TNF

Technisch-Naturwissenschaftliche
Fakultat

Improving security when using the Internet
Message Access Protocol
(IMAP) - in a corporate environment

MASTERARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Masterstudium

NETWORKS AND SECURITY

Eingereicht von:
Macskasi Csaba, BSc

Angefertigt am:
Institut flr Informationsverarbeitung und Mikroprozessortechnik

Beurteilung:
0. Univ. Prof. Dr. J6rg R. Muhlbacher
Assoz.Prof. Priv.-Doz. Mag. Dipl.-Ing. Dr. Michael Sonntag

Mitwirkung:
Dr. Dipl.-Ing. Oberrat Rudolf Hormanseder

Linz, Juli 2011

Abstract (English)

IMAP is awidely used protocol for retrieving e-mail messages. It's popularity is caused by
features like support for multiple connections, centralized storage and notification in case of
new messages. Remarkably, current security solutions such as firewalls and antivirus software
cannot control or limit IMAP communication based on the content of the transferred
messages. E-mails cannot be reviewed appropriately regarding threat due to viruses, spam and
extrusion prevention while being transferred over this protocol. This thesis analyzes the
possibilities of the IMAP protocol and provides possible solutions for the mentioned issues.
Finally an own proxy software solution for corporations is built, which has the capability to
inspect live, TLS / SSL-encrypted IMAP traffic and ater it on the fly, if required.
Documentation for this software is provided in form of a handbook in an own chapter. The
consequence is better handling and safer operation of the IMAP protocol in corporate

networks.

Abstrakt (Deutsch)

IMAP ist ein weit verbreitetes Protokoll zum Abrufen von elektronischer Post. Esist populér,
weil es Funktionen wie gleichzeitige Verbindungen, zentrales Speichern und das Melden
neuer Nachrichten unterstiitzt. Erstaunlicherweise kénnen aktuelle Sicherheitsésungen wie
Firewalls oder Antivirensoftware die IMAP-Kommunikation nicht aufgrund dessen Inhaltes
kontrollieren oder einschrénken. Nachrichten kdnnen nicht angemessen auf Gefahren durch
Viren, Spam und Datendiebstahl Uberpriift werden, wenn sie tber dieses Protokoll gesandt
werden. Diese Diplomarbeit analysiert die Moglichkeiten des IMAP-Protokolls und bietet
mogliche Ldsungen fur die genannten Themen. Zum Schluss wird eine eigene Software fur
Unternehmen entwickelt, welche die Fahigkeit hat, in Echtzeit TLS / SSL-verschliisselten
IMAP-Datenverkehr zu inspizieren, und zu verandern, falls dies erwilnscht ist.
Dokumentation fur diese Software gibt es in Form eines Handbuchs in einem eigenen Kapitel
dieser Arbeit. Die Konsequenz ist ein besserer Umgang und die sicherere Verwendung des

IMAP-Protokolls in Netzwerken von Unternehmen.

Content

ACKNOWIBAGIMENL........eeiiiie et st e et saee e b e e e aeeebeesaeeebeesnneereas 7
i L1 g0 o (8ot (o] o T TSP PP 7
P2 1 1< o YT PP URORORR 8
2.1 WhY IMAP IS @N ISSUE......ccveiuieitieiecee it etesteesteeste st e steetesseesseesesseestesseesseenseensesseensesneenns 8
2.2 AVAIADIE PrOTUCES........c.eeceeeiece ettt st et e esreente e e e aneene s 8
2.3.POSSIDIE @rCHITECTUNES........eoieeictesee e 9
2.4.TIiMING 8N PETOMMEINCEeuiivirieeieee ettt sb e e nesre e 12
2.5.KEED AlIVE BYLES......cceeece ettt ae et e et aesreesaeenaesneenteenaesneenneennens 21
2. TL S/ SOL ..ttt et bbbttt n et ns 24
2.7.Determining protected IMAP @CCOUNES.........cccueiiieiieeiiesie et neas 26
Automatic protection With timMEOUL..............cccveiiiiiie e 27
Administrator's O.K. fOr ProteCioN...........ccooeiirerirerieiere e 29
2.8.VITUS SCANNING......eeitiiiieitieiteeee st esteeee st e ste s e s e e aesreesseesesse e seessesseesseensesseeseeneesseensenneens 30
2.9.Detecting begin and N0 ta0S.........cooeriririrerere e 33
2.10.Partial TEECNING......c.coiuiiiiie e 36
2.11.Inserting aVviruS Warning MESSAQE.cecueerrereerreerreaeesseesseseesseessesssesseessesssesseessesssens 40
2.12.MaIl USEl AQENES.....c.eeeieecieceeste e seesteete st e e ete e steesaesseesteeseesaeesseensesneesseensesseenseennens 43
G 40T 0/ 007 01 1 o] o TSR 46
S.LAN AITY GIEMPL.....ceeeeeeee e ettt 46
B2 FINEI TBSIGN....cniiiiiete bbbttt b b 47
3.3.Flowchart: HandIeCHENISIAE.........cceiiiieiererie e 51
4. ACCESS COMEIOL......cuieieeneeteste sttt e bbb bt e e e e s e nnesneene e 53
3.5.Handbook for admiNiSIIaLOrS...........coiiiiiiirieeeeee e 55
3.5.1.Quick setup of TLS-proxy with IMAP plugin........ccccooiiiininiineeeeeeee 55
3.5.2.Configuration fil€ OPtIONS.........ooueieeiririeiee e 56
3.6.DEDIAN PACKAGE. ...ttt bbb nne s 59

A B = o= 6 (= 0TS OSSR 61

SLBINIT SCITBES. ...ttt se bbbt bt e e e e e n e b nneene e 63
3.9.TESHING @CNITECIUIE.........eoeiieeee e 64
L0 MUA LESE TESUILS....c.veeeeeeiieieieiee ettt sttt e e nesaeneeneas 69

S U (0] 0= YT OP PRSP 78
I == U SRR 78
4.2.Problems and ShOrCOMINGS.........ooiiiiiiiiie ettt neas 79
BUG INO. L. e n e e 79

T T 8 N o TR TSP RR 80
4.3.1d€aS TOr FUINEr WOIK........eeieee et 80
L= = (S 81
F N o] o=V = o] TSRS SPPRPRN 84
N o 0= 0o R 85
Appendix A: Sourcecode of an early attempt:..........ccoeiirieiene e 85
Appendix B: Prepare-NetWOrK.Sh...........oociiiiiiieeeee e e 86
APPENTIX C: TNIT SCIPL. ettt ettt bbb nes 87

lHlustration Index

[lustration 1: IMAP-filtering architecture with application level proxy........ccccveenerinnennen. 10
[lustration 2: Consistency between IMAP ClIENtS.........cccoiiiiiii e 10
[llustration 3: possible IMAP-filtering architeCture.............cccveiieiiie e 12
[lustration 4: Flowchart: Solution to the timing problem............coeiiirseees 15
[llustration 5: Flowchart: improved solution to the timing problem............cccceveiviie e, 16
[HTustration 6: IMAP ProXY GEEY.......ccoiirieieeieierie e 20
[lustration 7: way through the ISO-OSI 1aYerS.........ccevveiieericie e 23
TUSEration 8: STARTTLS ...t 24

Illustration 10:

Ilustration 11;

Illustration 12:

Illustration 13:

Ilustration 14:

Illustration 15:

Ilustration 16:

Illustration 17:

Illustration 18:

Illustration 19:

Illustration 20:

Ilustration 21;

Illustration 22:

Ilustration 23;

Illustration 24:

Illustration 25:;

Ilustration 26:

Illustration 27:

Ilustration 28:

Illustration 29:

Illustration 30:;

[Hustration 9: ENd to end POINt SECUNLYccveieeiiieiecee ettt 26
Determining protected IMAP 8CCOUNES.........ccoiveierinereneneeee e 27
WEB-GUI ... 30
Direction Of ProteCLiON..........cccuveiiecieccie e 32
ChunKed FEICNING. ..o 39
Mozilla Thinderbird v3.1.9: fetch by chunks............ccccoveeviieiicie e 40
MUA iStIDULION. ... 43
Desktop MUA diStribDULION..........cccuviieiiecie e 44
IMAP-filtering architecture, early attempt...........ccccoeeerenieniine e 46
TLSPrOXY ENEITIES......ceiiiieeiierieriesieee et s 48
TLS-Proxy entities exploded............ccvevieiieiiie i 50
Flowchart: HandleClientSIde...........cocoiiriieieeeee s 52
environment during develOpMENt..........ccccveveeie e s 66
environment during long term test: network architecture...........ccccccevvevevreenne. 68
environment during long term test: flow of information............ccceceevvvvennennen. 69
IVIULL. ...ttt et a e e b e e e e e b e e s mn e et e e smneeneennnas 70
INFECIEO MESSAJE.e ettt sre e 71
IMAP plugin, debug OULPUL..............ccvrieiiecece e 72
TeStNG STARTTLS....c oottt ee s 73
Thunderbird, attaChments............ccoiiiiii e 74
Thunderbird, SUCCESS.........covieeieieriesie e 75
WINAOWS LIVE Mall, SUCCESS.......coocueiieeecteieeceeree e eeeie e seee s s eeae e s s s save e e s e nees 76
Wireshark, proof of TLS........coi e 77

Illustration 31:

Acknowledgment

| would like to thank all persons who contributed to the success of this Master thesis with
their professional or personal support.

A specia thank goesto o. Univ. Prof. Dr. Muhlbacher for the supervision of thisthesis.

Dr. Dipl.-Ing. Oberrat Hormanseder provided me with valuable technical information which |
am especially grateful for.

I would aso like to thank Mr. Wiesauer who made my internship at Underground 8 Secure
Computing GmbH possible in the first place and Dipl.-Ing. Aspetsberger who provided me
with technical information on adaily basis.

| further want to thank my parents Dipl.-Ing. Macskasi Gabor and Mag. Macskasiné Kiss
Marta and my grandfather vitéz Dr. Kiss Erng, who supported me the whole time and made it

possible for meto study in thefirst place.

1. Introduction

One of the most used protocols for e-mail retrieval by mail user agents is IMAP. However,
tools to filter this kind of network traffic are very rare and not frequently used. This is a
serious security hole as to achieve better security traffic should be either blocked or filtered.
This is like the security check at the border of two countries. In order to prevent unwanted
persons from entering a country, either all vehicles must be checked for these targets, or
alternately no one may be allowed to enter the country. These two options can be considered
safe. Right now IMAP is a black minivan which is almost always allowed to pass borders
without being stopped. This thesis describes thoughts on how to make these minivans stop for
a security screening. The acquired theoretical knowledge is used to develop a proxy
application which can handle aso the black van called IMAP.

In order to give this thesis some practical meaning and to avoid being stuck on a theoretical
level the mentioned application was designed and developed during an internship at a

3]

company called Underground_8 Secure Computing GmbH . This company produces

firewall appliances which lacked an application level support of IMAP. The gist of the

internship is that they can include the developed proxy into their “MF’-series firewall

appliances .

2. Theory

2.1. Why IMAP isan issue

Compared to other mail retrieval protocols such as POP3, IMAP is quite complex and
difficult to handle. It nativly supports a great number of authentication methods. It can be
either tunneled over SSL/TLS by an additional layer, or aternately the ,STARTTLS®
command can be used to negotiate unencryptedly which encryption methods are supported
and then to switch to an encrypted channel. According to RFC3501, IMAP contains 50
different commands and responses without experimental ones. Unlike in case of POP3,
developing a semantic layer, which understands the logic of IMAP is necessary for an IMAP-
proxy which alters connection data and communicates over the same connection to the real
IMAP server as the client. IMAP is an interactive protocol. Filtering communication data in
real time requires many resources and causes mail retrieval not to be as interactive as without
filtering. While the proxy is scanning for viruses or spam, the client has to wait. The issues
caused by delays are even mentioned in the corresponding RFC:

» The LIST command SHOULD return its data quickly, without undue delay. For example, it
SHOULD NOT go to excess trouble to calculate the \Marked or \Unmarked status or perform
other processing; if each name requires 1 second of processing, then a list of 1200 names
would take 20 minutes!* ™

As a consequence designing an IMAP-proxy for our own needs from scratch would be a non

trivial issue and is not the optimal solution to the given problem.

2.2. Available products

A more satisfying solution than developing an own proxy is to review the available open
source software and to consider extending or altering an existing solution. Conveniently the
used development system comes with a variety of IMAP software:

* “imapproxy”: This is a caching proxy for the IMAP protocol which needs an own

instance for every backend (destination). It's main objective is session handling for

webmail clients which have a tendency to drop connections easily. From the legal
point of view imapproxy could have been used easily as a base for thisthesisas it is
licensed under the GNU General Public License version 2). However, after careful
reviewing it was clear that because of the difficult backend management, usage as a
transparent filtering proxy cannot be considered.

« “imapfilter” ®: This tool is an IMAP client, which alters mailboxes, copies and
moves mail according to predefined rules. It is not a proxy server, but could be useful
to remotely manage or filter mails. It is aso free software and is included in the
Debian ™ distribution.

* “pedition”: This software is a mail retrieval proxy server which supports the
protocols POP3 and IMAP. Support for SSL/TLSSTARTTLS is built in and it
supports multiple backends. This seems to be the optimal candidate as a base for a
spam filtering proxy solution. Due to its license which is GNU GPL version 2 * it is
possible to modify the source code in according to our needs.

There are commercial products such as Junos Security from Juniper Networks 7, which offer
similar functionality as needed in this thesis. The issue with these are their licenses. Source
code is not available and their usage is not free, so they could not be used as basis for this
thesis. Also the research within this thesis resulted in similar functionality and limitations as

in case of Junos Security. Such limitations are described in section 2.10. of this document.

2.3. Possible architectures

In order to manipulate the data stream of an IMAP connection the proxy server needs to have
application level understanding of the connection and needs support for the semantic level of
the communication. Thiswould imply that there is a single connection between the proxy and
the backend. This connection is used to retrieve requested data for the client and to filter /
scan messages on the server for viruses and spam. This architecture would look something

likethis:

full semantical support

client ¢ 3 transparent proxy with ¢ 3 —

message
evaluation

Spamassassin

firewall

[llustration 1: IMAP-filtering architecture with application level proxy

The spam scanning software (in this case Spamassassin) would have access to mails via the
proxy server. After evaluation of the messages it would be the proxy server's job to mark or
delete them accordingly. That again implies, that the proxy needs to have a cache, which can

be accessed by the client and the spam scanning software. This however leads to consistency

problems:
server
caching / filtering proxy unfiltered
conn.
filtered
conn.
client A client B

[lustration 2: Consistency between IMAP clients
This image shows how two clients communicate with the same server, accessing the same

mailbox simultaneously. The connection of client A is filtered, while client B has a non

10

filtered connection. This means that client B has access to messages (which are probably
spam or contain malware), which are invisible for client A. One could assume that there is
nothing wrong with this, as client B sees the “regular” mailbox, while client A has an
“improved” version. In fact there are cases where this is not acceptable. Imagine the
following: Rob sits in his office and checks his incoming mail with his desktop machine,
which connects to the IMAP server over the proxy with spam scanning abilities. Rob likes to
be up to date and has an e-mail client running also on his smart phone at al times. The phone
however connects to the external IMAP server via 3G and bypasses the spam scanning proxy
successfully. The result is inconsistency, where Rob gets alerts on his cell phone from
incoming mails, which are not present when viewed from his desktop machine.

The solution for this issue is a proxy, which does not filter the connection, but instead
modifies the data directly on the IMAP server. As aresult the same messages are visible for

all clients, independent of the source of their connection.

As the best candidate for an existing proxy which could be modified to our needs is called
“perdition” and does not fully understand IMAP. However, it is only used to handle
encryption as a trusted third party and to dump login data which was sent by the client. From
this point on the proxy has nothing to do except to shovel data through the TCP connection.

Therest is done by another piece of software, which is called “scan connector”:

11

Lnscanned

client 1 3 transparent proxy ¢ ?ccmnectma server

dumping logins

!

scan connector |«

message
evaluation

spamassassin

filter connection

.. fir e.walL...E
possible IMAP-filtering architecture

[llustration 3: possible IMAP-filtering architecture
In this design a second IMAP connection is established to the backend. This connection is
used to retrieve messages, scan them by a third party spam scanning solution such as
spamassassin and to flag or delete inappropriate messages. From the server's point of view,
the spam scanning solution is just another client which reads and deletes messages. Unlike
POP3, IMAP accepts several connections to the same mailbox and according to RFC3501
(IMAP4revl) the server is responsible for keeping the clients in a consistent, synchronized
state. The advantage of this solution is not only consistency, but also spam scanning for all
clients, even those, which are not behind the proxy after the proxy was used the first time. In
other words, Rob connects from his work machine to the IMAP server, the transparent proxy
successfully gathers login and password and checks the mailbox periodically for spam
regardless whether Rob's work machine is turned on or off. This way also Rob's smartphone's

mail client iswell protected against spam, even if Rob is outside his office.
2.4. Timing and performance

Beside quality, also quantity is an entity of mission critical importance. On one hand, quantity
in this case refers to the amount of messages, which have to be scanned within a given period

of time. If the speed is not assured which is needed to scan the given quantity of mail, IMAP

12

will be useless due to delays. On the other hand, quality stands for the accuracy of the virus
scan's result. IMAP, being an interactive protocol has to be considerably responsive. Thisis
true especialy for the LIST command, which according to the corresponding RFC “should
return it's data quickly”. This command is issued right when an IMAP connection is
established and when the proxy should scan these messages, which have to be delivered
instantly. Just to get afeeling how much time the scanning process consumes, some tests have
been performed.

The test was performed on one desktop computer which has one 3Ghz Northwood core, 2gb
RAM and Ubuntu as operating system. This box run spamassassin and isbg.py (the script,
which fetches messages and passes them on to spamassassin) natively. A virtual computer
with Debian and sufficient RAM was serving as IMAP-server. The network connection
between these boxes was a 1000 M bps connection bridged to the physical interface.

A simple script has sent 50 spam messages to the server with arather simple bash command:

imap-server:~# for i in “seq 1 50 ; do cat message_sample | mail u8; done

The file “message_sample’ is an unwanted message with 3.1kb. Then the host computer was

searching for spam, which was measured be the “time” command:

root@mcs-desktop:/home/mcs/imap proxy# time ./isbg.py --imaphost
192.168.0.249 --imapuser u8 --imappassword u8pw

0 spams found in 50 messages

0/0 was automaticaly deleted

real 2m24.415s
user 1m51.660s
sys Om4.080s

The careful reader will ask the question, why 0 spams were found. There are two explanations
for this: Either the sensitivity of spamassassin was not set high enough, or | prepared the
sample “spam” not carefully enough: The sender was root and the header (especialy the
“received’-lines) were valid. This process has been performed severa times under slightly
different conditions. The differencesin run time are not worth mentioning.

Even an other connected IMAP client, which has to be informed all the time about changesin
the mailbox via untagged server responses did not produce any measurable drop in processing
speed. Don't forget that such updates occur not just if spam messages are moved or expunged,

but also when the “\read” or “\recent” flag is removed.

13

For each message the test system needed 2.88 seconds for scanning. This result was
calculated from the code sniplet above. The duration of the command is divided by the
amount of scanned mail:

(2*60sec + 24.4 sec) / 50 = 2.88sec.
If the implementation of the proxy server and spam scan is blocking, than the response of the

“LIST” command is delayed by 2.88 seconds per message. In case of one or two incoming
mails at a time this seems to be acceptable, but just imagine the typical use case of a
businessman opening his laptop in the morning or an e-mail address of any company's support
department. They would have to wait several minutes until they can view their incoming
mails. This does absolutely not comply with rfc3501.

The result of this experiment clarified that the original, blocking architecture of the imap-filter

solution cannot be final. The following flowchart shows a solution to this problem:

14

connection attempt
from client

login data false p| retumn fake mailbox,
already logged? "Please wait..."
scanning new messages, provoke untagged
user waiting "EXISTS ... " from server

allow client to connect

[llustration 4: Flowchart: Solution to the timing problem

Upon the connection attempt from the client, instead of bl

proxy shows a fake mailbox with a kind note that the user'

messages are shown for the user only after the examination process. Although this seems to
be a quite elegant solution, consistency is not given in case of multiple devices where at least

one device is not behind the proxy. Also for the realization of this flowchart application level

understanding of IMAP has to be implemented in the proxy.

It could be a better compromise to show all incoming mails instantly and to run periodic

checks where spam is filtered or deleted. This would not delay mail delivery and could

15

ocking the IMAP connection the

s mails are being examined. The

provide reasonable protection against spam with acceptable speed after the first time a

mailbox isretrieved. The flow chart of thisimproved model could ook something like this:

connection attempt
from client

v

allow client
connection to server

login data

already logged? scanning all messages

—»| scanning new messages

provoke untagged
"EXISTS ... " from server

4

sighup?

false

true

[lustration 5: Flowchart: improved solution to the timing problem

* 'Untagged' refersto the IMAP response from the server without a command number tag

16

“Sighup” ¥ is a standard signal found in POSIX ¥ systems which indicates the death of the
controlling process / terminal. In this case sighup means immediate termination of the
program.

As one can see this flowchart shows a non blocking spam filtering architecture because the
first action of the proxy is to establish an unfiltered connection to the real IMAP server for
client communication. In case of a newly learned account all mails (also older ones) will be
checked for spam. Later just those with the “\unread” flag have to be checked. This means
that read messages are not checked twice. This is of crucial importance regarding
performance. Just consider how long it would take to recheck a typical mailbox containing
several hundreds of mails every time a connection is established.

As for general performance, this spam-scanning proxy does not need more resources than
other solutions which are directly connected to the MTA or filter SMTP traffic, because it
uses the same backend as other software in it's environment: Spamassassin. That means that
the performance of any typical appliance (specified in filtered messages / time) is not affected
by the presence of IMAP filtering. The minimal overhead of the proxy server itself is not
worth mentioning as it does not have application level understanding of the protocol and
basicaly all it's job is to shovel data from one connection into another one without altering or
analyzing it in any way.

The idling time between two spam scans should be the administrator's choice. If thistime is
chosen too large, spam is not filtered effectively: In case of an interval of one hour the user
would receive an hour's spam until it is properly dealt with. On the other hand if thisvalue is
too small like a few seconds, it will open connections more frequently thereby unnecessarily
using resources. It could even occur that two scanning instances overlap and scan the same
account simultaneously. This does not have to be prevented by the software because this case
should never occur while using a reasonable configuration. The recommended value for this
setting depends on the amount of new messages and the available computing power and
varies between 5 and 60 minutes.

Another important aspect of timing is the scanning for viruses. As mentioned in section 2.8.
of this document, in contrary to spam scanning, virus scanning has do be performed on the fly
asit is not an option to let viruses into the protected network even temporarily. The duration

of the scanning procedure depends of course on the computing power of the computer as well

17

as on the virus scanning software and the size of the message being scanned. In case of a dual
level architecture, which means that more than one virus scanner is used, the needed resources
roughly double. In case of uniprocessor systems this means that also the duration of scanning
doubles. Depending on the actual performance of the proxy system it is not obvious that the
added security of having two virus scanners is more important than being able to download
the message faster.

Within this thesis the Clam AV software is used for timing tests. This software will also be
used on the appliance which the IMAP proxy will run on. In order to get a feeling for the
performance of the virus scanner aflash video file with a size of 1.5 mb was scanned. In case
of e-mail a message of this size could contain for instance two high resolution pictures. This
amount of data can be considered a quite common scenario. Here are the results using the

,Cclamscan” command:

bitumen@turul:/home/bitumen/filmek/youtube$ 1ls -1lh italian in malta.flv
-rw-r—--r-- 1 bitumen bitumen 1.6M Jun 29 2008 italian_in malta.flv
bitumen@turul:/home/bitumen/filmek/youtube$ clamscan italian_in malta.flv
italian_in malta.flv: OK

——————————— SCAN SUMMARY —-—————————-

Known viruses: 852564

Engine version: 0.96.4

Scanned directories: 0

Scanned files: 1

Infected files: 0

Data scanned: 1.51 MB

Data read: 1.50 MB (ratio 1.00:1)

Time: 6.377 sec (O m 6 s)
bitumen@turul:/home/bitumen/filmek/youtube$

For this file with a size of 1.5 mb clamscan needed 6.38 seconds. Thisis a quite unfavorable
result. Imagine that when fetching a message additionally to a probably slow network
connection there is a delay of over 6 seconds. That would render the planned software
unusable. One could think that 1.5 mb are quite big and that the delay would be smaller in
case of messages with plain text content. However scanning a file with afile size of 4 Bytes
needed also 6.07 seconds. The difference between the durations of the performed scanning
operations are too small to be greatly influenced by file size. Obvioudly if afile is bigger,
scanning it takes more time. However the scanning overhead in case of the 1.5mb file
compared to the 4 Byte file was 6.38-6.07=0.31 seconds. That means that scanning 1mb of
data additionally takes approximately 0.31/1.5=0.2066 seconds. 200ms/mb is an acceptable

number. However, the scanning duration of approximately additionally 6 seconds regardless

18

of file size has to be improved and cannot be accepted in a production environment. As it
turns out, Clam AV loads it's virus signatures into the memory in these 6 seconds.
Conveniently that can be done in advance by using the command “clamdscan” instead of
“clamscan”. The difference between these two commands is that “clamscan” is a stand aone
binary and “clamdscan” uses a scanning daemon which runns all the time in the brackground
and holds the virus signatures in memory. A requirement for this is that this daemon called
“clamd” is running. Scanning the 1.5mb file from the previous example with the * clamdscan”

command looks like this;

bitumen@turul:/home/bitumen/filmek/youtube$ ps ax | grep clam

1993 ? Ssl 0:05 /usr/sbin/clamd

4603 pts/3 S+ 0:00 grep clam
bitumen@turul:/home/bitumen/filmek/youtube$ clamdscan italian_in malta.flv
/home/bitumen/filmek/youtube/italian_in malta.flv: OK

——————————— SCAN SUMMARY ———————————
Infected files: O

Time: 0.182 sec (0O m O s)
bitumen@turul:/home/bitumen/filmek/youtube$

The result shows that scanning with the scanning daemon is even faster than expected: The
duration for the 1.5mb test file was 182ms which gives us 121.3ms per mb which equals 8mb
per second. Keep in mind that the accuracy of measuring this short durations is greatly
influenced by the resolution of the system time. Measuring larger values clarified that
accuracy is sufficient. In case of alinear relation for a 10mb file the scanning daemon would

need about 1.2 seconds. Tests show that therelation isin fact linear:

bitumen@turul:/tmp$ dd if=/dev/urandom of=rand bs=1M count=10
10+0 records in

10+0 records out

10485760 bytes (10 MB) copied, 3.0535 s, 3.4 MB/s
bitumen@turul:/tmp$ clamdscan rand

/tmp/rand: OK

——————————— SCAN SUMMARY --—-———————o
Infected files: O

Time: 1.093 sec (O m 1 s)
bitumen@turul:/tmp$

Scanning took 1.09 seconds instead of the estimated 1.2 seconds. The conclusion is that if
“clamdscan” is used to scan messages, scanning will take approximately 120ms/mb on a
machine with a Pentium M 745 processor which provides sufficient performance for
messages of afew mega bytes.

Additionally to the duration of the virus scan there is additional delay due to caching behavior
within the proxy. Without proxy the message is delivered by shoveling the requested parts of

19

the RFC 2822 encoded message (Internet Message Format) over a TCP connection. In order
to actually find virusesit is necessary for the virus scanner to scan the message in once piece.
It is not possible to apply avirus scanner on a TCP stream. Even if that was possible it would
not make sense to do so asif avirusis found in the middle of the stream it is not possible to
“unsend” the first part of the stream which the client already received. Instead the message
has to be cached, scanned and then forwarded in case of it being free of viruses. The

consequence of caching isdelay.

data flow
—
IMA send to client
server send to proxy without
proxy
send to client
mi >
IMAP client t

[llustration 6: IMAP proxy delay
Assuming that the network connection between server and proxy and between proxy and
client both have the same bandwidth, the following formula specifies the total delay caused
by the virus scanning proxy in case of message retrieval:

Taetay = Ttranster + Tscanning
To get a better feeling for the delay, here is an example from an everyday scenario: The
bandwidth between server and proxy is 5SMBitps (broadband connection), and between proxy
and client 100Mbitps (full speed Ethernet). The e-mail which is retrieved via IMAP consists
of 2MB (RFC 2822 size, header included). The proxy needs 120ms/MB to scan the message.
Without proxy downloading the message takes:

2MB / 5Mbitps = 2*8Mbit / 5Mbitps = 3.2sec

20

Thisvalueisincreased by the imap proxy to:
(2*8Mbit / 5Mbit/s)*1000 + 2*120ms + (2*8Mbit / 100Mbitps)
*1000 = 3600ms = 3.6sec

Keep in mind, that the integer 1000 as multiplier refers to time (ms) and not to data volume.

These calculations do not include internal computations performed by the proxy such as the
overhead of memory allocation or parsing the traffic for keywords. The partial fetching
feature of the IMAP protocol can cause much more significant delays. Thisis usually the case
just with certain IMAP clients and is described in chapter 2.10.

Another aspect of timing which has to be considered are timeouts. The only timeout which is
specified by RFC 3501 for IMAP is the auto logout timeout on the server side. This should
not affect an IMAP proxy at al as it occurs just if the IMAP server does not receive any
command from the client for at least 30 minutes. The only case where the proxy could alter
the behavior of the auto logout mechanism is if the client sends an idle command every 29
minutes and a few seconds to keep the connection alive and the delay of the proxy causes this
command to arrive more than 30 minutes after the last one at the server. In case of the server

having a 30 minute timeout it drops the connection. As aresult the IMAP client has to log in

again.

2.5. Keep Alive Bytes

A more important part of timeouts which is not dealt with by the RFC is how long it may take
to send the response to commands like “fetch”. This is especialy important for an IMAP
proxy as messages which are downloaded have to be cached for scanning before they can be
sent to the client. During this time the client may drop the connection and reissue the fetch
command because it is not aware of the proxy and it's effect on the IMAP server's behavior.
This issue has been experienced in case of large attachments and the MUA Mozilla
Thunderbird / Icedove with the partial fetch feature turned off.

One possible solution is that the proxy sends small parts of the message which is being cached
to the client before it is evaluated. If too much is sent in advance, the proxy looses it's
functionality. However, even arather short e-mail header with one “received” entry has about
200 bytes. As the smallest amount of data which can be sent to the MUA is one Byte, evenin
the worst case 200 messages can be sent without the risk of allowing the message body or

21

even attachments to pass to the client. If we consider that in the default configuration of the
mail transfer agents Exim and Postfix in the Debian distribution the maximal message size of
e-mailsis 50MBytes, even in case of the biggest attachments one Byte of the message can be
safely sent to the IMAP client every 50MB*(102472)/200 = 262144B = 256KB. The

following calculation determines the duration between Bytes which are sent in advance in this
worst case scenario if the 3G connection with a bandwidth of 5MBitps from the example
above is used:
5Mbitps * 1024 / 256*8kBit = 5120kbitps / 256*8 kBit =
2.5/sec.
2.5 such keep alive Bytes can be sent per second which allows even a ridiculous timeout of
less then half a second on client side. Keep in mind that this value is true for the most
probabl e maximum message size with a small message header. Let uslook at a more probable
case in which a 2MB message with a 400Byte header is retrieved with a bandwidth of
0.2Mbitps:
0.2Mbitps * 1024 / (2*8Mbit*1024/400B) = 5/sec
It is known that by delivering bytes of the header one by one while caching or evaluating the
message timeouts on client side can be avoided. There is no need for such a timeout to be
known in case the header is sent to the client in advance as the system works even in case of
very short timeouts. However it would be an advantage if there was a standardized value as
that would make it possible to prevent unnecessary keep alive Bytes to be sent to the client.
The absence of timing requirements on server side except for the vague description of the
“LIST” command is definitely a shortcoming of RFC 3501.
As good as the working principle of keep alive bytesis, it proves to be just as effective as the
underlying system makes it possible. In order to see what is under the IMAP plugin of TLS-
Proxy, first it has to be placed somewhere in the 1SO-OSI model . It's place within the
ISO-OSI model is the application layer, which is layer number 7. It cannot be placed on
lower layers because it has the ability to ater the communication on layer 7. The fact that the
IMAP-plugin cannot talk IMAP itself implies that the proxy lies just “amost” on layer 7.
Within a computer's networking stack the information has to be reached from layer 1 up to
layer 7 where it is processed by the IMAP proxy before it is sent back down to layer 1 where

itissent inthe client's direction:

22

| Application Layver |

IMAP plugin

Presentation Lay

Session Layer

Transport Layer

Metwork Layer

Data-Link Layer

Physical Layer)‘

[llustration 7: way through the ISO-OS layers

On the way of the information through the layers delay is caused by several factors. The most
significant aspect are buffers. Especially layer 4, the transport layer which is responsible for
flow control can cause delay while waiting to fill buffers before sending data to improve
overal throughput performance. IMAP uses TCP on layer 4 so some sort of buffering is
always present. IMAP over UDP is not defined. In case of keep alive bytes the time of arriva
is of crucial importance because it's main purpose is to prevent timeouts. If it arrives after the
timeout has already occurred communication is interrupted and the keep alive byte is useless.
Every layer in the communication causes additional overhead due to protocol headers. So
does TCP. The goal of it isto collect the ideal amount of data in a buffer and then send it. If
an application tries to send just one Byte, TCP is likely not to send it right away because the
protocol headers sizes are multiple times as big as the one byte which the proxy wants to
send. The drop of performance due to small buffer- / window-sizes is described further in
section 2.10.

However, the idea behind the keep alive byte is not high throughput performance but more the
urgent delivery of the smallest amount of data which can be transmitted at one. For this
purpose the Transmission Control Protocol provides an own flag within it's protocol header
which causes some TCP stacks to handle it with higher priority. Thisflag is caled the PSH or
push flag:

“The sending user indicates in each SEND call whether the data in that call (and any
preceeding calls) should be immediately pushed through to the receiving user by the setting
of the PUH flag.”, [32]

23

So in theory the PSH flag solves the timing issue of keep alive bytes. Practically it can work
similarly asin case of Telnet and SSH: Keystrokes are sent immediately despite of their small
data size. However, it is not guarantied that packets are delivered instantly:

“A TCP MAY implement PUSH flags on SEND calls. If PUSH flags are not implemented,
then the sending TCP: (1) must not buffer data indefinitely, and (2) MUST set the PSH bit in
the last buffered segment (i.e., when there is no more queued data to be sent).” , >

This means that the implementation of the PSH bit in TCP stacks is optional. If it exists on the
host where the proxy is being run, the PSH flag can be set to increase the probability of

timeout prevention.

2.6. TLS/ SSL

Using IMAP as a clear text protocol causes similar problems as other legacy protocols such as
FTP or Telnet. Due to privacy issues an encrypted version of IMAP was needed. RFC2595
specifies how to use IMAP on top of a TLS layer. There are basically two solutions:

* Thefirst oneisto wrap SSL around IMAP and offer this service on the dedicated port
993. Doing this would result in port 143 being obsolete as clear text connections are
not wanted.

* The second possibility is introduced by RFC2595 and provides a more elegant
solution to the problem. Only the original port 143 is used and an own command
named “STARTTLS’ was introduced.

port 993 »

sacure

STARTTLS

port 143)" not secure

[llustration 8: STARTTLS
At the very beginning of an IMAP conversation the client issues the “CAPABILITY”
command. The server answers by sending a list of supported features, usualy including

STARTTLS. In this way the client knows that encrypting the connection is possible and may

24

issue the STARTTLS command. After the handshake, which includes negotiating keys and
checking either one or both certificates, the TLS layer is set up and al further communication
is done over this additional TLS layer. It is crucia to note how important the handling and
checking of certificates are in order to prevent person-in-the-middle attacks, which is
basically the illegal way of what the TLS-Proxy does under the name “trusted third party”.
The aspect of certificate checking is also mentioned in RFC2595:

“During the TLS negotiation, the client MUST check its understanding of the server
hostname against the server's identity as presented in the server Certificate message, in order
to prevent man-in-the-middle attacks.” ™

Another interesting capability of IMAP is called “LOGINDISABLED”. If the corresponding
feature is enabled, this capability is advertised just until “STARTTLS” isissued. An example
for thisis given in REC2595 ™;

“C: a001 CAPABILITY

S: * CAPABILITY IMAP4revl STARTTLS LOGINDISABLED
S: a001 OK CAPABILITY completed

C: a002 STARTTLS

S: a002 OK Begin TLS negotiation now

<TLS negotiation, further commands are under TLS layer>
C: a003 CAPABILITY

S: * CAPABILITY IMAP4revl AUTH=EXTERNAL

S: a003 OK CAPABILITY completed

C: a004 LOGIN joe password

S: a004 OK LOGIN completed”

After the encrypted channel has been set up it is not advertised any more. This makes sense as
“LOGINDISABLED?” forbids authentication with login credentials. The result is that sending
login name and password over the connection is not accepted unless the channel of
communication is encrypted. This measure makes it more difficult to sniff login credentials
which enhances security. However, the online scanner which is part of this thesis and scans
IMAP accounts for spam requires login credentials to be sniffed by the proxy which is used.
This means that the proxy server has to filter the IMAP-server's capabilities so that login
credentials would be used. This does not affect security as TLSis still used externally.

Another aspect of security which is worth emphasizing is that TLS does not guaranty that
only the recipient of the message is able to read it. TLS makes it nearly impossible to
eavesdrop on the network traffic in clear text. However, MTAs may store or transfer these
messages without encryption before they are fetched over IMAP. Looking at the delivery

chain of a message there are several nodes where security can be compromised:

25

IMAP @
POP3 @

As the graphic shows beside IMAP there is also the SMTP protocol which can be

SMTP SMTP SMTP
mra p——| relay —»| MDA

[llustration 9: End to end point security

eavesdropped on. SMTP is used for communication between the Mail Transfer Agent,
possible mail relays and finally the Mail Delivery Agent. One possible solution to this
security issue is to use end to end point security products such as PGP . This program
encrypts the content of messages which means that scanning for spam or viruses is useless.
The application, which was developed in this thesis is not compatible with end to end point

security products.

2.7. Determining protected IMAP accounts

A general issue while designing or configuring security solutions is the philosophy of
protection. There are two extremes. Either the firewall allows al traffic and has no filtering
effect at all, or it blocks all traffic, making communication impossible and rendering the
product totally useless as well. The goal is to have a design which does not need to be
configured excessively and preferably offers protection just by activating a checkbox on some
web GUI. In case of IMAP filtering inside of afirewall two different ways can be considered

possible, which are shown in the following flowcharts and are described below:

26

new IMAP login

v

protecting account jf——

new IMAP login

admin turns
protection on

client seen in
last X days?

terminating protection protecting account

[llustration 10: Determining protected IMAP accounts
Automatic protection with timeout

Using this method the proxy scans authentications on the fly in case of plain text
authentication or even as a trusted third party with an own, valid certificate in case of
encrypted connections and learns login credentials of IMAP mailboxes on the fly. Triggering
protection is done just by the presence of an IMAP connection if filtering is activated on the
web GUI of the software. This solution requires just one check box to be set, but is affected
by the guest problem.

Think of a company network where mail servers and their administration are outsourced. It is

a desired behavior that all employees messages are checked for spam and viruses. Private

27

accounts can be included as well due to possible company policies. However the question,
whether guest's mailboxes should be checked or not does not have a clear answer:

* On one hand filtering spam can be considered harmless and useful also for guests.

* On the other hand it is most probably not the desired behavior that guest's mailboxes
are filtered even after they left the office. This could affect also other companies mail
accounts! Thereisno trivial way of determining whether the guest has already left the
building / the company's site or not. To use GPS [34] tracking or MAC-address
registering and tracking would have to be used to determine the physical location of a
device. This however could be overridden by malicious users by faking mac addresses
and would hereby open a whole new spectrum of issues. Also such atracking system
isway beyond the borders of thisthesis.

This also concludes that if automatic protection without explicit confirmation of an
administrator is only acceptable if there is a reasonable timeout in case of user inactivity. This
way aso guests accounts are filtered. After they leave the protected network with their
devices their accounts are still checked until a timeout triggers the removal of the given
account from the list of protected accounts. This timeout has to be chosen very carefully:

If chosen too small, even own employees accounts can be left unscanned if their desktop
computer is turned off for too long or their notebooks are out of the office network. The
consequence of the accidental removing of accounts is that until the next connection to the
mailbox, messages are left unfiltered. This way successful spam protection cannot be
provided.

If the timeout is chosen too big, the above mentioned guest problem occurs. Depending on the
amount of guests and mail traffic also performance problems can occur as the system tries to
scan an unnecessarily large pool of mail accounts. Note that all messages with the “\unread’
flag are checked. Accounts which are not checked frequently can contain a large amount of
messages which probably should not even be filtered. An example for this case is an account
with automatically generated mail like logs. It is quite likely that a frequently running cron
job or a daemon will have some problem and will start to send error messages for root. For
such messages spam filtering just does not make sense.

Also automatic protection of mailboxes can be a potential attack vector for denial of service

attacks. If a malicious user named “Rob” fills some mailboxes with spam collected from the

28

internet or any other generated messages and then connects to these mailboxes simultaneously
from within the protected network the firewall's resources will be used to filter these messages
which are never going to be read or used in any way. Think of following scenario: Our test
hardware which has been used to determine the software's performance (see chapter 2.4.)
needs in average 2.88 seconds to check one message. So al Rob has to do is filling 5
mailboxes with 150 messages. This is still a rather small value! Each mailbox requires
150*2.88 sec = 432 sec of processor time. Considering 5 mailboxes and assuming that spam
filtering is done by one core 432sec* 5= 2160 sec which is equal to 36 minutes. By arelatively
small amount of mails and with little effort Rob could cause excessively high load for more
than half an hour. This issue could be worked around by giving spamassassin arelatively low
priority and thereby preserving the responsiveness of other application running on the same
hardware. However this behavior is likely to be considered a design flaw. A down to earth
solution is not to check any mailboxes automatically thereby eliminating the guest problem as
well asthe possible attack vector for DoS attacks.

Taking the edge of the guest problem does not mean that there will not be any performance
issues a all. There has to be sufficient computing power available to scan non-guest

mailboxes.

Administrator's O.K. for protection

Instead of automatically scanning newly learned accounts another possibility would be to
store the names of these accounts in a list, present them to the administrator and let him
decide whether that account should be checked or not. This could be done over a web
interface with one main switch which turns on IMAP filtering and one check box for each
learned account. In this case the system would not interfere with guest's computers and their
mail accounts. It would be also possible to choose just those mailboxes which really need
scanning and thereby save resources.

Beside of all these advantages the only known problem with this design is that human
intervention is needed for the system to work. Especially in case of a bigger network with
several hundred IMAP connections this would result in a performance issue on the human
side. Options on the web interface which alow to select all mailboxes and uncheck those

which are not needed could provide a satisfactory solution.

29

Network Proxy&Filters Logs

ACCOUNT HANDLING
= List Of Learned Accounts

¥ addrl@undergrounds.com
¥ add2@undergrounds.com

™ guest@external.com

Prefetch Interval 10

VIRUS HANDLING

W Enable Clam AntiVirus [T Kaspersky Anti-Virus

IHustration 11: WEB-GUI

This is an example of how the web interface could look like after integration into the
Underground_8 MF70 firewall. Here the administrator has to enable scanning of accounts one
by one. Note, that the lines in the image above represent the IMAP login name and the IMAP
server in the format “login@server”. They are not necessarily E-mail addresses. This format

iscommon. It isfor example used by the command line client of the secure shell.

2.8. Virus scanning

After already having a first impression of how to implement the spam scanning software
during an internal meeting the question was raised, what is more important: Spam scanning or
virus scanning? While spam is annoying and more a convenience factor, computer viruses can
compromise workstations or even a whole network. At this point it became clear that spam
scanning has to be the secondary goal of thisthesis, as the main purpose isto enhance security

which is done by keeping viruses and other malware outside of the protected network. In

30

mailto:login@server

order to secure the internal network it is essential to scan all traffic from the internet. Because
of this there are two choices: either blocking the IMAP ports (143 and 993) or to filter the
traffic over these ports which requires atransparent proxy with virus scanning capability.
Also the design of an asynchronous online scanner as described in section 2.3. had to be
rethought as virus protection has to be done on the fly. It is a no go criteria if a potentially
dangerous message can be downloaded over IMAP before being scanned by the asynchronous
scanner at alater point in time. It became clear that the practical part of thisthesiswill be split
into a transparent proxy with virus scanning capability and an online scanner which deletes or
moves spam on the IMAP server. Following criteriawere agreed upon:
must have:

* transparent proxy

* logging login information on the fly for the asynchronous scanner

* no caching (storage of messages on the firewall)

* scanning of the message body for viruses on the fly

» account / domain exclusion (“blacklisting”)

» scanning of TLS connections done by the existing TL S-Proxy
optional features:

» asynchronous client / online scanner

* anti virus and anti spam solution for remote IMAP clients which do not communicate
over the IMAP proxy

» account management interface (WEB-UI)

After evaluation of available proxies it became clear that in order to support the scanning of
TLS encrypted connections an existing, general TLS proxy with this feature has to be
extended by an IMAP module which supports the scanning and finding of viruses. This leads
to the question, where viruses or other malicious code can be located within the IMAP traffic.
Two attack vectors were found:

* Thefirst is the sending of manipulated commands which do not comply with RFC
3501. Implementations of IMAP servers, which contain bugs may be vulnerable to
certain buffer overflow or denial or service attacks. If for example an IMAP server
does not perform sufficient bounds checking on message UIDs or the length of login

credentials, the whole service could be taken down by a manipulated fetch or login

31

command. This thesis is not going to deal with the enforcement of syntactic and
semantic correctness of IMAP traffic and therefor cannot protect against such attacks.

* In case of the second attack vector the target of the attack is the MUA. The proxy is
just used to forward the malicious code to the IMAP client. Such code can be located
within the header of the message which includes the subject, or in the body which can
contain text or attachments. The subject isimportant on its own as the IMAP protocol
makes it possible to download just the subject or just the header of a message so it can
be considered an own attack vector. The subjects of the messages have to be returned
by the IMAP server upon request of the client immediately, so scanning for virusesis
not recommended here. However, the message body with attachments is the most
probable place for malware to be located at. This means that the developed software
must be able to locate message bodies within the stream, cache them until the server
has sent the whole message, evaluate it and depending on the result of the virus scan
either send it to the client, or cut out the content, leave the header, insert a virus
warning and then send it to the client.

At first glace it seems to be straight forward that only the data stream has to be anayzed
where the server is the source and the client is the destination. However IMAP also has a
feature where messages can be uploaded to the mailbox. This happens for example if
messages are moved to the “sent” folder or the draft “folder”.

If traffic, where the server is the destination and the client is the source is not scanned,
messages containing malicious code can be uploaded to the mailbox located on the IMAP
server. This could be potentially dangerous for other IMAP clients which access the same

mailbox but are not located behind the proxy server.

1| il
I S— I S—
client A client B

. infected msg D clean msg

[llustration 12: Direction of protection
On this picture it is visible that the network behind the IMAP proxy is secure even if one of

the machines within the network uploads messages with malicious content to the IMAP

32

server. However, these messages can infect those clients, which connect to the same server
and are not using the proxy (e.g. client B).

Another important aspect of message scanning is the input format of the e-mail being
scanned. The knowledge which is available about these messages are that they comply with
the Internet Message Format as described in RFC 2822 . In order for the virus scanner(s) to
be successfully scanned multipart messages have to be split and attachments have to be
extracted into separate files to be scanned independently. The following command can be
used for MIME decoding "":

~$ ripmime -i <msg> -d <output_ dir>

The separated parts of the multipart message can be found in the directory “output_dir”. If the
decoding of MIME is not done, many virus scanners will not produce any usable result
because they cannot decode MIME themselves and as a result their virus signatures will not
match. Viruses will not be found.

Testing of the IMAP plugin's virus filtering capabilities had to be tested. As sending real
viruses in e-mails over severa networks is not something what a responsible software
developer would do, the EICAR signature ™™ was used. This rather short string's signature is
implemented in all up to date virus scanners and was designed especially for testing purposes.
The signature itself looks like this:

X50!P2@AP[4\PZX54 (P")7CC)7}SEICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*
After MIME decoding of messages the IMAP plugin handles messages with this content as

infected.

2.9. Detecting begin and end tags

In order scan messages for viruses on the fly the most difficult and important aspect is to
detect the beginnings and ends of messages. If either of these does not work, the proxy looses
functionality: Either it lets messages pass without being scanned because they are were not
found, or it just caches without writing to the client as all IMAP traffic is handled as part of
the message.

Aswriting a parser for IMAP traffic which can detect messages semantically from the context
was out of the scope of this thesis, another method of handling at least the fetch command had
to be found in order to detect the transfer of e-mails within the IMAP stream. The first idea

was to look for the , FETCH" command originating from the client to detect when a message

33

is requested. This command can be executed according to RFC 3501 with the following

arguments:

“ALL, FAST, FULL, BODY, BODY[<section>]<<partial>>, BODY.PEEK[<section>]
<<partial>>, BODYSTRUCTURE, ENVELOPE, FLAGS, INTERNALDATE, RFC822,
RFC822.HEADER, RFC822.SIZE”

Due to the large number of options and possible responses handling the “FETCH” command
issued by the client seemed to be an overkill for the needed functionality. This is the reason
why this command is not described further. Also not al responses to these commands have to
be scanned. If just the size of the message according to RFC 822 or the header is requested,
scanning is not necessary as viruses are not located there. If these commands were used to
detect messages, also the tagged server response would have to be analyzed as it is possible
that instead of the message body the server simply sends “NO - fetch error: can't fetch that
data’ or “BAD - command unknown or arguments invalid”. Both responses comply with RFC
3501 and could cause unwanted behavior of the proxy. Also the structure of a message
transferred over IMAP can not be known in advance for sure asit is not specified completely
by RFC 3501: , Any following extension data are not yet defined in this version of the
protocol. Such extension data can consist of zero or more NILS, strings, numbers, or
potentially nested parenthesized lists of such data.” , (4

A much simpler and more robust solution to this issue is not to pay any attention to the
command which the client issues, but rather parsing the traffic originating from the IMAP
server for message bodies. This way fetch requests which don't cause any message bodies to
be sent are ignored. Negative server responses such as “NO” or “BAD” are no issues either,
as message bodies are not transferred and not detected. A consequence of this behavior is that
messages can be scanned just in one direction: when they are transmitted from the server to
the client. The effect of this one way scanning is described in section 2.8.

The only requirement for this solution is that a reliable way of finding the begin- and end-
positions of messages in the traffic which is sent by the server has to be found. This can be
tricky as if not the RFC822 message or an equivalent macro is requested as message format,
the e-mail can contain arbitrary character sequences including symbols which have semantic
meaning in the IMAP protocol. This has to be taken very seriously to prevent code injection.
In such a scenario the attacker could fake atag at the beginning of the message which signals
the end of an IMAP response and then append any kind of malware to the message. The proxy
would scan the message just until the faked end tag. This is not acceptable as it is an

34

exploitable design flaw. The solution to this lies within the header of the IMAP response.
Before sending the message to the client, the server calculates the size of the message which
is being transferred and places it's size in bytes in the message header. If an end tag is found
within the message at a position which is smaller than the message size, that end tag is faked
and must be handled as plain text without semantic meaning. The amount of bytes in the
message header can be safely skipped before starting to scan for end tags without the risk of
overlooking end tags which would be fatal as well.

The tags which have been determined to be usable are the following: The beginning of a
message being transferred over IMAP can be determined by the string "FETCH (UID"
followed by "BODY[" in the same line. Both strings must be present in order to get a valid
start tag. The end of the message is usually locatable by searching for CRLF followed by “)”
and CRLF. However, some mail transfer agents such as Courier Imapd do not put the “)”
character in a new line in case of attachments which makes the search for this pattern
unreliable. So the CRLF in the beginning has to be dropped and the remaining pattern 0x29,
0xD, OxA which isequivalent to “)CRLF" delivers satisfactory results.

These two tags identify the body of a message which transferred over IMAP. After extracting

the data between these two tags, it can be scanned for malware.

a0006 UID FETCH 771 BODY.PEEK]]

* 125 FETCH (UID 771 BODY[] {437}
Return-Path: <root@imap-server.locald
X-Original-To: u8

Delivered-To: u8@imap-server.localdomain

Received: by imap-server.localdomain /(Postfix, from userid 0)
.id DC5174C225; Mon, 21 Feb 2011 12:17:56 -0500 (EST)

To: u8@imap-server.localdomain
Subject:)))

Message-Id: <20110221171756.DC5)/4C225@imap-server.localdomain>
Date: Mon, 21 Feb 2011 12:17:58 -0500 (EST)

From: root@imap-server.localdbmain (root)

RFC822.SIZE

Fetch completed.
In this example start- and end tags have been marked by bold characters. The additional “)”

characters have been inserted to show that even tough these characters are not escaped in any
way, just the last one was recognized by the MUA due to to the RFC822.SIZE attribute in the
header. The line below the end tag contains the command tag (a0006 in this case) and the
“OK” response which indicates that the message was sent successfully.

35

In this sense messages have a structure which is similar to TLV — Type Length Vaue entries.
The type is RFC822 ¥ the length is specified by the RFC822.SIZE attribute and the value is
the message itself. Internally the IMAP plugin handles messagesin this format.

To understand the size attribute it is important to know that the RFC822.SIZE is not actually
specified in RFC822. It is determined by formatting the message according to the internet
message format (RFC822) and then counting it's size in bytes.

2.10. Partial fetching

The fetching of messages is of great importance for this thesis because messages are that part
of the IMAP traffic which has to be scanned for viruses. The simplest way to fetch a whole
message is to use the command “86 FETCH 1 body[all]” where 86 is afreely chosen number
by the client and 1 is the index (UID) of the message on the server. The reply to this
command will be the imap header, the requested mail header with the message body and
finally the line “01 OK — fetch completed”. This last line indicates that the command which
was issued with the number 01 was completed successfully. So far fetching messages seems
to be straight forward.

In order to make things more complicated the Network Working Group which is responsible
for IMAP 4revl decided to add an additional feature to the protocol called partial fetching.
The idea behind partial fetching is that messages can be retrieved in severa pieces. The

syntax isthe following:

FETCH <uid> BODY[<section>]<<partial>>

The command “FETCH 87 BODY[1]<245764.16388>" would fetch 16388 Bytes of
the message with the UID 87 with an offset of 245764 Bytes.

Partial fetching is not optional, but must be supported by the IMAP server.

This feature adds the functionality to continue the fetching of a message at an arbitrary point
if the connection was dropped. In such a case parts of the message do not have to be fetched
twice. The environment in which this feature makes sense includes 56k modems, GSM data
cals and ever so unstable WiFi connections over long distances during harsh weather
conditions. In a network which provides sophisticated 1SO OS| layer 2 and layer 4 solutions,
partial fetching has no right to exist. One could argue that it is helpful in case of large

attachments such as CD or DVD images. The counterpoint is that e-mail with attachments

36

was not designed for such amount of data. There are perfectly good solutions like scp or rsync
to transfer large amounts of data from one host to another. In the worst case even FTP could
be a better choice than sending large files over e-mail. Also depending on the configurations
of the mail transfer agents between the sender of the message and the receiver the maximum
message size is most probably limited to a few megabytes. The MTA Exim 4 for instance has

aquite high default size limit according to it's config file:

“# Message size limit. The default (used when MESSAGE SIZE LIMIT # is unset
) is 50 MB~, %
In case of Postfix the limit is the same:

bitumen@tuxworld:~$ cat /etc/postfix/main.cf | grep message_size
message_size_ limit = 52428800

These values were taken from a Debian GNU/Linux, version 6.0 installation. Typicaly this
limit is set even smaler and can be reduced also by the maximum upload size of web
interfaces in case of web mail. The point is, that in the worst case of a dropped connection
almost at the end of a message being transferred causes about 50mb to be resent without using
partial fetching. Typically this value is much smaller. If an administrator of an MTA decides
to increase this setting to a much higher value, that results in a unique case which cannot be
considered here and is likely to be a misconfiguration. As shown, with the exception of
unstable network connections partial fetching is not needed.

Apart from the mentioned advantage in obsolete networks, this feature can raise issues in
severa other layers, one of the most important being layer 4 and TCP. TCP implementations
have mature and stable code with support for the TCP dliding window: “ The well-known
Siding Window protocol caters for the reliable and efficient transmission of data over
unreliable channels that can lose, reorder and duplicate messages.” , *°

Trying to perform the job of a lower OSl layer in an upper layer compromises the
functionality of the lower layer and most probably delivers worse performance. After al, the
OSl layers were designed like this for areason. If the MUA for instance requests a message in
chunks of 16kBytes, TCP cannot increase the window size over 16kBytes because there is not
that much data available at once. This is inefficient not just on OSI layers 2-4, but also on
application layer due to the overhead in IMAP headers. Some IMAP clients such as Mozilla
Thunderbird / Dovecot do not only use partial fetching, but also use a kind of window scaling.
In other words the MUA may implement a sort of “IMAP dliding window” like TCP does on
OSl layer 4 for all traffic. The MUA mentioned above starts to fetch with a window size of

37

16kBytes and upon quick response of the server it increases the size by 8kBytes until the
maximum IMAP-window size of 64kBytes is reached. 64kByte is exactly the layer 4 packet
size where TCP window scaling starts to be efficient and can utilize the available bandwidth
properly. More information about TCP window scaling can be found in the book TCP/IP
lllustrated, Volume 1 7.
Instead of letting TCP do it's job, the IMAP window size is kept at maximally 64kByte and
because TCP does not have more data at it's disposal the window size cannot be increased
anymore. Theresult isa transfer of messages in chunks of maximally 64kBytes, but possibly
just 16kBytes in case of a connection with rather big round trip times due to routing or using a
proxy. This also means that every 16 or 64kBytes the system has to wait for the duration of
the round trip time because of the issuing of the following IMAP fetch command after the last
“OK — fetch completed” response from the server. The effect of this is visible on the
following example:
A message with the size of 2MB (headers included) is downloaded over a connection with a
bandwidth of 0.5Mb/s and around trip time of 600ms which is an admissible value in case of
a 3G connection. Without partial fetching the message can be downloaded in

2Mb / (0.5Mb/s) + 600ms = 4600ms = 4.6sec.
With partial fetching and calculated with the maximum window size of 16kByte the same

operation takes
(2Mb / (0.5Mb/s))*1000 +(2Mb * 1024 / 16kByte) * 600ms =
80800ms = 80.8sec.
Due to this feature the fetching of the message took 80.8 seconds instead of 4.6 seconds. The
communication was slowed down by a factor of 17.57 even in the case of a not too big
message with the size of 2MB and where the initial window size of 16kBytes was not even

considered!

38

>

100 %

chunk n

msg chunk 3

chunk 2

chunk 1

>

0 t

. delay due to RTT D chunks of the transferred message

[llustration 13: Chunked fetching

The reason why partial fetching is mentioned in such extent in this thesis is that a proxy not
only decreases the bandwidth due to virus scanning, but also increases the round trip time due
to memory operations. The effect of combining partial fetching with a dightly higher round
trip time have been shown to be fatal. For anything else than short plain text messages partial
fetching has to be disabled in the MUA to get acceptable performance. However, there is one
exception: If a message with considerable size is transferred and the connection is dropped,
not all message has to be transferred again, because al previousy successfully transferred
parts can be used. The good news is that from the two MUASs supported by the software
which is developed in this thesis, just Mozilla Thunderbird / Icedove has the described
problem in the default configuration while Microsoft Outlook does not use this feature. If an
IMAP proxy is used, the following setting has to be edited in the advanced configuration
editor of Mozilla Thunderbird / Icedove:

39

od about:config LQJLEJ@J@J

Filter: | chunk %
Preference Name w | Status Type Walue =
mail.imap.chunk_add default integer 8192
mail.imap.chunk_fast default integer 2
mail.imap.chunk_ideal default integer 4
mail.imap.chunk_size default integer 65536
mail.imap.min_chunk_size threshold default integer 08304
mail.server.default.fetch_by chu... user set boolean false

[lustration 14: Mozlla Thinderbird v3.1.9: fetch by chunks
Switching “mail.server.default.fetch by chunks’ to “false” will probably reduce the duration
of message downloading by afactor of 16.7 as calculated in this section.

2.11. Inserting avirus warning message

Until this point of the document it was discussed what could be potentially dangerous, where
malware can be located within the IMAP stream and what the technical possibilities are to
locate these parts of the communication. However it was not described how to proceed once
an e-mail with malicious code was found.

The most obvious thought is that the message has to be prevented from reaching the mall
client. One possibility is to ssimply drop the connection or not to send any more data of that
message. This way the client is protected without question, but this cannot be a satisfactory
solution as the MUA till waits for the message which it has requested to be sent. Within one
connection several messages can be downloaded so with this method the delivery of
legitimate, virus free messages would aso be blocked. Dropping the connection could also be
used to trigger a Denial of Service attack by sending virus infected messages . Also it is
unpleasant for the user if the MUA seemsto stop working without an error message and mails
cannot be downloaded. This behavior is also against RFC 3501 which states that a fetch
command must be followed by untagged fetch responses containing the requested parts of the

message, followed by a tagged response which informs about the success of the command's

40

execution. Also the developed software has to comply to the standard in order to guaranty
interoperability.

The proper way of handling these situations is to copy the cached message which contains
malware to a separate buffer, remove the malicious part and insert a message that parts of it
have been removed due to security reasons. Determining which parts to remove can be done
by separately scanning parts of the message. First, separate files have to be created from the
MIME encoded, cached message. This can be done for example by atool caled “Ripime” (7
which can differentiate between the text part of the message and attachments. After having
distinct files for the mentioned parts, they can be evaluated one by one by a virus scanner.
Harmless parts can be assembled to a clean message. After inserting a note about removing
parts, the message header has to be rewritten so that it would contain valid information about
the MIME structure of the message. Also the encoding of the Internet Message Format has to
be verified so that characters or character sequences within the message would not have
unwanted semantic meaning in any upper layer protocol such as IMAP. The freshly
assembled message can be written to the client.

The easier way to proceed is instead of cutting out malicious parts of the message, is to
simply remove the whole message body and to insert a virus warning instead. Also in this
case the message is copied to a separate buffer, which is used for manipulation. As during this
scenario the header of the message will not be modified, it has to be left in it's origina state
and it is necessary to seek to the beginning of the message body. This position can be found
quite easily according to the internet message format: “ The body is simply a sequence of
characters that follows the header and is separated from the header by an empty line (i.e.,, a
line with nothing preceding the CRLF).” ™

“CRLF’ stands in this case for a new line. So in order to find the beginning of the message
body the buffer has to be searched for the first occurrence of the Byte sequence OxOA 0xOD.
After these two bytes it is safe to simply delete the rest of the buffer's content thereby
removing the whole message body. A user defined string can be appended as a virus warning
message. In the developed application the string “Virus found. Mail body removed.” was
used. The modified message is best terminated by “CRLF)CRLF".

Thisis also visible in the following example. Here is a short message with IMAP header and

tagged response included:

41

a0006 UID FETCH 476 BODY.PEEK]]

* 1 FETCH (UID 476 BODY[] {498}

Return-Path: <root@imap-server.localdomain>

X-Original-To: u8

Delivered-To: u8@Rimap-server.localdomain

Received: by imap-server.localdomain (Postfix, from userid 0)
.id E1B3A4C1lAD; Mon, 29 Nov 2010 03:59:04 -0500 (EST)

To: uB8@imap-server.localdomain

Subject: testmail

Message-Id: <20101129085904.E1B3A4ClAD@imap-server.localdomain>
Date: Mon, 29 Nov 2010 03:59:04 -0500 (EST)

From: root@imap-server.localdomain (root)

X50!P%Q@AP[4\PZX54 (P")7CC)7}SEICAR-STANDARD-ANTIVIRUS-TEST-FILE!SH+H*

)
a0006 OK Fetch completed.

Just for this example the Eicar signature is treated as a virus and the message has to be
nullified:

a0006 UID FETCH 476 BODY.PEEK]]

* 1 FETCH (UID 476 BODY[] {467}

Return-Path: <root@imap-server.localdomain>

X-Original-To: u8

Delivered-To: u8@imap-server.localdomain

Received: by imap-server.localdomain (Postfix, from userid 0)
.id E1B3A4ClAD; Mon, 29 Nov 2010 03:59:04 -0500 (EST)

To: u8@imap-server.localdomain

Subject: testmail

Message-Id: <20101129085904.E1B3A4ClAD@imap-server.localdomain>
Date: Mon, 29 Nov 2010 03:59:04 -0500 (EST)

From: root@imap-server.localdomain (root)

Virus detected. Mail body removed.

)
a0006 OK Fetch completed.

Note especialy the bold parts. The first line is the fetch request from the IMAP client
followed by the untagged response from the IMAP server which starts in line two. The
number in brackets “{}” is the RFC 822 size of the message. It is calculated by counting all
bytes of the untagged response of the server starting from the e-mail header (not the IMAP
header!). CRLF at the end of every line is included. This value has to be recalculated after
modifying the message as the IMAP client reads this amount of bytes as untagged response. If
thisis not done, the MUA islikely to hang while waiting for a proper response.

The e-mail header which does not correspond with the message body and it's attachments can
also be the source of issues for the MUA as it might not display the message correctly. If this
occurs, the header has to be altered aswell.

42

2.12. Mail User Agents

After having gathered some knowledge about the inner working of the IMAP protocol and the
IMAP plugin which has to be designed the question has to be raised what server and client
software should be supported. Despite being comporatible with RFC 3501 programs using
IMAP will do things dlightly differently. This can cause issues with the IMAP plugin if it is
not designed carefully enough. So first of al it has to be determined which IMAP servers and
mail user agents should be supported. Of course it is nearly impossible to guaranty
compatibility with all kinds of MUAs. To determine what software to support in order to
work in most use cases amail client statistics from lintian.com ¥ has been used:

“ Data collected from 250,000,000 email recipients using our Fingerprint analysis tool. This

»n [13]

chart shows the top 10 email clients by market share. Compiled 24 February 2010.”

Email client Market share
Outlook 43.00%
Hotmail 17.00%

Y ahoo! Mail 13.00%

Gmail 5.00%

Apple Mall 4.00%

Iphone 4.00%
Thunderbird 2.40%

Windows Live Mail | 2.00%

(Desktop)

AOL Mail 1.2% . .

Lotus Notes 040% source: litmusapp.com | february 2010
Others 8.00% [llustration 15: MUA distribution

This data contains some information, which is mideading for us. Before using it some
numbers have to be recalculated. As already stated, if the IMAP proxy is used it is expected,
that the mail user agent software is run from within the internal, protected network and the
IMAP server is located somewhere on the internet which is outside our network. Thisimplies

that the IMAP is “spoken” over a connection which goes through the firewall where the

43

IMAP proxy islocated on. This assumption is correct as long as a desktop application is used
as MUA. The table above however shows that at least 35% of e-mails are handled by web
based mail systems (Hotmail, Yahoo! Mail, Gmail, etc.). In this case either these web based
services fetch mail from other accounts via IMAP or POP3 which means that traffic is not
routed through our firewall using these protocols or that they do not fetch mails at al because
the MTA isincluded in the same system as the webmail interface. Thisis the case if addresses
with the FQDN of the web based mail system is used like “ @hotmail.com” or “ @gmail.com”.
However keep in mind that this refers only to these systems acting as MUA.. If messages are
retrieved by desktop clients such as Outlook or Thunderbird from the POP3 or IMAP servers
of these online services obviously the traffic is routed over our firewall either in form of
POP3 or IMAP.

The gist of al thisis that web based MUAS have to be removed from the table above and the
market shares of desktop based MUAS have to be calculated separately. The results of these

calucations are the following:

Email client Market share
Outlook 67.40%
Apple Mall 6.27%
Iphone 6.27%
Thunderbird 3.76%
Windows Live Mail (Desktop) 3.13%

L otus Notes 0.63%

Others 12.54%

B Outlook B Windows Live

Mail (Desktop
B Apple Mail [Lotus Notes
1 Iphone B Others
B Thunderbird

[llustration 16: Desktop MUA distribution

The consequence of these calculations is that it was decided to provide support for the MUAS
Microsoft Outlook, Mozilla Thunderbird and Mutt. The choice of supporting the first two is
based on the aim to support the biggest possible market share. The easiest way to perform
tests of the developed software was a virtua machine with a very basic setup of Debian
without a graphical user interface. This is the reason why mutt was mainly used in the first
stages of development to test the proxy as Multt is text based and needs very little resources.
Other mail clients such as Apple Mail and Iphone will not be tested due to lack off access to
them. Clients with no significant market shares such as Opera Mail or Eudora will not be
tested either. Considering that 12.5% of mail clients are either unknown, are very rare clients
or are other webmail clients it is possible to cover at least 2/3 of the market. Furthermore if
there is no official support for a MUA that does not mean that it will not work with the IMAP
proxy. Support in this case means just that software has been tested and is guarantied to be
usable in combination with the devel oped product.

After writing most of the source code the alpha version of the TLS-Proxy's IMAP support has
been tested. Opensource software has been working flawless. Using Mutt and Thunderbird
issues or bugs have not been found yet. Microsoft Outlook however tends to drop the IMAP
connection. The reason for this behavior has yet to be determined.

On server side Dovecot has been used during development. Testing was performed aso with
the Courier IMAP server ™, Compatibility of TLS-Proxy does not depend directly on the
MTA, but on the IMAP server. These two can be implemented by the same software solution.
Thisisthe case in the examples mentioned above.

Compatibility with other IMAP servers which have not been mentioned above has not been

tested and can be the target of work beyond this thesis.

45

3. Implementation

3.1. An early attempt

After the first steps of functional analysis and design considerations a working proof of
concept has been written in shell script (see appendix A). This script uses Perdition, which
was aso intended to be part of the final solution. First of all existing rules of Iptables are

deleted that they would not interfere with this experiment:

iptables -t nat -F
Then IMAP connections to the TCP port 143 are matched by the prerouting chain:

iptables -t nat -A prerouting -p tcp --dport 143 -j DNAT --to 127.0.0.1:143
The prerouting ““ chain is the right place for this, because rules in this chain are applied while

matching packets before the route is calculated or the packet is forwarded. This is the chain
which has to be used for filtering for packages which are addressed not to the host, but are

just routed over it.

: Lnscanned
client : transp;rentprcxy ¢ ?unnechca server
€ 3) dumping logins :

!

scan connector |«

message
evaluation

spamassassin

filter connection

.. firawall...:

Illustration 17: IMAP-filtering architecture, early attempt
The matched connections are rerouted via DNAT to the perdition proxy, which dumps
username and password of successfully established IMAP connections into the logs which are
parsed. Login data is extracted as well. With this data a tool called Isbg @ is called, which

provides the functionality to connect to IMAP servers and to handle spam in different ways

46

such as marking, moving or deleting. Isbg is being run periodicaly after a given delay has

passed. Simultaneously the client can transparently access the mail account over Perditi on”.:

It is an additional advantage, that the AS-line of Underground_8's anti spam appliances ! use
Spamassassin as well. This means that this script fits well into the software environment of
the used systems. No extra software except for Perdition and Isbg has to be installed.
Disadvantages of this early attempt are the inelegant invoking of programs and extraction of
login credentials from log files. Also a centralized way to manage settings and software
options is missing. The biggest issue however is, that the client can establish a connection and
check mails before the spam-scanning has been completed. This has to be fixed within the
source code of Perdition and was not done because Perdition was abandoned within this
thesis.

After careful inspection of the source code of Perdition some issues occurred. Perdition uses
Vanessa libraries such as “libvanessa-logger0” or “libvanessa-socket-pipe” . These libraries
greatly smplify logging and handling of Unix sockets in the C programming language.
Generdly it can be said that they are useful. However in this case it is necessary to buffer
IMAP traffic, to parse for strings which indicate the retrieval of messages and to deny the
forwarding of traffic if it is dangerous. This cannot be done directly within the source code of
Perdition asit calls the socket-pipe from the Vanessa I library and traffic does not necessarily
directly pass Perdition in a way that it can be buffered or altered. After several unsuccessful
attempts to dump network traffic in a useful way it was realized that if Perdition is used as
Proxy server, also the Vanessa socket-pipe library has to be modified. Altering it would
potentially break other packages. This was not acceptable as the library is used by other
software within the given distribution as well due to dynamic linking 2. A possible solution
to this issue is to compile Perdition with statically linked libraries and by that accepting
redundancies in the system.

The idea of using Perdition as a proxy server was finally abandoned.

3.2. Final design

As Perdition did not meet the given requirements the avail able options were either to write an

own proxy server or to search for another existing one which can be extended by the required

47

features. The decision fell on an existing proxy server caled TLS-Proxy . The main
advantage of it is, that it supports the trusted filtering of SSL/TLS connections if the provided
certificates are installed on the client. Thisis basically atrusted man in the middle '’ feature,
Be aware that in order to to have privacy, SSL/TLS is not sufficient and content encryption
such as PGP ™ has to be used. The proxy uses an encrypted connection to communicate with
the real server and uses it's own certificate to encrypt the connection between the client and
itself. TLS-Proxy is a framework and currently contains support for the application protocols
HTTPS and SMTPS as well as raw TCP connections for test purposes. During the creation of
this thesis a plugin for IMAP over SSL/TLS (IMAPS) support was written. The following

diagram illustrates the architecture of this software solution:

IMAP client j——3» TLS-Proxy ——P IMAP server

IMAP plugin
Sambucus
Clamaw Kaspersky AY

[lustration 18: TLS-Proxy entities

TLS-Proxy is responsible to handle the client- and the server-side of the IMAP(S) connection.
Traffic is routed through the IMAP plugin which scans the connection for viruses. The attack
vector of IMAP connection is the body of a retrieved message as this is the place where
viruses can be transmitted. To identify these places in the IMAP traffic parsing for the
keyword “FETCH (UID” followed by the UID in form of an integer and immediately
followed by “BODYT(]” is necessary in the stream, where the source is the IMAP server and
the destination is the client. Like this incoming message bodies are identified. The filtering of
the outgoing traffic is out of the scope of this thesis as the main concern is to protect the

internal network from the internet and not vice versa. Other commands also exist to retrieve

48

parts of a message, like “FETCH” combined with “BODY.PEEK]]”, but viruses are
essentialy in the attachment of the message so infection is only possible if the whole message
isretrieved and not just the header or the first few ASCII lines of it. The end of the messageis
identified by reading the amount of bytes which are specified in the beginning of the IMAP
server response and indicate the message size according to RFC-822 and RFC-2822"%. After
that parsing for a line with the content “OK Fetch completed” terminated by CR LF is
necessary.
If the beginning of the transmission of a message is detected, writing to the client side is
blocked, until the content of the message is identified as harmless. That means that the
message has to be buffered and written into a temporary file which is ripped of the mime
extension and passed to the anti virus software for scanning. Currently ClamAV™ is used for
scanning, but in future the calling of an antivirus solution will be done by a currently
unpublished scanning daemon called Sambucus. The advantage of this solution is that there
will be just one APl which has to be called for virus scanning, but the implementation of
Sambucus can support multiple virus scanners internaly. This means that more reliable
results can be achieved by combining the analysis of at least two virus scanners. This
additional layer of abstraction also results in flexibility: If one anti virus solution is swapped
for an other, the code within the IMAP plugin of the TLS-Proxy does not need to be modified.
It is sufficient to remove one scanner and add another one within Sambucus.
Depending on the result of the virus scan either the existing buffer is written to the client, or
the content of the message is nullified. This is done by creating a new buffer which the
original header of the message is copied into. Then a message has to be appended which states
that a virus was found and the mail body inclusive attachments was removed. An additional
feature is to include the number of infected files as well as the name(s) of the virus(es) found.
After that the line “OK Fetch completed” is appended after the current command
number which is the response of the IMAP server and indicates that the execution of the
command is finished and further lines do not follow. If the correct command number is
missing or the message “OK Fetch completed” is not placed at the proper position IMAP
clients may not work properly. This was observed with a command line e-mail client called
Mutt™®. It ended up being in an endless loop waiting for the end of the command complying to
the IMAP 4revl RFC.

49

Before sending the nullified message to the client, the message size attribute has to be
calculated and sent within the first line of the IMAP response. The IMAP sizeis calculated by
counting the bytes of the message. This is referred often to as RFC 822 ¥ size. If thisvalueis
not set correctly the behavior of the IMAP client depends on it's implementation. In case of
Mutt the nullified message is cut to the specified size, which can result in a partly displayed
message.

After completing these tasks the nullified message with the virus warning included is ready to
be sent to the client. The IMAP plugin can do this by writing to the available file descriptor
in the TLS-Proxy framework.

An additional capability of the IMAP plugin is to capture the command “STARTTLS’ at the
beginning of an IMAP session so that TLS-Proxy could start the trusted man in the middie

feature for scanning encrypted connections.

filtered
conn.
IMAP client |——» TLS-Proxy -« P IMAP server
IMAP plugin spam scanning
conneciton
l L—— | connector script P ISBG
Sambucus
Clamayw Kaspersky AV spamassassin
...existing software ...software developed by me

[llustration 19: TLS-Proxy entities exploded
This diagram shows the complete structure of the software components used for IMAP
scanning. It includes not just the TLS-Proxy with the IMAP plugin and the virus scanning
solution, but also the custom connector script for spam scanning. An early version of this
script was described in section 2.3 and has been referred to as asynchronous online scanner.
The main difference in this new architecture is that the connector script has to communicate
with the IMAP plugin directly and does not get any login information from Perdition as it is

not part of thisthesis.

50

3.3. Flowchart: HandleClientSide

The TLS-Proxy scans and manipulates IMAP streams on the network if required. Streams
have some properties which are not trivial to work with. For example streams can be
processed just in one way. It is not possible to iterate backwards, to seek like in afile or an
array. Sending of data cannot be undone. A proxy server has to be able to work under these
conditions without causing major delays. Caching data in order to be processed in a block
with specified size is thereby not recommended. Also in most cases it is unknown how much
datawill follow in the streams and when it ends.

The TLS-Proxy provides a method for every protocol which is responsible to receive and to
send data. These are caled “HandleClientSide()” and “HandleServerSide()”. The maximal
amount of data which is received at once is limited to 64kByte. However, it does not have a
lower limit. As data arrives over TCP, the buffer of the proxy is filled with it and the already
mentioned methods are executed. As a consequence these methods receive data in form of
chunks of arbitrary sizes. In the first, experimental design of the IMAP plugin every chunk
was inspected and in case of a found start or end tag the whole chunk was considered to be
part of a message. This worked well for test messages of less than the maximal buffer size of
64kByte. However if severa e-mails were received after each other or in case of attachments
which are usualy bigger than 64kByte the IMAP plugin was destroying messages by cutting
them at arbitrary positions and appending data from other chunks which did not belong to the
message at all. It was necessary to develop an agorithm which deals with this inconvenient
stream of data which arrives from the IMAP server. Thisissue could be solved by introducing
a separate buffer in which messages are cached. Note, that no other parts of IMAP traffic but
messages are cached like this. Also a flag was needed which showed whether the current
position within the stream is within a message or not. The position was within a message if a
“start tag” of the FETCH command had already been processed and an “end tag” not. The
flag for this purpose is named “fetch” in the flowchart below which shows a simplified

version of the used algorithm:

51

contains
beginning of start
tag?

fetch
open? f

- write buffer
T [l to client;

write until start tag:
t fetch = open
init msg buffer

cache until
end of chunk;

contains
end?

Y

cache until
end tag;
eval f nullify Y

fetch = closed i :

Illustration 20: Flowchart: HandleClientSde

Parts of the stream which are after an end tag and before a start tag must be written to the
client immediately without being scanned or delayed in any other way. Messages must be
detected even if they are fragmented over several chunks of data. This happens in case of
attachments. The end of a message has to be detected so that caching the stream could be
stopped and evaluation could be started. This caching and parsing over several chunks had to
work very reliable as in any other case the usage of the IMAP plugin would result in
destroyed messages which renders the software unusable. The algorithm which is shown on
the flowchart handles this issue satisfactorily. Debug output of the retrieval of a message
using this algorithm looks like this:

end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 14630
end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 14630
end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 14630
end check method, got attr: msgSize: 84243, msgBufLength: 68050, pos: 16223
- caching until end (end found at 30854) pos=0

- eval msg

read filename: /tmp/imapB2AEug

result buffer: /tmp/imapB2AEug.dir: OK

52

Infected files: 0
Time: 0.023 sec (0 m 0 s)

E-Mail clean.

- writing until end of chunk. pos=30854
In the example above the a gorithm loops through the chunks delivered by TCP and searches

for the end of the e-mail in the data stream. It caches data until position 3054 which is the end
of the e-mail in the buffer. This cache is is then written to the disk, evaluated by anti virus
software and the result which is located in afile is loaded into the memory. After considering

the e-mail to be clean the whole buffer iswritten to the IMAP client.

3.4. Access control

One of the mandatory features of the developed program was some kind of access control.
Severa variants were plausible: Having configuration files, black- and whitelists, a web based
management interface, different settings for the proxy itself and the online scanner seemed to
be reasonable solutions. However the idea of disabling the scanning of specified accounts
within the proxy was abandoned in an early stage of development: Beside logging login
information, the main functionality of the IMAP proxy is to actually scan messages for
viruses. Disabling this functionality is not a matter of convenience, but a matter of security.
Reasons for disabling scanning are mostly the unwanted changes which are made to the
IMAP mailbox on the remote server. This affects the online scanner, but not the IMAP proxy
itself. Thisis the reason why it is mandatory for messages to be scanned by the proxy and not
just an option.

For the online scanner however user management greatly affects useability as without it in
case of a user, who does not want spam scanning the whole online scanner would have to be
turned off. The internal working of this user management is the following: The online scanner
uses two plain text files called “listAvailable” and “listEnabled”. While being invoked by the
IMAP plugin of the TLS proxy, the online scanner receives a list of accounts with hosts,

usernames and passwords. It dumps the mailboxes in the fomat “ username@host”, one entry

per line into the file “listAvailable’. This file can be read by an arbitrary management
interface — like aweb based user interface —to list the available accounts. The lines containing

accounts where scanning is desired are copied into the file “listEnabled”. While being run, the

53

mailto:username@host

online scanner has the whole database of login information in memory, but scans just those
accounts, which are contained in the file “listEnabled”. It is crucially important that these files
do not contain the passwords of the accounts. Passwords are stored in an Sqlite3 ! database
within the IMAP plugin of the TLS proxy and are transferred to the online scanner's standard
input. If an account is present in the file “listEnabled” but does not have the corresponding
password in memory, it isignored until the password is learned by the proxy on the fly. The
file “listAvailable” provides just a source for accounts for the management interface and does
not contain accounts which were added manually into the “listEnabled” file.

There are two issues of this behavior which have to be considered if the asynchronous scanner
is used:

1. The IMAP plugin simply invokes the third party tool which is responsible to scan
IMAP accounts for SPAM without monitoring it. The functionality of the IMAP
plugin is not more than a trigger to start the scanning procedure and a safe storage
facility for passwords. The consequence is that the validity of login credentials is not
ensured. Passwords which are sniffed from the network traffic are sent to the third
party scanner and may or may not be valid. An attacker who knows about this
behavior could try to use a large number of incorrect login credentias which the
scanner would try to use periodically. With a large enough number of logins this is
considered to be a DoS attack 7.

2. The idea behind an in-memory database is that data which is not written to disks is
safer. Also topics like encryption and file permissions are avoided thereby keeping the
design simple an almost without drawbacks. The issue with data which is stored in
memory for security reasons is virtual memory. If an attacker can manage to examine
the hard-drive’ s content, passwords can be revedled. Risk mitigation is done by
turning off virtual memory (paging) or limiting the physical access to the hard-drivein
the long term. Also non-pageable memory can be used to prevent login credentials to
be swapped to the hard disk. A dlight drawback of an in-memory database is aso that
login credentials have to be learned again after every reboot. The impact of this
behavior is not big as proxies and firewalls should not be rebooted often in the first

place.

3.5. Handbook for administrators

3.5.1. Quick setup of TLS-proxy with IMAP plugin

Before trying to run the developed software some thought has to be given to the network
architecture which this systemisrunin. It isnot trivial to set up atest system on one host. It is
already clear from the previous chapters that what we are dealing with is a transparent proxy
server. As a consequence it has to run on a host which is a gateway between the ,rea” client
and server from the application protocol's point of view. In order to understand this it is

important to know how the ,redirect* command of Linux's I ptables 1% s used:

iptables -t nat -A PREROUTING
-p tcp --dport 143
-j REDIRECT --to-port 4430;

The effect of thisisthat all TCP traffic from port 143 which is routed through the gateway is
intercepted and redirected to the port 4430 on locahost where the transparent proxy is
listening. Note the importance of the “PREROUTING” chain in the command above: It
means that this rule matches only packets which are routed from one network interface to the
other. However it does not match packets which are sent by localhost. For that the
“OUTPUT"” chain would have to be used. If someone decides to use the output chain instead
of the prerouting chain for testing purposes so that the proxy could intercept connections from
localhost too, the person will encounter the following problem: A packet is intercepted on
port 143, is redirected to the proxy on port 4430. After being processed it is sent by the proxy
again on port 143 to the server, but it is intercepted again because the wrong chain has been
used in the Iptablesrule. This results in a continuous loop which is undesirable. The gist of
this theoretical caseis not to modify the chain of the packet filter and to use a clean setup with
multiple hosts for testing purposes. However, by using two separate virtual hosts as client and
server and realizing the network infrastructure with VLANS it is possible to create a clean
single-host setup. A script demonstrating this can be found in appendix B. This setup is
described in great retail in chapter 3.9.

After the variables in the script from appendix B are set to match the network environment

and the script was executed the next step is starting TL SProxy:

./TLSProxy -P IMAPS -c /etc/tlsproxy/proxy.conf

55

The option “P” specifies the protocol to use. Other supported protocols include SMTPS and
HTTPS. These are described in the thesis “TLS-Proxy” ¥ and are not further explained here.
The option “c” specifies the configuration file. If it does not exist or this option is not
specified at all hardcoded default values are used. The configuration options will be described
in chapter 3.5.2.

To be able to intercept also encrypted connections two extra requirements have to be fulfilled:
The client has to accept the certificate which is used by TL SProxy to encrypt connections and
the proxy must be able to generate certificates. The first depends on the design of the client.
Most mail user agents ask whether the received certificate should be accepted or not and some
also offer to permanently accept it. It must be empathized how important it is to check
whether the certificate's origin is really the TLSProxy and not another program trying to
perform a man-in-the-middle attack.

The second can be done easily by starting the certificate store daemon by executing the
“./CA” command in the corresponding folder. This daemon generates certificates for every
connection and used to be part of TLSProxy. Meanwhile it has been extracted and made into a
separate daemon ™,

By now TLSProxy should be up and running and should automatically intercept connections.

3.5.2. Configuration file options

Additionally to the undocumented options of the TLSProxy the IMAPS plugin supports
following options, which have to be set in the configuration file of TLSProxy. If they are not
specified, a hardcoded default value is used:

Option Default value
ENABLE_ONLINE_SCANNER yes
IMAP_SCAN_INTERVAL 300
IMAP_ONLINE_SCANNER_PATH /usr/bin/onlineScanner.sh
IMAP_FORCE_LOGIN yes
IMAP_HIDE_STARTTLS CAP No
IMAP_CLAM_DAEMONIZED No
IMAP_USE_SAMBUCUS Yes
HANDLE_UNSCANNABLE_AS INFECTED |Yes
IMAP_PRINT_ALL_CLIENT_TRAFFIC No

56

IMAP_PRINT_ALL_SERVER TRAFFIC No

ENABLE_ONLINE_SCANNER: Enabling the online scanner is the option which
turns on spam-protection. As aready described above in this document, spam filtering
is done by the asynchronous client and not by the proxy itself. If this feature is enabled
spam scanning is done by a separate thread. Possible values are “yes’” and “no”.
IMAP_SCAN_INTERVAL: The IMAP scan interval only gains meaning if the online
scanner is enabled. It specifies how much time has to elapse between the
asynchronous client finishes scanning IMAP folders and is executed again. Specifying
the scanning delay this way was intentional, so that the scanner could not be started
while another instance is still running in case that scanning takes a considerable
amount of time due to the number of mailboxes which are scanned. The value of this
option hasto be specified in seconds.

IMAP_ONLINE_SCANNER_PATH: The online scanner path is, as the name aready
suggests, the absolute path to the executable online scanner script. In case that
TLSProxy was installed from the Debian package this value should be aready set
correctly.

IMAP_FORCE_LOGIN: Force login is an option which hides certain capabilities of
the IMAP server which alow a challenge-response style authentication. You may
want to prevent this kind of authentication because it makes it impossible to sniff
username and password which are needed for the online scanner. If this option is
disabled and the IMAP client decides to use challenge-response, the online scanner
will not work.

IMAP_HIDE_STARTTLS CAP: Hiding the starttls capability is not realy
productive, results most probably in security holes by using a clear text protocol and
was designed for testing purposes only. Severe problems can occur if thisis combined
with the force login option: If the authentication succeeds, username and password
will be sent in clear text over the internet which should be prevented. However many
IMAP servers advertise the “nologin” capability when communicating over an
unencrypted channel. This means that authentication with username and password is

not possible and other methods like NTLM are prevented by the proxy. The result is

57

that the client cannot connect to the server because of the bad proxy configuration.
The intended way of using these features is to allow starttls and to force logins. Like
this login credentials can be sniffed by the proxy and the connection is safe anyway
because of the encrypted TLS layer underneath. The theoretical case that an IMAP
server requires the usage of challenge-response authentication and does not support
TLS is absolutely not common and suggests a misconfiguration of the IMAP server.
However if TLSProxy has to be able to work with such an IMAP server, the
“IMAP_FORCE_LOGIN” option can be disabled thereby allowing connections.
IMAP_CLAM_DAEMONIZED: As aready mentioned in the timing section 2.4. of
this thesis, ClamAV provides two commands which can be used for scanning:
Clamscan and clamdscan. One is faster, the other one does not require the ClamAV
daemon to be installed. To give the decision which of the two commands to use into
the hands of the administrator, the parameter “IMAP_CLAM_DAEMONIZED” was
introduced. It can be set to the boolean values “yes’ or “no”.
IMAP_USE_SAMBUCUS: Asthe IMAP plugin of the TLS-Proxy was designed to fit
especialy into MF security gateways also the antivirus solution was integrated, which
is available in that environment. It is called Sambucus and has an own configuration
parameter: “IMAP_USE SAMBUCUS’. If it isset to “yes’, the Sambucus daemon is
used to evaluate messages. This parameter was necessary to provide usable
functionality also in other environments. If it isset to “no”, ClamAYV is used.
HANDLE_UNSCANNABLE_AS INFECTED: This parameter was introduced quite
late and specifies how the TLS-Proxy behaves in a special case. ClamAV can
terminate prematurely without returning results. This happens if the system runs out of
memory while a scan is being performed. In this case the IMAP plugin caused a
segmentation fault and terminated due to the lack of input validation while opening
the scan results. During the design phase of adding proper input validation the
guestion raised what should be done with e-mail s which could not be scanned. On one
hand if they are treated as infected it is likely that they will cause a false positive. On
the other hand if it is assumed that the messages do not contain malicious code it is
possible that a virus enters the network. Neither is a good solution and this issue can

be easily prevented by running the IMAP plugin on a machine which sufficient

58

available resources. However if the system runs out of memory, the administrator
should be able to decide how the proxy behaves.

* The parameters “IMAP_PRINT_ALL_CLIENT_TRAFFIC’ and it's counterpart
“IMAP_PRINT_ALL_SERVER TRAFFIC" ae not present in the default
configuration file. They can be inserted manually to override the hardcoded default
value which is “no” for both parameters. The functionality which can be enabled by
setting them to “on” is the dumping of all IMAP traffic which passes the proxy to
stdout in plain text without TLS. This was very useful during development in order to
see what the proxy actually does. However these options could be easily used for
eavesdropping and are neither present in the default configuration file, nor in the
binary which is intended for distribution, for this reason. If access to TLS-Proxy with
IMAP support is provided to the public, this functionality may not be compiled into
the binary in order to prevent script kiddies to take advantage of this functionality.

3.6. Debian package

As this thesis was written not just for academic purposes, but also for a company devel oping
firewalls and other network security appliances it was an objective to enhance the usability of
the developed software. During the process of development files were put to many different
locations on the file system. This is acceptable on the host which is used for development, but
it is not on a production system. Instead of providing the software just in form of source code,
it was decided to build precompiled packages for the 1386 architecture in form of Debian
archives. Installing and removing the software is done by DPKG ¥ | which is considered to
be an elegant way of managing software. The advantages of this format include the smplicity
of creating archives for newer versions or other CPU architectures. The building process is
automatized by a simple shell script which calls “ dpkg-deb”.

The most important part of a Debian archive is the control file. It specifies the package name,
version number, dependencies and the maintainer of the package. It has to be created very
carefully as erroneously specified dependencies can cause malfunction of the software. The
whole power of the Debian archive management lies in the careful specification of
dependencies. If dependencies or their version numbers are set incorrectly, dynamic linking

will not work in case of libraries and the program will not run.

59

The current control file of the TLS-Proxy package is the following:

Package: tlsproxy
Version: 1.0-1
Section: base
Priority: standard
Architecture: i386
Depends: libsglite3-0 (>=3.5.9-6), bash (>=3.2-4), iptables (>=1.4.8-3),
gawk (>=1:3.1.7.dfsg-5), python, libc6 (>=2.11.2-7), ripmime (>=1.4.0.9-1),
isbg (>=0.99-1)
Maintainer: Macskasi Csaba <bitumen@tuxworld.homelinux.org>
Description: Transparent proxy with following features:
TLS MITM support, HTTPS, SMTPS, IMAPS with on the fly virus
checking, spam scanning online scanner

Note that the Python package does not have a version number because it is a metapackage. It
IS so to say “implemented” by arbitrary implementations of the Python language. The version
numbers of the dependencies were copied from the list of installed software on the
development host which was up to date. TLS-Proxy may work also with older versions of the
listed software. However this was not tested as systems should be kept up to date. As TLS
Proxy is responsible for virus- and spam scanning it is usually run on afirewall located on the
border of the network which should be protected. It is one of the critical points regarding
security. At least security updates should be performed frequently. However in case of a
freshly developed firewall appliance it can be expected that recent software is used which also
means that the dependencies stated above should not prevent any reasonable system from
installing the archive.

On the development system a source tree exists, from which the binary files are copied by a
shell script to the correct subfolders within the building environment of the archive. After al'so
copying the control file into it's folder the package is built by executing the command “dpkg-
deb —build”.

A Debian package has to satisfy strict expectations to comply with Debian standards and to
eventually become part of the official Debian archives. A tool named Lintian exists which
checks packages for compatibility with these requirements. It was designed specially to grant
the high expectations of the Debian distribution. ™

The TLS-Proxy package which was built as part of this thesis has aso been checked by
Lintian. Several shortcomings exist which will most probably not be fixed. There are no
intentions to write man pages ™ for the whole application nor is it planned to make the whole
directory structure to conform Debian guidelines. The main issue isthat TLS-Proxy is not free

software and it is not possible to make arbitrary changes to the whole software as it is under

60

copyright. This part is well documented in form of this thesis. TLS-Proxy is not free software,
it will not be distributed freely and has no chance of becoming part of the Debian distribution.
It is intended for internal use on firewall appliances only. Furthermore full Debian
compatibility was not part of the requirements for this thesis.

Originally it was intended to split the package into several sub packages so that features could
be installed separately. That way packages like tlsproxy-base, tlsproxy-https, tlsproxy-smtps
and tlsproxy-imaps could be built. The issue regarding this otherwise elegant modularized
architecture is the following: When compiling TLS-Proxy, the binary either contains certain
features or it does not. If the binary isincluded in the base package but the other packages are
not installed, the program will not work and produce an error when being invoked. However
if the binary isincluded in the plugin packages, there is no way to determine which package
contains the main binary. The only reasonable solution is to create just one package
containing all modules, all features. The split architecture can be achieved only if the source
code is modified. Thisis not part of the thesis.

The current version number “1.0-1” was freely chosen. The Debian build version which is the
part of the version number after the dash isone, asit isthe first try to build this package and it
has not been distributed yet. The version number of TLS-Proxy itself is freely chosen aswell
asit'sversion is neither indicated in the documentation nor in the source code.

The current package (v1.0-1) contains next to the TLS-Proxy also the asynchronous scanner
which isresponsible for scanning spam on IMAP accounts.

It is intended to build virtual packages for all plugins of the TLS-Proxy in the future. As all
binaries will be contained by the main package. These would be used just for additiona

dependencies, configuration filesand INIT scripts.

3.7. Dependencies

In order not to reinvent the wheel, TLS-Proxy and the IMAP plugin depend on libraries and
other software. This helps to keep the design of the software clean and without redundancies.
The availability of libraries was not an issue because all which were needed can be installed
from Debian packages. The IMAP plugin requires just one additional library in comparison to
the TLS-Proxy without IMAP plugin. This library is libsglite3, which is used to store the

extracted login credentials in memory. If TLS-Proxy is built from the source code, the

61

configure script checks for the availability of the required libraries before the software can be
compiled. If TLS-Proxy isinstalled from a Debian package, the package management system
of Debian (Dpkg) will install all dependencies which are specified in the Debian package of
TLS-Proxy.

However there was an issue in case of two dependencies of the IMAP plugin: The availability
of the tools “Ripmime’ ™ and “Isbg” @ was not checked during compile time as these
programs are not included in form of libraries into TLS-Proxy, but are called as binaries
instead. Also there was no Debian package available for these programs neither in any
GNU/Linux distribution, nor on open source software websites. Including these binaries into
the Debian package of the TLS-Proxy did not seem to be an elegant solution because they are
third party software products and one should have the choice to install them independently. It
was decided that separate Debian packages have to be assembled for these two tools, which
can be listed as dependencies in the package of the IMAP plugin.

After compiling Ripmime the following control file was created:

Package: ripmime

Version: 1.4.0.9-1

Section: base

Priority: standard

Architecture: i386

Depends: libc6 (>=2.11.2-7)

Maintainer: Macskasi Csaba <bitumen@tuxworld.homelinux.org>

Description: Tool to remove MIME extentions and extract the contained
files to a directory. It is mostly useful to automatically process e-

mails.

As Ripmime is a simple C program without any extra dependencies, just the C library was
listed as dependency which is available on every system. Packages were built for the
architechtures i386 and x86_64 (amd64) which should cover the majority of CPUs running
TLS-Proxy. For Ishg, which is a Python script used for scanning remote IMAP mailboxes for

gpam, the following control file was created:

Package: isbg

Version: 0.99-1

Section: base

Priority: standard

Architecture: all

Depends: spamassassin (>=3.3.1-1), python-openssl (>=0.10-1), python2.3
(>=2.3.5-16) | python2.4 (>=2.4.6-1+lennyl)

Maintainer: Macskasi Csaba <bitumen@tuxworld.homelinux.org>
Description: Tool to remotely scan IMAP mailboxes for spam. Unwanted
messages can be moved into the spam directory if configured so. Support
for SSL is included, but not for STARTTLS. Afaik isbg has poor

error handling.

62

Isbg depends on spamassassin which is used for spam detection, and on Python binaries with
SSL support for IMAP over TLS/SSL. Aslsbgisascript and isnot compiled for any specific
architecture, this package fits for every possible hardware architecture which provides an
interpreter for the Python language.

After building these packages the dependencies of the IMAP plugin are satisfied by available

packages so the following line was adjusted in the control file:

Depends: tlsproxy (>=1.0-1), bash (>=3.2-4), gawk (>=1:3.1.7.dfsg-5),
python, ripmime (>=1.4.0.9-1), isbg (>=0.99-1)
The issue of dependencies was hereby elegantly resolved. Version numbers of the listed

packages were taken from the installed software on the development computer. The version
numbers are not necessarily the minimal requirements. However a host which is running a

Debian based distribution from the stable branch can satisfy the dependencies easily.

3.8. INIT scripts

Integration of the developed software into an existing environment is an important part of this
thesis. The TLS-Proxy is different from software which is directly used interactively by the
user. Apart from the binaries being copied to the directory hierarchy on the host's file system
launching and stopping the application is more complex. TLS-Proxy should be started in
previously defined runlevels automatically because it is run as a daemon and it has to be
terminated correctly when the host is shut down. In Unix-like environments there are in
genera two alternatives of doing so:

« SystemV whichistill being used in *BSD systems and

* Init whichistypical for GNU based systems such as GNU/Linux.
Note that Solaris style services were not considered.
As the MF Security Gateway which the TLS-Proxy should be run on is using GNU/Linux as
operating system, it was decided to write a script for the INIT system. This script can be used
for 4 use cases:

« Starting,

* stopping,

* restarting the deamonized TLS-Proxy and

» giving information about it's current status (running / stopped).

63

An aspect which also had to be considered is that the TLS-Proxy currently supports the
application protocols IMAPS, SMTPS, HTTPS and raw TCP connections. Support for all
these protocols is located within the same executable file. However, one instance can handle
just one protocol, which is specified in a command line parameter. So in order to enable
support for IMAPS and SMTPS at the same time on a security gateway, two instances of
TLS-Proxy are required. According to the original design, each protocol should have an own

config file with protocol specific parameters. Starting al services would look like this:”

$ TLSProxy -P IMAPS -c /etc/tlsproxy/imap.conf &
$ TLSProxy -P SMTPS -c /etc/tlsproxy/smtp.conf &
$ TLSProxy -P HTTPS -c /etc/tlsproxy/http.conf &

In order to enable or disable support for these protocols independently three separate INIT
scripts are needed, each controlling a separate instance. All three protocols use the same
binary and PID-files are not used by TLS-Proxy, which means that stopping one can not be
done by issuing the command “killall TLSProxy”, or all three instances would be killed. In
order to differentiate between instances it is necessary to parse the command line parameters
which were used while executing the program. This information can be extracted from the

output of the “ps” utility by using the following bash commands:

$ tmp="ps ax | grep TLSProxy | grep $PROTOCOL;
$ pid="echo $tmp | awk '{ print $1 }'";
The process ID of the TLS-Proxy instance which uses $PROTOCOL will be located in the

variable $pid. This way the process can be safely terminated by issuing “kill $pid”. Such an
INIT script has been written just for IMAP support. Modifying it to support other protocols
consists just out of changing variables in the “config” section of the script. The whole INIT

script can be found in appendix “C”.

3.9. Testing architecture

It iswell known, that testing is an important part of software development. This is especially
true for this thesis as the IMAP plugin of the TLS-Proxy which was developed is planned to
be used in acommercial product. It will not be an application which is run by the end user and

can be restarted any time it crashes so it has to be ensured by intensive testing that it works

* Note: Thedollar sign,$* at the beginning of aline represents the prompt of the command interpreter and not

the beginning of avariable. For variable assignments,,$* is not needed in GNU/Linux.

64

reliably also in the long term. It will be installed most probably on the MF series security
gateways [*1, which should be able to run over a very long time without user intervention or
forced reboot. Thisis especially important regarding memory leaks which are present in many
applications written in C language. However, memory leaks turned out not to be an issue.

The first part of testing begins aready during development. Instead of running the TL S-Proxy
on an MF security gateway, a virtualized network was created for this purpose. The
environment of the proxy was given lots of thought due to architectural limitations which are
also stated in the kernel documentation: * Transparent proxying often involves "intercepting"
traffic on a router. This is usually done with the iptables REDIRECT target; however, there
are serious limitations of that method.” , 2 This means, that the proxy has to be run on a
router between source and destination of the traffic. The interception of the packets is done by
the packet filter called Iptables which is built into Linux kernel inside the PREROUTING

chain. The command for thisistypically the following:

iptables -t nat -A PREROUTING -p tcp --dport 143 -j REDIRECT --to-port
<port>

This firewall rule matches all packets which are routed by the system and where the
destination port is 143 which is the standardized port of IMAP. Such packets are redirected to
localhost to a port where the used transparent proxy listens. Note that the origina destination
address is still being stored by the kernel, so the transparent proxy can use this information to
send the packet to it's intended destination after being processed. Packets, which are sent from
localhost are matched by the OUTPUT chain of iptables and are therefor ignored by the
redirection command above. Thisis true also for packets whose destination is the host where
the transparent proxy is being run, as these are matched by the INPUT chain. The
consequence is that a transparent proxy under Linux must not run neither on the source host,
nor on the destination host of traffic in order to work as intended. Also it must be run on the
same host where the traffic is intercepted because the original destination can be recovered
only from the kernel which isinaccessible for other hosts. An exception are reverse proxiesin
which the destination is known in advance because it is static. In that case instead of redirect,
a destination network address translation (DNAT) can be applied to forward the traffic to
another host which the reverse proxy runs on. An alternative design is to run at least the
asynchronous scanner on another host with a separate public IP address. In this way by

anayzing the log files on the IMAP server it can be determined whether a real user has

65

established a connection with a MUA from behind the firewall which runs the transparent
proxy, or the log entry has been caused by the asynchronous scanner without user
intervention. This feature needs two public IP addresses. In many real world scenarios just
one | P address is available which was the reason why this idea was abandoned.

Also a convenient single-host solution is needed that the whole environment could be stored
on the laptop, which | use for development. These requirements are fulfilled with the
following setup: The host which is used for development runs aso the proxy and provides the
redirect rule in the firewall. Thisis rather convenient as after saving and compiling the source
code the software is run on the same host where it is located and does not have to be copied to
a separate router. This host provides resources for two virtual machines. The IMAP server
and the IMAP client (MUA):

|
E vClient
—| 2C
|1

TLS-Proxy,
IMAP Plugin

[ELI

wWSenver

VirtualBox

[lustration 21: environment during devel opment

These virtual machines are completely separated from each other and from the devel opment
host's real network despite using the same physical interface of the host computer. This is
done by adding separate VLANSs
this the development host has two additional VLAN tagged interfaces. For virtualization the

» [21]

to the network interface of the host computer. Through
open source software “VirtualBox is used. A useful feature of it is, that virtual network
interfaces can be bridged not only to real physical ones, but also separately to a specified
VLAN on the physical interface. This way the virtual machine gets an untagged port which is
connected to a VLAN interface of the host computer. Thisis convenient asit is not necessary
to deal with VLANS on virtual computers. The network setup on 1ISO OSI layers 2 and 3
looked like this:

66

Host L2 network Address

Tproxy / development 11, tagged 192.168.11.1
Tproxy / devel opment 12, tagged 192.168.12.1
ImapServer 11, untagged 192.168.11.2
ImapClient 12, untagged 192.168.12.2

The script, which sets up the virtual test network according to these parameters can be found
in appendix B.

In this design the ImapClient, which is in the network 192.168.12.0/24, has to use the
development host in order to connect to the ImapServer in the network 192.168.11.0/24. This
Setup is suitable to check for basic functionality and for experiments with the IMAP protocol.
An additional feature is that the development host has an interface on both sides of the proxy.
The interface “eth0.11” isin VLAN 11 and “eth0.12” in VLAN 12. This makes it possible to
sniff the traffic which is sent from the client or the server and also the traffic which was
manipulated by the TLS-Proxy. Comparing the two streams is a good way to analyze the
functionality of the developed software on alow level. Doing so made sense only when the
communication was done without TLS. Testing and verifying the IMAP stream while using a
layer of TLS isjust possible when enabling the dumping of traffic within the IMAP plugin.
The result is that both the client and the server were using encryption, but the whole traffic is
dumped to stdout by the TLS-Proxy. For an admin with malicious intentions this is an easy
way to perform a person-in-the-middle attack on encrypted IMAP.

This way of testing the software is reasonable until basic functionality works without errors,
the performance tests are done and the software seems to be ready to use. However asin case
of every software there can be still hidden bugs which are hard to find and could stay hidden
while testing in a lab environment. An additional way of testing was needed. Because this
software is not intended to be used directly by users or system administrators and will rather
be installed on security appliances by professionals, monkey testing has not been performed.
However along term test under real conditions is mandatory. There was a host with an MTA,
an IMAP server and several usersin an existing network environment which seemed to be the
right equipment for the long term test. However integrating the TLS-Proxy into this
environment is far from trivial. As already mentioned, a transparent proxy running on Linux
needs to be placed on a router. In the existing infrastructure the only router is an appliance

from Linksys with NAT, port forwarding and a rather limited firmware. This router forwards

67

the ports 25 and 143 to the server which was in the LAN with a privat IP address. The TLS-
Proxy cannot be placed between the router and the server as the router performs DNAT
during port forwarding and if IMAP traffic is forwarded to the address of the TLS-Proxy
instead, the packets will never reach the IMAP server.

The solution to this issue was to use again two virtual machines. One was a router with TLS-
Proxy installed with two virtual network interfaces, the other one contained just an IMAP

server and had two network interfaces as well :

— —

— e, —
l'.,.,-lll"'
TR s WVBox NAT B
e
X “
imapServer :
VBox 192.168.33.0/24
internal]
network

182|168.21.0/24 i

=t |
[T}

client

VBox Eridged net
TLEProxy

Lo virualized environment
Ilustration 22: environment during long term test: network architecture

The trick to direct traffic over the TLS-Proxy was to use an internal network between the
virtual IMAP server and the virtual router. This way clients had to connect to the virtual
server over the virtual router. The virtual server however needed to get mails from the real
server in order to act as an IMAP server. To avoid double checking this was not done over the
virtual router, but rather over the second network interface. That virtual NIC was connected
over the NAT feature of VirtualBox. This way the virtual server could fetch mail from the
real server with the IP address of the host computer's network interface. The fetching has been
done over the IMAP protocol using amail retrieval tool called “fetchmail” ®?. On client side
the address of the IMAP server had to be changed to the address of the virtual server. The

following figure shows an overview of the flow of information in the test environment. Red

68

lines symbolize unscanned SMTP / IMAP traffic, while the green one stands for traffic, which
was scanned by the IMAP plugin of the TLS-Proxy:

—— T
F

L s

client

virualized environment
[lustration 23: environment during long termtest: flow of information

Until now the IMAP plugin has been working as expected. Apart from the issues described in

section 4.2. of this document additional bugs have not been found yet.

3.10. MUA test results

Using the architectures explained above tests have been performed with several mail user
agents. Important requirements were that the devel oped software would not damage messages
during retrieval, that usable performance would be provided and that al the developed
features must work flawlessly. Also the software may not crash as in it's natural environment
uptimes of several months or even years are expected. The performed long term tests show
that the proxy with the IMAP plugin is still working after more than one week of usage.
Errors have not been logged. Much longer explicit testing is not possible within this thes's.
However the developed software will continue to run in the virtualized production

environment and will be used in future. This way testing will be done simply by reading lots

69

of emails every day. If issues occur they will be noticed because of the production
environment around it.
Some parts of the testing process were documented using screen shots. These were used to

show the functionality on the following pages.

e thindebClient [Running] - Oracle VM VirtualBox EEE

Machine Devices Help

-—-Mutt: =IWNBOX [Ms= 2121 Mew:103 13M]---(threa

@OF &I @ ERight ctrl

[llustration 24: Mutt
This picture shows the mail user agent Mutt after retrieving headers of 121 test messages
Mutt is the most tolerant mail client and showed aready successful results during

development where other mail clients failed due to incorrect IMAP responses.

70

e thindebClient [Running] - Oracle VM VirtualBox EEE

Machine Devices Help
i:tExit -:PrewFg <5 2y iMextPe wiView Attachm. d:Del r:Reply J:Mext 7:Help

Wirus detected. Maill body remowved.

5£121: root this messege contalns sth bad

@OLFF I @ =lrightctrl

Illustration 25: Infected Message
This instance of mutt wanted to fetch a message which was infected by a virus. The malware
has been scanned, identified and removed from the message. A warning has been sent instead
of the origina message body. The warning message is marked with red color. This scenario
shows how the IMAP plugin of the TLS-Proxy protects the network behind the firewall.
Testing of ZIP archives is not part of this thesis, because the result depends only on the used
antivirus software. The IMAP plugin does not unpack ZIP archives. Apart from that,

password protected ZIP files cannot be unpacked for analysis.

71

= Terminal - bitumen@hope: ~/eclipse/eclipse ¢le B
File Edit View Terminal Go Help

INTERCEPTED: connection from 192.168.12.3 to 192.168.11.2

SASL-IR capability hidden.

- writing until end of chunk. pos=0

#:P# SERVER->CLIENT: * OK [CAPABILITY IMAP4revl LITERAL+ LOGIN-REFERRALS ID ENABLE STARTTLS] Dovecot re
ady.

STARTTLS caught!
CLIENT-=SERVER: 1 STARTTLS

SERVER->CLIENT TLS: 1 OK Begin TLS negotiation now.

Server starttls response OK. Starting TLS.

B TR

i
I### CLIENT->SERVER: 2 capability

SASL-IR capability hidden.

wrrrTgTTeE o T, . pos=0
#:P# SERVER->CLIENT: * CAPABILITY IMAP4revl LITERAL+ LOGIN-REFERRALS ID ENABLE SORT SORT=DISPLAY THREAD=
REFERENCES THREAD=REFS MULTIAPPEND UNSELECT IDLE CHILDREN NAMESPACE UIDPLUS LIST-EXTENDED I18NLEVEL=1 CON
DSTORE QRESYNC ESEARCH ESORT SEARCHRES WITHIN CONTEXT=SEARCH LIST-STATUS
2 0K Capability completed.

##4# CLIENT-=SERVER: ¢ login "u8" "u8pw"

SASL-IR capability hidden.

- writing until end of chunk. pos=0

#:P# SERVER->CLIENT: 4 OK [CAPABILITY IMAP4revl LITERAL+ LOGIN-REFERRALS ID ENABLE SORT SORT=DISPLAY THR
EAD=REFERENCES THREAD=REFS MULTIAPPEND UNSELECT IDLE CHILDREN NAMESPACE UIDPLUS LIST-EXTENDED I18NLEVEL=1
CONDSTORE QRESYNC ESEARCH ESORT SEARCHRES WITHIN CONTEXT=SEARCH LIST-STATUS] Logged in

CLIENT->SERVER: 5 ENABLE CONDSTORE

[lustration 26: IMAP plugin, debug output

This terminal window was captured in debug mode which is very verbose and prints the
whole network traffic on application layer as well as debug messages of the IMAP plugin. It
isvisible that the client issued a STARTTLS command. This triggered the proxy to start TLS
on server- and client side in order to encrypt traffic (red). After thislogging in via challenge-
response protocols has been disabled. As a consequence the MUA has to use login credentials
(“u8” and “u8pw”) which is sniffed and parsed by the IMAP plugin (red).

These extracted usernames and passwords are kept in memory only. Unless an attacker has
access to the memory or to the page files (virtual memory) of a running system they are safe.
Of course debug mode has to be disabled as it does not make sense to dump login credentials
to stdout which is a serious security risk. If the online scanner was enabled, it would be called

directly by the IMAP plugin with the necessary login parameters.

72

e Win7 amd64 [Running] - Oracle VM VirtualBox E =N
Machine Devices Help
@ Inbox - Mozilla Thunderbird T @ o |2 | =
:
3 X j X ,—| 4local Folders Server Settings
() Get Mail - =/ Write . Address Book Junk Scttings pe
% Inbox Disk Space Server Type: IMAP Mail Server [Q_] .
= | 4u8@192.168.11.2 Server Mame: 192.168.11.2 Port: 14375 Default: 143
All Felders 4 »r % Quick Filte Pl
| Folders A Copies & Folders el o8
G i @ Subje . . ol
apd 192.168.11.2 sta Composl.tmn & Addressing b .
% Bbox (104) Junk Settings z . . T
|| Drafts svg Synchronization 8 Storage OnnecHOn S Ec UMY, - M
1% Trash s Return Receipts Authentjcation method: = £
Deleted ltems i Security
Elkiild6tt elemek tor| Outgoing Server (SMTP) Server Settings :
INBOX.spam ::: Check for new messages at startup =
: 'J:un: E-malil @ Check for new messages every 105 minutes =
iszkozato
When I delet 2
s, @ Move it to this folder: Trash R 207 AM
to uB@im| o L mE e R other actions ~
() Remove it immediately
If you can ["] Clean up {"Expunge") Inbox on Exit
["] Empty Trash on Exit
Local directory:
Ch\Users\bitumen‘\AppData'\Roaming\ Thunderbird\Profiles\tz
l Account Actions -
0K Cancel
= d:104 Total: 121

E 5 J3l9 T

D@ PG @ [ERight crl

[llustration 27: Testing STARTTLS
The screenshot above shows Mozilla Thunderbird operating with STARTTLS as security
setting. Messages are retrieved without problems. Thunderbird is compatible with the
developed IMAP plugin and the TLS-Proxy. Note the small lock symbol within the red
square. It shows that the connection to the IMAP server is secure.
The same mailbox has been used to test al mail clients. It contained various documents from
the documentation of the Linux kernel, pictures as attachments and large files (>10mb tar file)
to search for possible issues with the developed software. It was decided to use kernel
documentation because it includes code examples with many non letter characters which
could have been potentially difficult for the IMAP plugin to handle. With this payload several
bugs have been found and also fixed. Large files were needed for testing as they are for sure
fragmented and are sent in chunks. This test case was designed for the agorithm in the
method “handleClientSide()” which was already mentioned in section 3.3. of this document.
Pictures were very convenient test subjects as it is visible immediately after the retrieval of
the mail whether all parts were downloaded correctly or not. This is shown on the following

picture. Note that in order to see the whole picture scrolling would be necessary which was

73

not an option, because this way it can be shown that a multi-part message was retrieved. Also

scrolling within a screenshot is not possible.

\Win7 amd64 [RURnIng]- Oracle VM VirtualBox

File Edit View Go Message Tools Help
é‘ Get Mail ~ i-__.{Wr'ﬁe . Address Book Tag~ Search all messages... <Ctrl+I> pel
[| Q| -
All Folders 4 P || 9% QuickFilter = 8 B @ Filter these messages... <Ctr+F> pe
= 2
+ B | ocal Folders ® @ Subject “ From @ Date i
45 uB@192.168.11.2 :
| leo [102) @ kernellll = root & 2/9/2011 11:51 PM =
I ft @ funny pictures * root = 2/9/201111:53 PM |
o @ hintarfile “ rant da 279770111 11-54 PR %
1% Trash
s (o) Bt) (Bt (Bt (0 [t
_) Elkildtt elermek
| INBOX.spam subject funny pictures 2/9/2011 11:53 PM
| Junk E-mail (3) to uB@localhosti s other actions ~
|| Piszkozatok 5
.|| Sent Items Attached there are two pictures. THey are supposed to be funny.
—vicces_funny_003649 jpeg H
&
= | vicces_funny_003649,jpeg (= vicces_funny_003668.jpeg
L Unread:103 Totak 121
= |

(2] O] =1

F&10 GEIRghtcrl /|

[llustration 28: Thunderbird, attachments

74

Machine Devices Help

& Inbox - Mozilla Thunderbird =R
File Edit View Go Message Tools Help s
é Get Mail -~ |=_I/‘le'rte Address Book Tag - Search all messages.., <Ctrl+K> pel
| é, Inbox | Q.| -
All Folders 4 P |92 QuickFilter = =) 5 @ Filter these messages.. <Ctri+F> P=]
] N
e :-‘l;(all;“zh;es;n.z E || Suiject = From © Date - m
4 .
.}5..‘. I?m 104 stable_kernel_rules.txt @ root = 2:04 AM o
= oraes svga.tt ¢ root © 2:04AM
\'_ITT h sysfs-rulesbd = root = 204 AM
= e sysrq.bxt @ root = 204 AM
.|y Deleted Items
Elkaldatt slemek tomoya.tit ¢ root © 204AM
= INEOY spam unaligned-memaory-access.txt @ root « 2:04 AM
— =P success * root = 2:07 AM ?

[Junk E-mail (3)
.|| Piszkozatok

[a;g leply] [ay reply ahl‘ [m fulwaldl I & a.chwe] [& jnnkl [x deiete]

.|| Sent [tems from root <root@imap-server.localdomainz 1.1
cubject success 2:07 AM
to ul@imap-server.localdomain other actions =

If you can see this, all messages were retrieved successfully! ‘o/

| e | Preedioe Tombizn

- CRRCAL)

The picture above shows the retrieval of plain text messages with Mozilla Thunderbird. Note
that all headers already had been retrieved, but the status indicator shows only about 50%

because the message bodies were still being scanned and downloaded in the background. The

[lustration 29: Thunderbird, success

bodies of those messages which were clicked on, had been given a higher priority while

downloading.

75

Win7_amd64 [Running] - Oracle VM VirtualBox

Machine Devices Help

V[[(@ 5% = | Posteingang - Windows Live Mail ==

Privat Ordner Ansicht Konten L2
- =l = T e - - ot I B markieren oy 2 =1
Liﬁl .j ® x ﬂ |—a ?J i e '\& &a Uberwachen L3
E- Foto- Elemente | Junk-E Ldschen | Antworten Allen Weiterleiten Sofortnachricht | Zum Kalender Ungelesen/ Verschieben o Extras = Anmelden
Mail E-Mail - -Mail = antworten - hinzufiigen Gelesen §$ Codierung 4~ -
Meu Laschen Antwarten Aktionen
Schnellansichten B suCcess 4 February »
Ungelesene E-M... (112} root (root@imap-... Kontakt hinzufigen 2/28/2011 2:07 AM SuMoTuWeTh Fr Sa
Mach "datum {(Unterhaltungen)” sortieren= Abstei.. . . W31 23 45
Ungelesen von Konta.., An: uB@imap-server.localdomain; B
Ungelesene Feeds (108) b () success 207 AM = p 6 7 8 9101112
root L . . 13 1415 16 17 18 19
= If you can see this, all messages were retrieved
192.168.11 (u8) fully! \o/ 20 7 22 3324 25 36
= k % 204 AN successTtully: \o e e
Posteingang (110} b = iirlm it Y 27|28/1 2 3 4 5
Entwarfe 6 7 9 1
Gesendete Objekte = ;fju}:ager.lxl el
Junk-E-Mail (3) Heute
Geldschte Objekte volatile-considered-harmful.ibct 204 41 Keine Ereignisse fiir den
Elkiildatt elemek root nachsten Monat
INBOX.spam - video-output.txt 204 Al
Piszkozatok root
i VGA-softcursor.txt 204 AN
root
& E-Mail
[} Kalender vgaarbiter.txt 204 Al
root
1] Kontakte
unshare.txt 204 Al
Feeds root
B Mewsgroups
unicode.txt 204 AN - 1
129 Machricht{en), 110 ungelesen E-Mail wird ngruft..;_‘E Online arbeiten @

OE@C 0 @@ right cirl

ﬁ(e = O l [" H = l S koo S0 :

[llustration 30: Windows Live Mail, success

This screenshot indicates that the developed software is also compatible with the other
officially supported mail used agent: Windows Live Mail. It is visible that messages can be
downloaded successfully.

The window which was captured below contains dumped network traffic from the application
Wireshark which was executed on the router on the interface of the IMAP client. It shows that
the STARTTLS capability is advertised and that the client also issues this command. After the
response “1 OK Beginning TLS negotiation now.” traffic is encrypted and the connection is
secure. By sniffing the encrypted network traffic it is not possible to eavesdrop on the
unencrypted IMAP traffic.

76

Follow TCP Stream 40X

-Stream Content

* 0K [CAPABILITY IMAP4revl LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE STARTTLS AUTH=PLAIN] Dovecot ready. =
1 STARTTLS =
1 OK Begin TLS negotiation now.
EIE IR A | TSR . TR 1 VIR TR ey | I I, P

)oBlafonacooaocns E88cco0 o ool ilisllss oo oo [oooofooiliaalloc@ooalloafloccnnacns £5ccoooooanoaooano B...0... 0...8
PLENT P
..... Hoollatooodls
..Dovecot mail serverl @...U....imap-server.localdomainl @...U....imap-server.localdomainl+@)..*.H..
..... root@imap-server.localdomain®. .
1011031028392.
11110310283978..1.0...U.
. .Dovecot mail serverl O...U....imap-server.localdomainl 8...U....imap-server.localdomainl+0)..*.H..
..... root@imap-server.localdomain®. .@
oo ol
......... B.......1R.....*...a...7.INf. .ajA. .~.8.h.....~..W..2q.b. .M. . | +4.m D=L L e A
HBL...><.¥1pI..g..V.+........ (Joodooolloooooancao "loooooaoa i Jo 0 oo Jaood ntib0 6 l66a 00600 "lococcoos foocfoosccoo g..1.8...U
. .Dovecot mail serverl O...U....imap-server.localdomainl 6...U....imap-server.localdomainl+@)..*.H..
..... root@imap-server.localdomain.......0...06...U....8....0

[Follo 0 Bo o altle H[ili]o o [Ho oEoflo allos_ooofroois cacooono fooocoo p

olFo o ol oo o 02t

I5.8/../.V..E!

..r: . f, B81..63...0Q!9.2.7a =

|v|o ASCII) EBCDIC () Hex Dump) C Arrays ® Raw

|[§] Filter Out This Stream‘ | 3¢ Close

Illustration 31: Wireshark, proof of TLS

7

4, Summary

Beside all the success and usable results the extent of a master thesisis limited. Therefor there
are still topics which could be investigated around IMAP. This is the reason why there has to
be a section dedicated to shortcomings right after the next section which summarizes what

was achieved in this thesis.

4.1. Results

During the creation of this thesis significant investigation was made into the inner working of
the IMAP protocol. It was researched why IMAP is an issue for proxy software and how such
proxies can be developed anyway. Available software solutions were reviewed. It was found
out, that currently available free software which makes IMAP connections safer does not
exist. Shortcomings of RFC 3501 such as the partial fetching feature or the missing timing
requirements have been found. It was investigated how these limitations can be overcome by
workarounds. For this also underlying layers were inspected as parts of the system. Data
throughput and timing were analyzed as critical aspects of communication. After reviewing
the timeouts specified by RFCs features such as keep alive bytes were implemented. Further
ideas include setting of the PSH bit in TCP headers.

After identifying the attack vectors appropriate measures where created to keep the network
safe from threats due to the usage of IMAP. The most important attack vector was malware
which could enter the network by being packed into attachments of multipart e-mails. A
solution was described how IMAP traffic can be scanned and malware can be blocked.

The introduced measures have been realized by implementing a working, usable IMAP plugin
for the existing TLS-Proxy, which fulfills the previously set requirements. This software
consists of avirus scanning transparent proxy which filters IMAP traffic and an asynchronous
online scanner which can be used to handle unwanted spam messages. Also INIT scripts were
written and a Debian package was built for comfortable installation and integration into an
existing system. Informative documentation was written within this thesis including
descriptions of configuration file options.

Another feature is the safe logging of login credentials without writing them to the harddrive

even tough the connection is encrypted. These credentials can be passed on to additional

78

scanners. Therefor the developed software solution provides a tool for network administrators
to handle IMAP appropriately. The result was tested on a variety of systems and these tests
were documented. The gist of this thesis is that using the developed IMAP plugin
communication over the IMAP protocol can be scanned for viruses or spam thereby adding
security to the system. Thisis abig step towards security for organizations, which use IMAP

servers which are outside of their network.

4.2. Problems and shortcomings

Asthis project was developed as a master thesis resources were limited. Additional ideas exist
which could be investigated and implemented. These include moving messages with viruses
in them into a separate quarantine folder or appending more detailed virus warning messages.
A shortcoming is definitely that spam is not filtered in real time. A solution for this issue has
not been found yet. Also the code of the online scanner is has not received too much attention
after virus filtering was considered as the main field of investigation. It supports only plain
text IMAP and IMAP over SSL using the TCP port 993, but not the STARTTLS feature of
IMAP. This is a limitation of Isbg™ and affects spam scanning only. Virus scanning is not
affected by this limitation and works well aso with STARTTLS. The topic of extrusion
prevention has not been analyzed yet. For that feature a statistical filter for keywords could be
used.

Due to the lack of resources, such astime or arealistic test environment for stress testing and
reproducing errors during the end of development, currently there are still two known bugs

which have not been fixed yet:
Bug No. 1

Before the transfer of actual messages over IMAP, thereis afield in the header indicating the
RFC822.SIZE attribute of the message. This is important information as it is further
processed during the process which determines the end of a message. In case of Microsoft
Exchange being used as an IMAP server, this value may not be parsed correctly which
renders the input validation of the IMAP plugin useless. In the worst case if the message
contains a virus and in the beginning of the message the character sequence “)\r\n\r\n” is

present the infected message reaches the IMAP client. To determine the source of this bug it

79

would be necessary to print debug information about the processed data directly in that part of

the source code, where this attribute is extracted.

Bug No. 2

If alarge amount of mail is retrieved on one connection (about >200 messages) it may occur
that the proxy only caches and does not write data to the client. A probable cause is that the
start tag of a message is split into two separate buffer chunks and is not recognized by the
algorithm. This bug is not caused by the special structure of a message as the affected
message can be downloaded after being given a second try. The cause of this bug may lay
also in the the end tag detection of the IMAP proxy, or in non RFC 3511 conform traffic sent
by the IMAP server. The real cause of this bug is hard to find as hundreds of messages have
to be retrieved to encounter this mentioned issue. Also additional debug output would be
necessary which could falsify resultsin case of arace condition.

Apart from these two bugs no other malfunction is known.

4.3. |deas for further work

Further work includes fixing the problems and shortcomings above. The spam filtering which
has been developed in this thesis is asynchronous. In most cases this is fine, but it would be
elegant to offer also a synchronous version. A missing piece of the puzzle is a web interface
for administrators which can be used to activate spam protection for IMAP accounts. Another

idea would be a quarantine where suspicious messages are moved into viaIMAP.

80

Literature

[1] RFC 3501, page 39, http://www.networksorcery.com/enp/rfc/rfc3501.txt (2011.12.28)
[2] Isbg, http://redmine.ookook.fr/projects/isbg/wiki (2011.12.28)

[3] Trusted Persion in the Middle: TLS-Proxy, Aspetsberger R.

[4] Perdition, Horman S., http://horms.net/projects/perdition/ (2011.12.28)

[5] Vanessa Socket, Horman S., http://hg.vergenet.net/vanessa/vanessa_socket/ (2011.12.28)
[6] RFC 3501, page 12, http://tools.ietf.org/html/rfc3501 (2011.12.28)

[7] ClamAV, http://www.clamav.net/lang/en/ (2011.12.28)

[8] Muitt, http://www.mutt.org/ (2011.12.28)

[9] RFC 822, http://www.ietf.org/rfc/rfc0822.txt (2011.12.28)

[10] Linux 2.6.32 source code: Documentati on/networking/tproxy.txt

[11] Untersuchung von verschlisselter E-Mall Kommunikation nach Spam und Viren,
Grundmann M.

[12] Rfc2595, http://www.fags.org/rfcs/rfc2595.html (2011.12.28)

[13] Lintian, http://lintian.debian.org (2011.12.28)

[14] Litmus, http://litmus.com/resources/email-client-stats (2011.12.28)

[15] Exim 4 default configuration in Debian 6.0: /etc/exim4/exim4.conf.template

[16] Verification and improvement of the sliding window protocol, D. Chkliaev, J. Hooman,
E. de Vink, www.cs.ru.nl/ita/publications/papers/hooman/SWP.pdf (2011.12.28)

[17] Ripmime, P. L. Daniels, http://www.pldaniels.com/ripmime/ (2011.12.28)

[18] RFC 2822, Internet Message Format, http://www.ietf.org/rfc/rfc2822.txt (2011.12.28)

[19] http://www.underground8.com/de/products/mf_security gateway.html (2011.12.28)

[20] Linux kernel documentation: linux/Documentation/networking/tproxy.txt

[21] Oracle VirtualBox, http://www.virtualbox.org/ (2011.12.28)

[22] Fetchmail, http://fetchmail.berlios.de/ (2011.12.28)

[23] Underground_8, http://www.underground8.com/de/ (2011.12.28)

[24] GNU GPL version 2, http://www.gnu.org/licenses/gpl-2.0.html (2011.12.28)
[25] Debian, http://www.debian.org/intro/about (2011.12.28)

[26] Imapfilter, L. Chatzimparmpas, https://github.com/lefcha/imapfilter (2011.12.28)

81

https://github.com/lefcha/imapfilter
http://www.debian.org/intro/about
http://www.gnu.org/licenses/gpl-2.0.html
http://www.underground8.com/de/
http://fetchmail.berlios.de/
http://www.virtualbox.org/
http://www.underground8.com/de/products/mf_security_gateway.html
http://www.ietf.org/rfc/rfc2822.txt
http://www.pldaniels.com/ripmime/
http://www.cs.ru.nl/ita/publications/papers/hooman/SWP.pdf
http://litmus.com/resources/email-client-stats
http://lintian.debian.org/
http://www.faqs.org/rfcs/rfc2595.html
http://www.ietf.org/rfc/rfc0822.txt
http://www.mutt.org/
http://www.clamav.net/lang/en/
http://tools.ietf.org/html/rfc3501
http://hg.vergenet.net/vanessa/vanessa_socket/
http://horms.net/projects/perdition/
http://redmine.ookook.fr/projects/isbg/wiki
http://www.networksorcery.com/enp/rfc/rfc3501.txt

[27] Juniper IMAP Scanning, http://www.juniper.net/techpubs/software/junos-security/junos-
security10.0/junos-security-sweconfig-security/jd0e63294.html (2011.12.28)

[28] Linux Programmer's Manudl, Signal, http://www.kernel.org/doc/man-
pages/online/pages/man7/signal.7.html (2011.12.28)

[29] POSIX, http://standards.ieee.org/devel op/wa/POSI X.html (2011.12.28)

[30] RFC1122 p. 81, PSH-flag, http://tools.ietf.org/html/rfc1122 (2011.12.28)

[31] 1SO-OSI Model, Application layer, p. 32, http://www.itu.int/rec/dologin_pub.asp?
lang=e&id=T-REC-X.200-199407-1!' PDF-E& type=items (2011.12.28)

[32] RFC 793 p. 32, http://tools.ietf.org/html/rfc793#section-2.8 (2011.12.28)

[33] Zimmermann, Philip (1995). PGP Source Code and Internals. MIT Press. ISBN 0-262-
24039-4

[34] National Research Council (U.S.). Committee on the Future of the Global Positioning
System; The global positioning system: a shared national asset, ISBN 0-309-05283-1

[35] EICAR test file, http://www.eicar.org/anti_virus test_file.htm (2011.12.28)

[36] Unix Programmer's Manua, http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html
(2011.12.28)

[37] TCP/IP lllustrated, Volume 1, Stevens, W. R., p. 282, ISBN 0-201-63346-9

[38] Proceeding of the Seminar Future Internet (FI), DoS, p. 40,
http://www.net.in.tum.de/fileadmin/TUM/NET/NET-2009-04-1.pdf#page=40
(2011.12.28)

[39] Courier IMAP server, http://www.courier-mta.org/imap/features.html (2011.12.28)

[40] Iptables, Prerouting http://dev.medozas.deffiles/xtables/iptables.html (2011.12.28)

[41] MF series security appliances,

http://www.underground8.com/de/products/mf_security gateway.html (2011.12.28)

[42], Linux Programmer's Manual, Dynamic linking, http://www.kernel.org/doc/man-
pages/online/pages/man8/Id-linux.so0.8.html (2011.12.28)

[43], “Man in the Midde Attach”, Network Security, Kaufman C., Perlman R., Speciner M.,
p167, ISBN 0-13-046019-2

[44] “Sqlite 37, http://www.sglite.org/docs.html (2011.12.28)

82

http://www.sqlite.org/docs.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
http://www.underground8.com/de/products/mf_security_gateway.html
http://dev.medozas.de/files/xtables/iptables.html
http://www.courier-mta.org/imap/features.html
http://www.net.in.tum.de/fileadmin/TUM/NET/NET-2009-04-1.pdf#page=40
http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html
http://www.eicar.org/anti_virus_test_file.htm
http://tools.ietf.org/html/rfc793#section-2.8
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://tools.ietf.org/html/rfc1122
http://standards.ieee.org/develop/wg/POSIX.html
http://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html
http://www.juniper.net/techpubs/software/junos-security/junos-security10.0/junos-security-swconfig-security/jd0e63294.html
http://www.juniper.net/techpubs/software/junos-security/junos-security10.0/junos-security-swconfig-security/jd0e63294.html

[45] “DPKG — Package manager for Debian”, http://manpages.debian.net/cqi-bin/man.cgi?

query=dpkg& apropos=0& sektion=0& manpath=Debian+Sid& format=html & [ocale=en

(2011.12.28)
[46] IEEE standard: Virtual Bridged Local Area Networks,
http://standards.ieee.org/geti eee802/downl 0ad/802.1Q-2005.pdf (2011.12.28)

83

http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://manpages.debian.net/cgi-bin/man.cgi?query=dpkg&apropos=0&sektion=0&manpath=Debian+Sid&format=html&locale=en
http://manpages.debian.net/cgi-bin/man.cgi?query=dpkg&apropos=0&sektion=0&manpath=Debian+Sid&format=html&locale=en

Abbreviations

« Scan connector: layer between the proxy and the spam handling solution

 NAT: Network Address Trandation

« DNAT: Destination Network Address Tranglation
+ RFC: Request For Comment

* [ISBG: IMAP Spam Begone

« MTA: Mail Transfer Agent

« SMTP: Simple Mail Transfer Protocol

* DoS: Denial of Service

« TCP: Transmission Control Protocol

« CR: Carriage Return

- LF Line Feed

 FD: File Descriptor

* NTLM: NT LAN Manager

* FQDN: Fully Qualified Domain Name

« MUA: Mail User Agent

« MIME: Multipurpose Internet Mail Extensions
« ASCII: American Standard Code for Information Interchange
 VLAN: Virtual Local Area Network

« DPKG: Debian Packaging system

« MDA Mail Delivery Agent

« GPS Global Positioning System

e TLV Type Length Value

84

Appendix

Appendix A: Sourcecode of an early attempt:

#!/bin/bash

author: Macskasi Csaba, 2010

This demo script starts a transparent imap proxy on port 143 (prerouting)
and a non transparent one on port 144 (output)
WARNING! All iptables rules are deleted!!!

how long to wait between scan (seconds). Note, that this value should be
at least a few minutes:
DELAY="15"

flushing all iptables rules
iptables -t nat -F

kill running perdition instances
killall perdition.imap4

using iptables for destination nat

transparent:

iptables -t nat -A prerouting -p tcp --dport 143 -j DNAT --to 127.0.0.1:143
non transparent, for local testing only. This is needed to prevent loops.
iptables -t nat -A OUTPUT -p tcp --dport 144 -j DNAT --to 127.0.0.1:143

starting perdition, log pw of successful logins
perdition.imap4 -c --log passwd ok

while /bin/true

do

cat /var/log/syslog | grep Auth | sed 's/ //g' | awk 'BEGIN { FS =
"\"" }; { print $6 "," $2 "," $4}' | sort -u > /tmp/imap logins

clear

echo -e "### Transparent IMAP proxy with spam-scanning capability ###
\n"

The logins from /tmp/imap logons can be used to generate a config
file for isbg
now using sniffed login data to call isbg and spamassassin

for i in “cat /tmp/imap logins”;

do
iHost="echo $i | awk 'BEGIN { FS = "," }; { print $1 }'°
iUser="echo $i | awk 'BEGIN { FS = "," }; { print $2 }'"
iPasswd="echo $i | awk 'BEGIN { FS = "," }; { print $3 }'"
DEBUG:

#echo "i: $i"

85

#echo "parsed login data: host $iHost, user $iUser, pw
SiPasswd"

scan for spam using isbg, irgnore bad logins/unavailable
hosts...

./isbg.py --imaphost $iHost --imapuser $iUser --imappassword
$iPasswd 2>/dev/null

if [$? -eq 0]

then

echo "$iUser scanned successfully. (“date™)"
fi
done;

delay...
sleep S$SDELAY
done

Appendix B: Prepare-network.sh
#!/bin/bash

This script sets up the local network for test purposes.
Connection to it should be made via virtual computers
and bridged interfaces to the given vlans.

--—- BEGIN CONFIG AREA ---

VTAG1="11";
VTAG2="12";
VADD1="192.168.11.1";
VADD2="192.168.12.1";
HWNIC="ethl";
REDRPRT="4430";

-—-— END CONFIG AREA ---

enable ipv4 forwarding to play gateway
echo 1 > /proc/sys/net/ipv4/ip forward
if [$? -eq 0]
then

echo "forward enabled successfully."
fi

configure virtual interfaces for VMs
we'll "route" between these networks:
modprobe 8021g 2>/dev/null;

vconfig add SHWNIC SVTAGl 2>/dev/null
vconfig add $HWNIC $VTAG2 2>/dev/null

ugly hack to check interface creation...
ifconfig $HWNIC.SVTAG2 1>/dev/null 2>/dev/null
if [$? -ne 0]
then
echo "ERROR while adding vlan tags to $HWNIC";
fi

adding ip address to virtual nics

86

ifconfig $SHWNIC.S$VTAGl $VADDI;
ifconfig SHWNIC.SVTAG2 S$VADD2;

if [$? -eq 0]

then

echo "virtual NICs (SHWNIC.SVTAGl, S$HWNIC.S$VTAG2) set up
successfully."”
fi

netfilter rule for transparent proxy
redirect destination is localhost only!
iptables -t nat -F
iptables -t nat -A PREROUTING -p tcp --dport 143 -j REDIRECT --to-port
SREDRPRT;
if [$? -eq 0]
then
echo "Netfilter redirect successful."

fi

Appendix C: Init script

#!/bin/bash
init script for tlsproxy-imap

author: Macskasi Csaba

In order to adapt this script to other protocols of TLSProxy,
just change the variable $PROTOCOL in the config section.
After that insert protocol specific commands.

BEGIN CONFIG

BINARY PATH="/usr/bin/TLSProxy";
CONFIG_PATH="/etc/tlsproxy/imap.conf";
PROTOCOL="IMAPS";

END CONFIG

case $1 in
start)
tmp="ps ax | grep TLSProxy | grep IMAPS;
if [$? -eq 0]
then
echo "TLSProxy with $PROTOCOL support is already
running.";
exit 255;
fi

$BINARY PATH -P SPROTOCOL -c $CONFIG PATH &

tmp="ps ax | grep TLSProxy | grep IMAPS;
if [$? -eq 0]
then
echo "TLSProxy started successfully with $PROTOCOL
support";
else

87

88

europass

Europass
curriculum vitae

Personal information
Surname(s) / First name(s)
Address(es)

Telephone(s)

E-mail(s)

Nationality(-ies)

Date of birth

Gender

Work experience

Dates

Occupation or position held
Name and address of
employer

Dates

Occupation or position held
Name and address of
employer
Dates

Occupation or position held

Name and address of

employer

Education and training

Dates

Macskas Csaba
M.-Hainischstr. 11, 4040 Linz, Austria
1012 Budapest, Attila it 101, Hungary
(43-680) 31525 75

macskasi .csaba@gmail.com
Hungarian

1987
male

Scientific member of JKU / tutoring

2008 February — 2011 February
tutor
Pervasive Computing, Johannes Kepler University, Linz Austria

2010 October — 2011 February
Software devel oper
Underground_8 Secure Computing GmbH., Linz Austria

2011 May — present
Software engineer, devel oper
JM-Data GmbH., Linz Austria

2010-present: JKU Linz, Networks and Security

mailto:bitumen@tuxworld.homelinux.org

Title of qualification

awarded

Name and type of
organisation providing
education and training

2010: VGTU Vilnius, Erasmus
2006-2011: JKU Linz, IT
2000-2006: highschool graduation
Bachelor of Science

JKU, Johannes Kepler University, Linz
VGTU, Vilnius Gediminas Technical University, Lithuania
Johannes Kepler Gymnasium, Linz

Eidesstattliche Erklarung:

Ich erkldre an Eides statt, dass ich die vorliegende Diplom- bzw. Magisterarbeit selbststandig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wortlich oder

sinngemal3 entnommenen Stellen als solche kenntlich gemacht habe.

	Until this point of the document it was discussed what could be potentially dangerous, where malware can be located within the IMAP stream and what the technical possibilities are to locate these parts of the communication. However it was not described how to proceed once an e-mail with malicious code was found.
	The most obvious thought is that the message has to be prevented from reaching the mail client. One possibility is to simply drop the connection or not to send any more data of that message. This way the client is protected without question, but this cannot be a satisfactory solution as the MUA still waits for the message which it has requested to be sent. Within one connection several messages can be downloaded so with this method the delivery of legitimate, virus free messages would also be blocked. Dropping the connection could also be used to trigger a Denial of Service attack by sending virus infected messages [38]. Also it is unpleasant for the user if the MUA seems to stop working without an error message and mails cannot be downloaded. This behavior is also against RFC 3501 which states that a fetch command must be followed by untagged fetch responses containing the requested parts of the message, followed by a tagged response which informs about the success of the command's execution. Also the developed software has to comply to the standard in order to guaranty interoperability.
	The proper way of handling these situations is to copy the cached message which contains malware to a separate buffer, remove the malicious part and insert a message that parts of it have been removed due to security reasons. Determining which parts to remove can be done by separately scanning parts of the message. First, separate files have to be created from the MIME encoded, cached message. This can be done for example by a tool called “Ripime” [17] which can differentiate between the text part of the message and attachments. After having distinct files for the mentioned parts, they can be evaluated one by one by a virus scanner. Harmless parts can be assembled to a clean message. After inserting a note about removing parts, the message header has to be rewritten so that it would contain valid information about the MIME structure of the message. Also the encoding of the Internet Message Format has to be verified so that characters or character sequences within the message would not have unwanted semantic meaning in any upper layer protocol such as IMAP. The freshly assembled message can be written to the client.
	The easier way to proceed is instead of cutting out malicious parts of the message, is to simply remove the whole message body and to insert a virus warning instead. Also in this case the message is copied to a separate buffer, which is used for manipulation. As during this scenario the header of the message will not be modified, it has to be left in it's original state and it is necessary to seek to the beginning of the message body. This position can be found quite easily according to the internet message format: “The body is simply a sequence of characters that follows the header and is separated from the header by an empty line (i.e., a line with nothing preceding the CRLF).” [18]
	“CRLF” stands in this case for a new line. So in order to find the beginning of the message body the buffer has to be searched for the first occurrence of the Byte sequence 0x0A 0x0D. After these two bytes it is safe to simply delete the rest of the buffer's content thereby removing the whole message body. A user defined string can be appended as a virus warning message. In the developed application the string “Virus found. Mail body removed.” was used. The modified message is best terminated by “CRLF)CRLF”.
	This is also visible in the following example. Here is a short message with IMAP header and tagged response included:
	a0006 UID FETCH 476 BODY.PEEK[]
	* 1 FETCH (UID 476 BODY[] {498}
	Return-Path: <root@imap-server.localdomain>
	X-Original-To: u8
	Delivered-To: u8@imap-server.localdomain
	Received: by imap-server.localdomain (Postfix, from userid 0)
	.id E1B3A4C1AD; Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	To: u8@imap-server.localdomain
	Subject: testmail
	Message-Id: <20101129085904.E1B3A4C1AD@imap-server.localdomain>
	Date: Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	From: root@imap-server.localdomain (root)
	X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*
)
	a0006 OK Fetch completed.
	Just for this example the Eicar signature is treated as a virus and the message has to be nullified:
	a0006 UID FETCH 476 BODY.PEEK[]
	* 1 FETCH (UID 476 BODY[] {467}
	Return-Path: <root@imap-server.localdomain>
	X-Original-To: u8
	Delivered-To: u8@imap-server.localdomain
	Received: by imap-server.localdomain (Postfix, from userid 0)
	.id E1B3A4C1AD; Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	To: u8@imap-server.localdomain
	Subject: testmail
	Message-Id: <20101129085904.E1B3A4C1AD@imap-server.localdomain>
	Date: Mon, 29 Nov 2010 03:59:04 -0500 (EST)
	From: root@imap-server.localdomain (root)
	Virus detected. Mail body removed.
)
	a0006 OK Fetch completed.
	Note especially the bold parts. The first line is the fetch request from the IMAP client followed by the untagged response from the IMAP server which starts in line two. The number in brackets “{}” is the RFC 822 size of the message. It is calculated by counting all bytes of the untagged response of the server starting from the e-mail header (not the IMAP header!). CRLF at the end of every line is included. This value has to be recalculated after modifying the message as the IMAP client reads this amount of bytes as untagged response. If this is not done, the MUA is likely to hang while waiting for a proper response.
	The e-mail header which does not correspond with the message body and it's attachments can also be the source of issues for the MUA as it might not display the message correctly. If this occurs, the header has to be altered aswell.
	
	iptables -t nat -A PREROUTING -p tcp --dport 143 -j REDIRECT --to-port <port>

