iptables rules
iptables ­t nat ­F

kill running perdition instances
killall perdition.imap4

using iptables for destination nat
transparent:
iptables ­t nat ­A prerouting ­p tcp ­­dport 143 ­j DNAT ­­to 127.0.0.1:143
non transparent, for local testing only. This is needed to prevent loops.
iptables ­t nat ­A OUTPUT ­p tcp ­­dport 144 ­j DNAT ­­to 127.0.0.1:143

starting perdition, log pw of successful logins
perdition.imap4 ­c ­­log_passwd ok

while /bin/true
do

cat /var/log/syslog | grep Auth | sed 's/ //g' | awk 'BEGIN { FS =
"\"" }; { print $6 "," $2 "," $4}' | sort ­u > /tmp/imap_logins

clear
echo ­e "### Transparent IMAP proxy with spam­scanning capability ###

\n"

The logins from /tmp/imap_logons can be used to generate a config

file for isbg
now using sniffed login data to call isbg and spamassassin

for i in `cat /tmp/imap_logins`;
do

iHost=`echo $i | awk 'BEGIN { FS = "," }; { print $1 }'`
iUser=`echo $i | awk 'BEGIN { FS = "," }; { print $2 }'`
iPasswd=`echo $i | awk 'BEGIN { FS = "," }; { print $3 }'`

DEBUG:
#echo "i: $i"

85

#echo "parsed login data: host $iHost, user $iUser, pw
$iPasswd"

scan for spam using isbg, irgnore bad logins/unavailable
hosts...

./isbg.py ­­imaphost $iHost ­­imapuser $iUser ­­imappassword
$iPasswd 2>/dev/null

if [$? ­eq 0]
then

echo "$iUser scanned successfully. (`date`)"
fi

done;

delay...
sleep $DELAY

done

Appendix B: Prepare-network.sh

#!/bin/bash

This script sets up the local network for test purposes.
Connection to it should be made via virtual computers
and bridged interfaces to the given vlans.

­­­ BEGIN CONFIG AREA ­­­

VTAG1="11";
VTAG2="12";
VADD1="192.168.11.1";
VADD2="192.168.12.1";
HWNIC="eth1";
REDRPRT="4430";

­­­ END CONFIG AREA ­­­

enable ipv4 forwarding to play gateway
echo 1 > /proc/sys/net/ipv4/ip_forward
if [$? ­eq 0]
then

echo "forward enabled successfully."
fi

configure virtual interfaces for VMs
we'll "route" between these networks:
modprobe 8021q 2>/dev/null;
vconfig add $HWNIC $VTAG1 2>/dev/null
vconfig add $HWNIC $VTAG2 2>/dev/null

ugly hack to check interface creation...
ifconfig $HWNIC.$VTAG2 1>/dev/null 2>/dev/null
if [$? ­ne 0]
then

echo "ERROR while adding vlan tags to $HWNIC";
fi

adding ip address to virtual nics

86

ifconfig $HWNIC.$VTAG1 $VADD1;
ifconfig $HWNIC.$VTAG2 $VADD2;

if [$? ­eq 0]
then
 echo "virtual NICs ($HWNIC.$VTAG1, $HWNIC.$VTAG2) set up
successfully."
fi

netfilter rule for transparent proxy
redirect destination is localhost only!
iptables ­t nat ­F
iptables ­t nat ­A PREROUTING ­p tcp ­­dport 143 ­j REDIRECT ­­to­port
$REDRPRT;
if [$? ­eq 0]
then
 echo "Netfilter redirect successful."
fi

Appendix C: Init script

#!/bin/bash
init script for tlsproxy­imap

author: Macskasi Csaba

In order to adapt this script to other protocols of TLSProxy,
just change the variable $PROTOCOL in the config section.
After that insert protocol specific commands.

BEGIN CONFIG ###
BINARY_PATH="/usr/bin/TLSProxy";
CONFIG_PATH="/etc/tlsproxy/imap.conf";
PROTOCOL="IMAPS";
END CONFIG ###

case $1 in
start)

tmp=`ps ax | grep TLSProxy | grep IMAPS`;
if [$? ­eq 0]
then

echo "TLSProxy with $PROTOCOL support is already
running.";

exit 255;
fi

$BINARY_PATH ­P $PROTOCOL ­c $CONFIG_PATH &

tmp=`ps ax | grep TLSProxy | grep IMAPS`;
if [$? ­eq 0]
then

echo "TLSProxy started successfully with $PROTOCOL
support";

else

87

echo "Error while trying to start TLSProxy";
fi
exit 0;;

stop)
tmp=`ps ax | grep TLSProxy | grep $PROTOCOL`;
if [$? ­ne 0]
then

echo "TLSProxy with $PROTOCOL support is not running.";
exit 255;

fi;
pid=`echo $tmp | awk '{ print $1 }'`;
kill $pid;

if [$? ­eq 0]
then

echo "TLSProxy with $PROTOCOL support was stopped
successfully.";

exit 0;
else

kill ­9 $pid; # Die already!!
if [$? ­ne 0]
then

echo "Error stopping TLSProxy.";
exit 255;

fi;
fi;;

restart)
$0 stop;
$0 start;;

status)
tmp=`ps ax | grep TLSProxy | grep $PROTOCOL`;

 if [$? ­eq 0]
 then
 echo "TLSProxy with $PROTOCOL support is running.";

else
echo "TLSProxy is NOT running.";

 fi;
exit 0;;

*)
echo "USAGE: $0 (start / stop / restart / status)";
exit 255;;

esac

88

 Europass
curriculum vitae

Personal information

Surname(s) / First name(s) Macskási Csaba
Address(es) M.-Hainischstr. 11, 4040 Linz, Austria

1012 Budapest, Attila út 101, Hungary
Telephone(s) (43-680) 315 25 75

E-mail(s) macskasi.csaba@gmail.com
Nationality(-ies) Hungarian

Date of birth 1987
Gender male

Work experience Scientific member of JKU / tutoring

Dates 2008 February – 2011 February
Occupation or position held tutor

Name and address of

employer

Pervasive Computing, Johannes Kepler University, Linz Austria

Dates 2010 October – 2011 February
Occupation or position held Software developer

Name and address of

employer

Underground_8 Secure Computing GmbH., Linz Austria

Dates 2011 May – present
Occupation or position held Software engineer, developer

Name and address of

employer

JM-Data GmbH., Linz Austria

Education and training

Dates 2010-present: JKU Linz, Networks and Security

mailto:bitumen@tuxworld.homelinux.org

2010: VGTU Vilnius, Erasmus
2006-2011: JKU Linz, IT

2000-2006: highschool graduation
Title of qualification

awarded

Bachelor of Science

Name and type of
organisation providing
education and training

JKU, Johannes Kepler University, Linz
VGTU, Vilnius Gediminas Technical University, Lithuania

Johannes Kepler Gymnasium, Linz

Eidesstattliche Erklärung:

Ich erkläre an Eides statt, dass ich die vorliegende Diplom- bzw. Magisterarbeit selbstständig und ohne fremde

Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder

sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

	Until this point of the document it was discussed what could be potentially dangerous, where malware can be located within the IMAP stream and what the technical possibilities are to locate these parts of the communication. However it was not described how to proceed once an e-mail with malicious code was found.
	The most obvious thought is that the message has to be prevented from reaching the mail client. One possibility is to simply drop the connection or not to send any more data of that message. This way the client is protected without question, but this cannot be a satisfactory solution as the MUA still waits for the message which it has requested to be sent. Within one connection several messages can be downloaded so with this method the delivery of legitimate, virus free messages would also be blocked. Dropping the connection could also be used to trigger a Denial of Service attack by sending virus infected messages [38]. Also it is unpleasant for the user if the MUA seems to stop working without an error message and mails cannot be downloaded. This behavior is also against RFC 3501 which states that a fetch command must be followed by untagged fetch responses containing the requested parts of the message, followed by a tagged response which informs about the success of the command's execution. Also the developed software has to comply to the standard in order to guaranty interoperability.
	The proper way of handling these situations is to copy the cached message which contains malware to a separate buffer, remove the malicious part and insert a message that parts of it have been removed due to security reasons. Determining which parts to remove can be done by separately scanning parts of the message. First, separate files have to be created from the MIME encoded, cached message. This can be done for example by a tool called “Ripime” [17] which can differentiate between the text part of the message and attachments. After having distinct files for the mentioned parts, they can be evaluated one by one by a virus scanner. Harmless parts can be assembled to a clean message. After inserting a note about removing parts, the message header has to be rewritten so that it would contain valid information about the MIME structure of the message. Also the encoding of the Internet Message Format has to be verified so that characters or character sequences within the message would not have unwanted semantic meaning in any upper layer protocol such as IMAP. The freshly assembled message can be written to the client.
	The easier way to proceed is instead of cutting out malicious parts of the message, is to simply remove the whole message body and to insert a virus warning instead. Also in this case the message is copied to a separate buffer, which is used for manipulation. As during this scenario the header of the message will not be modified, it has to be left in it's original state and it is necessary to seek to the beginning of the message body. This position can be found quite easily according to the internet message format: “The body is simply a sequence of characters that follows the header and is separated from the header by an empty line (i.e., a line with nothing preceding the CRLF).” [18]
	“CRLF” stands in this case for a new line. So in order to find the beginning of the message body the buffer has to be searched for the first occurrence of the Byte sequence 0x0A 0x0D. After these two bytes it is safe to simply delete the rest of the buffer's content thereby removing the whole message body. A user defined string can be appended as a virus warning message. In the developed application the string “Virus found. Mail body removed.” was used. The modified message is best terminated by “CRLF)CRLF”.
	This is also visible in the following example. Here is a short message with IMAP header and tagged response included:
	a0006 UID FETCH 476 BODY.PEEK[]
	* 1 FETCH (UID 476 BODY[] {498}
	Return-Path: <root@imap-server.localdomain>
	X-Original-To: u8
	Delivered-To: u8@imap-server.localdomain
	Received: by imap-server.localdomain (Postfix, from userid 0)
	.id E1B3A4C1AD; Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	To: u8@imap-server.localdomain
	Subject: testmail
	Message-Id: <20101129085904.E1B3A4C1AD@imap-server.localdomain>
	Date: Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	From: root@imap-server.localdomain (root)
	X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*
)
	a0006 OK Fetch completed.
	Just for this example the Eicar signature is treated as a virus and the message has to be nullified:
	a0006 UID FETCH 476 BODY.PEEK[]
	* 1 FETCH (UID 476 BODY[] {467}
	Return-Path: <root@imap-server.localdomain>
	X-Original-To: u8
	Delivered-To: u8@imap-server.localdomain
	Received: by imap-server.localdomain (Postfix, from userid 0)
	.id E1B3A4C1AD; Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	To: u8@imap-server.localdomain
	Subject: testmail
	Message-Id: <20101129085904.E1B3A4C1AD@imap-server.localdomain>
	Date: Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	From: root@imap-server.localdomain (root)
	Virus detected. Mail body removed.
)
	a0006 OK Fetch completed.
	Note especially the bold parts. The first line is the fetch request from the IMAP client followed by the untagged response from the IMAP server which starts in line two. The number in brackets “{}” is the RFC 822 size of the message. It is calculated by counting all bytes of the untagged response of the server starting from the e-mail header (not the IMAP header!). CRLF at the end of every line is included. This value has to be recalculated after modifying the message as the IMAP client reads this amount of bytes as untagged response. If this is not done, the MUA is likely to hang while waiting for a proper response.
	The e-mail header which does not correspond with the message body and it's attachments can also be the source of issues for the MUA as it might not display the message correctly. If this occurs, the header has to be altered aswell.
	
	iptables -t nat -A PREROUTING -p tcp --dport 143 -j REDIRECT --to-port <port>

